
Remembering some intuitions about NP and NP-completeness
(for more formal definitions and details, see the slides of the EDA course on this same website)

Decision problems and complexity classes

Here we focus on decision problems, the ones with output “yes” or “no”, and on classifying problems
(not algorithms!) according to the time needed to solve them (with the best of the available algorithms),
and we will call problem A harder than problem B if solving A needs more time than solving B.

For example, given a sequence of integers, the problem of deciding whether it contains the integer
7 can be solved in linear time. We say that it belongs to the class of problems solvable in linear time.
If moreover the input sequence is ordered, then we can say more: it belongs to a proper subclass of the
problems solvable in linear time, namely the ones solvable in logarithmic time (in this case, by binary
search). Here we see that in fact what matters is how fast the running time grows depending on the
size of the input.

Other problems are not linear, but harder. The class of polynomial problems is called P. Note that
all logarithmic, linear, quadratic, cubic, etc., problems are in P.

Some other problems are even harder, and are not in P. The class of exponential problems is called
EXP (their running time has the input size n in the exponent; note that for large enough n, the
number 2n is much larger than n2, n3, or nk for whatever constant k). It is known that P ⊂ EXP
(there are problems in EXP that are not in P, such as ”generalized chess”).

The class NP, membership in NP, NP-hardness and NP completeness

There is a special class, NP, for which it is known that P ⊆ NP ⊆ EXP. NP is the class of problems
having a Nondeterministic Polynomial algorithm. Roughly, this means that a problem A is in NP if,
whenever the answer to A for a given input is “yes”, there is a “witness” (a “solution”) that allows
one to verify this “yes” in polynomial time.

The most famous problem in NP is SAT, the problem of deciding whether a given propositional
input formula F is satisfiable or not. This problem is clearly in NP: if the answer is “yes”, the witness
is the model, which can be checked in polynomial (even linear) time. Another example of problem in
NP is 3-colorability : can we color each node of a given graph G with one of three colors, such that
adjacent nodes get different colors? Here the witness is the coloring, indicating each node’s color.

A problem P is called NP-hard if any other problem in NP can be polynomially reduced to P .
SAT is NP-hard: any problem in NP can be polynomially reduced to (or solved by, or expressed as)
a SAT problem. This means that for any problem A in NP and input data D for A, we can build in
polynomial time a SAT formula F that is satisfiable if, and only if, the answer to A on input D is
“yes”. Moreover, from a satisfiablity witness of F (i.e., a model), it is usually easy to reconstruct a
witness (or a “solution”) for A on input D.

For example, we can reduce 3-colorability to SAT. Let G be a graph with n nodes. Introducing
3n propositional symbols xic meaning “node i gets color c”, let F state, for each node i, that it gets
at least one color (a clause xi1 ∨ xi2 ∨ xi3) and, for each edge (i, j), that i and j do not get the same
color (three clauses per edge: ¬xi1 ∨ ¬xj1, ¬xi2 ∨ ¬xj2, and ¬xi3 ∨ ¬xj3). Then F is satisfiable iff
G is 3-colorable, and from any model for F it is trivial to reconstruct a 3-coloring for G.

Note that if SAT can be polynomially reduced to some problem P , then P is NP-hard too. Apart
from SAT, many other problems in NP have been proved NP-hard too (doing such reductions, or
chains of them). Note that, by such reductions, if we had a polynomial algorithm for for any single
NP-hard problem, then we would have it for all problems in NP, that is, we would have P=NP. That
would have dramatic consequences, because there are many very important real-world problems in
NP. In fact, there is a million-dollar prize (search “millenium problems”) for whoever proves either
P=NP or P 6= NP.

Since P ⊂ EXP, at least one of the two inclusions in P ⊆ NP ⊆ EXP is strict, and it is believed
that both are, i.e., P ⊂ NP ⊂ EXP.

A problem is called NP-complete if A) it is in NP and B) it is NP-hard.


