Lógica en la Informática / Logic in Computer Science June 22nd, 2018. Time: 2h30min. No books or lecture notes.

Note on evaluation: eval(propositional logic) $=\max \{\operatorname{eval}($ Problems $1,2,3)$, eval(partial exam) $\}$. $\operatorname{eval}($ first-order logic $)=\operatorname{eval}($ Problems 4,5,6).

1a) Let F be a formula. Is it true that F is satisfiable if, and only if, all logical consequences of F are satisfiable formulas? Prove it using only the definitions of propositional logic.
1b) Is it true that a formula F is a tautology if, and only if, its Tseitin $\operatorname{transformation~} T \operatorname{seitin}(F)$ is a tautology? Prove it using only the definitions of propositional logic. Important note: all your answers should be as short, clean and simple as possible.

2a) Notation: we consider clauses C and sets S of clauses over a set of propositional symbols \mathcal{P}. We define negateAll $(C)=\{$ negate $($ lit $) \mid$ lit $\in C\}$, that is, the clause obtained by flipping (changing the sign) of all literals. For example, negateAll $(p \vee \neg q \vee \neg r)$ is $\neg p \vee q \vee r$. Similarly, we define negate $\operatorname{All}(S)=$ \{negate $\operatorname{All}(C) \mid C \in S\}$, i.e, all literals in S are flipped. Explain in two lines: Is it true that S is satisfiable iff negateAll (S) is satisfiable?
2b) Now, for $N \subseteq \mathcal{P}$, negate (N, C) negates the literals whose symbol is in N. For example, negate $(\{p, q\}, p \vee \neg q \vee \neg r)$ is $\neg p \vee q \vee \neg r$. We extend this to negate (N, S) as before. Explain in two lines: Is it true that S is satisfiable iff negate (N, S) is satisfiable?
2c) S is called renamable Horn if there is some $N \subseteq \mathcal{P}$ such that negate (N, S) is Horn. Explain in two lines: Given S and N such that negate (N, S) is Horn, what would you do to efficiently decide whether S is satisfiable?
2d) Assume you are given a renamable Horn S but you do not know the set N. Explain in two lines: Can you still decide the satisfiability of S with the same cost as in 2c)? We mean the same asymptotical cost, in $O(\ldots)$-notation.
3) Write the clauses obtained by encoding $\operatorname{AtMostOne}\left(x_{0}, x_{1}, x_{2}, x_{3}\right)$ using the logarithmic encoding (only write the clauses, give no explanations).

4a) Assume we have a binary predicate symbol P and two interpretations I_{1} and I_{2}, where $D_{I_{1}}$ is the natural numbers, $D_{I_{2}}$ is the integers, and $P_{I_{1}}(n, m)=P_{I_{2}}(n, m)=n>m$. Write a formula F, using no other predicate symbols than P, such that exactly one of the two interpretations is a model of F and say which one. Give no explanations.
4b) Same question if $D_{I_{1}}$ is the integers, $D_{I_{2}}$ is the rational numbers.
4c) Same question if $D_{I_{1}}$ is the real numbers, $D_{I_{2}}$ the complex numbers, with two binary symbols: a predicate symbol $E q$ interpreted as equality, and a function symbol p interpreted as the product.
5) Assume we have a yes/no question Q, based on some input data. Explain in a few words each one of the following cases:
5a) What does it mean that Q is decidable?
5b) What does it mean that Q is semi-decidable?
5c) What does it mean that Q is co-semi-decidable?
5d) Is SAT in first-order logic decidable? semi-decidable? co-semi-decidable?
5e) Same question for logical equivalence.
5f) Give an (as simple as you can!) example of non-termination of resolution in first-order logic.
6) Formalize and prove by resolution that sentence E is a logical consequence of the other four.
A : Cristiano is a real madrid player
B : Messi and Cristiano are world-class football players
C : To be a world-class football player, one has to be modest
D : Real madrid has no modest players
E : This year Germany will win the world cup

