Lógica en la Informática / Logic in Computer Science

Monday Nov 5th, 2018

Time: 1h30min. No books, lecture notes or formula sheets allowed.

1) (2 points)

1a) Is it true that for any two propositional formulas F and G, we have that $\neg F \vee G$ is a tautology if and only if $F \models G$? Prove it using only the definition of propositional logic.

1b) Is it true that for any three propositional formulas F, G, H, we have that $F \wedge(G \vee H)$ is a tautology iff $(\neg G \wedge H) \vee \neg F$ is unsatisfiable? Prove it using only the definition of propositional logic.
2) (2 points)

Our friend John has invented something he calls a "propositional database", which consists of a set of positive unit clauses (propositional symbols) and of a set of "rules" of the form:
Condition \rightarrow Consequence, where Condition and Consequence are sets of propositional symbols.
I asked John what he considers to be true facts, or simply "facts", in his database, and he said: "the minimal set of facts such that all positive unit clauses are facts, and, for every rule Condition \rightarrow Consequence, if all elements of Condition are facts, then also all elements of Consequence are facts".

2a) Given such a database D, we want to know if a certain symbol p is a fact in D. Explain very briefly. What is the cost of deciding this? How?

2b) I want to know how many facts are true in D. Explain very briefly. What is the cost of counting this? How?
3) (4 points) MaxSAT is a problem related to SAT. It takes as input a natural number k and a set S of n propositional clauses over propositional symbols \mathcal{P}, and it asks whether there is any interpretation $I: \mathcal{P} \rightarrow\{0,1\}$ that satisfies at least k clauses of S.

3a) Do you think that MaxSAT is polynomial? NP-complete? Exponential? Why?
3b) Is it true that, using auxiliary variables, one can decide MaxSAT in a single call to a SAT solver? Explain why.
3c) How would you use a SAT solver to solve the optimization version of MaxSAT, that is, how to find the I that satisfies as many of the clauses of S as possible? Give one single (and short) explanation.

3d) We want to 3 -color a given graph with n nodes and m edges: assign one of the 3 colors to each node such that for no edge (u, v) nodes u and v get the same color. Of course this may be impossible, so we will allow some nodes to remain uncolored: they get no color. How can we use the ideas of $3 \mathrm{~b}, \mathrm{c}$) to compute the 3 -coloring with the minimal number of such uncolored nodes?
4) (2 points) Is 3-SAT NP-complete? Explain your answer very briefly, using the fact that SAT (deciding the satisfiability of an arbitrary propositional formula F) is NP-complete.

