
Lógica en la Informática / Logic in Computer Science
January 17th, 2018. Time: 2h30min. No books or lecture notes.

Note on evaluation: eval(propositional logic) = max{ eval(Problems 1,2,3), eval(partial exam) }.
eval(first-order logic) = eval(Problems 4,5,6).

1a) Let F and G be propositional formulas. Is it true that always F |= G or F |= ¬G? Prove it using
only the definitions of propositional logic.
Answer: This is false. Let F be the formula p and let G be the formula q. Then for the interpretation
I1 with I1(p) = 1 and I1(q) = 0, we have I1 |= F and I1 6|= G, and hence F 6|= G. And for the
interpretation I2 with I2(p) = 1 and I2(q) = 1, we have I2 |= F and I2 6|= ¬G, and hence also F 6|= ¬G.

1b) Let F and G be propositional formulas. Is it true that F |= G iff F ∧ ¬G is unsatisfiable? Prove
it using only the definitions of propositional logic.

Answer: F |= G
iff for all I, I 6|= F or I |= G [definition of logical consequence]
iff for all I, evalI(F) = 0 or evalI(G) = 1 [definition of satisfaction]
iff for all I, evalI(F) = 0 or 1− evalI(G) = 0 [property of −]
iff for all I, evalI(F) = 0 or evalI(¬G) = 0 [definition of eval]
iff for all I, min(evalI(F), evalI(¬G)) = 0 [definition of min]
iff for all I, evalI(F ∧ ¬G) = 0 [definition of eval]
iff for all I, I 6|= F ∧ ¬G [definition of satisfaction]
iff F ∧ ¬G is unsatisfiable [definition of satisfiable]

2) We are interested in the optimization problem, called minOnes: given a set S of clauses over
variables {x1, . . . , xn}, finding a minimal model I (if it exists), that is, a model of S with the minimal
possible number of ones I(x1)+. . .+I(xn). Explain very briefly your answers to the following questions:
2a) Does every S have a unique minimal model, or can there be several minimal models?
2b) Given the set S and an arbitrary natural number k, what is the complexity of deciding whether
S has any model I with at most k ones, that is, such that I(x1) + . . .+ I(xn) ≤ k?
2c) Same question as 2a, if S is a set of Horn Clauses.
2d) Same question as 2b, if S is a set of Horn Clauses.

Answer:
2A: There can be several minimal models. If S is {p ∨ q}, then I1 where I1(p) = 1 and I1(q) = 0 is
minimal, and I2 where I2(p) = 0 and I2(q) = 1 is also minimal.
2B: NP-complete: a) any SAT problem over n variables can be expressed as a minOnes problem
setting k = n; and, reversely, b) any minOnes problem can be expressed as a SAT problem adding a
(polynomial-size) encoding of the cardinality constraint x1 + . . .+ xn ≤ k.
2C: Every satisfiable set of Horn clauses has a unique minimal model: the one found by the standard
polynomial algorithm for Horn SAT doing unit propagation of the positive true literals, where we only
set to true those variables that must be true, in any model.
2D: Polynomial (in fact linear): just do as in 2C and check whether the resulting model (if any) has
less than k ones or not.

3) We want to encode pseudo-Boolean constraints into SAT with the minimal set of clauses, and
using no auxiliary variables. For 2x+ 3y + 5z + 6u+ 8v ≤ 11, the clauses are:

¬v ∨ ¬u ¬v ∨ ¬z ¬v ∨ ¬x ∨ ¬y ¬u ∨ ¬z ∨ ¬y ¬u ∨ ¬z ∨ ¬x
Write the minimal set of clauses for 2x+ 3y + 5z + 6u+ 8v ≥ 11 (give no explanations).

Answer: u ∨ v y ∨ z ∨ v y ∨ z ∨ u x ∨ z ∨ v

4) For each one of the following cases, write a formula F of first-order logic without equality such
that F fulfils the requirement. Keep F as simple as you can and give no explanations.
4a) F is unsatisfiable.
4b) F is a tautology.
4c) F is satisfiable and has no model I with |DI | < 3.
4d) F is satisfiable but has no model with finite domain.
4e) F is satisfiable and all models I of F have |DI | = 2.
4f) Same question as 4e, but for first-order logic with equality.

Answer:
4a: p ∧ ¬p
4b: p ∨ ¬p
4c: (∀x p(x, x)) ∧ ∃u ∃v ∃w (¬p(u, v) ∧ ¬p(u,w) ∧ ¬p(v, w))
4d: (∀x ¬p(x, x)) ∧ (∀x ∀y ∀z p(x, y) ∧ p(y, z)→ p(x, z)) ∧ (∀x ∃y p(x, y))
4e: not expressible in first-order logic without equality
4f: ∃x ∃y (¬(x=y) ∧ (∀z z=x ∨ z=y)). Alternative answer: ¬(a=b) ∧ (∀z z=a ∨ z=b).

5a) Explain in a few words how to formally prove F 6|= G for given first-order formulas F and G.
5b) Same question for F |= G.
5c) F is ∀x p(a, x) ∧ ∃y ¬q(y) and G is ∃v∃w ¬q(w) ∧ p(v, a). Do we have F |= G? Prove it.
5d) F is ∀x∃y p(x, y) and G is ∃y∀x p(x, y). Do we have F |= G? Prove it.

Answer:

5a: Giving a counter example, an interpretation I such that I |= F but I 6|= G.

5b: By proving that F ∧ ¬G is unsatisfiable, turning it into clausal form S, and obtaining the empty
clause from S by resolution and factoring.

5c: Yes. F |= G. We prove it as in 5b. Here F gives two clauses: 1 : p(a, x) and 2 : ¬q(cy) (here cy is
the Skolem constant introduced for y).
¬G is ¬(∃v∃w ¬q(w) ∧ p(v, a)) which becomes ∀v∀w ¬(¬q(w) ∧ p(v, a)) which becomes
∀v∀w q(w) ∨ ¬p(v, a) which becomes the clause 3 : q(w) ∨ ¬p(v, a).
By one step of resolution between 1 and 3 with mgu {x = a, v = a} we get clause 4 : q(w), and with
one more step of resolution between 2 and 4 with mgu {w = cy} we get the empty clause.

5d: No. F 6|= G. We prove it as in 5a. Consider the interpretation I where DI = {a, b} and pI is
interpreted as equality on this domain. Then I |= F but I 6|= G.

6) Consider the following Prolog program and its well-known behaviour:

animals([dog,lion,elephant]).

bigger(lion,cat).

faster(lion,cat).

better(X,Y):- animals(L), member(X,L), bigger(X,Y), faster(X,Y).

?- better(U,V).

U = lion

V = cat

In Prolog, a list like [dog,lion,elephant] is in fact represented as a term
f(dog,f(lion,f(elephant,emptylist))).

Therefore, we assume that the program also contains the standard clauses for member like this:

member(E, f(E,_)).

member(E, f(_,L)):- member(E,L).

Express the program as a set of first-order clauses P and prove that ∃u∃v better(u, v) is a logical consequence
of P . Which values did the variables u and v get (by unification) in your proof? Only write the steps and
values. No explanations.

Answer: We have to prove that P ∧ ¬(∃u∃v better(u, v)) is unsatisfiable.
Note that better(X,Y):- animals(L), member(X,L), bigger(X,Y), faster(X,Y) is the formula
∀X ∀Y better(X,Y)← ∃L (animals(L) ∧member(X,L) ∧ bigger(X,Y) ∧ faster(X,Y))

which is
∀X ∀Y better(X,Y) ∨ ¬ ∃L (animals(L) ∧member(X,L) ∧ bigger(X,Y) ∧ faster(X,Y))

which is
∀X ∀Y better(X,Y) ∨ ∀L ¬(animals(L) ∧member(X,L) ∧ bigger(X,Y) ∧ faster(X,Y))

which is
∀X ∀Y better(X,Y) ∨ ∀L (¬animals(L) ∨ ¬member(X,L) ∨ ¬bigger(X,Y) ∨ ¬faster(X,Y))

which is
∀X ∀Y ∀L better(X,Y) ∨ ¬animals(L) ∨ ¬member(X,L) ∨ ¬bigger(X,Y) ∨ ¬faster(X,Y).

Furthermore, the negation of ∃u∃v better(u, v) is: ∀u∀v ¬better(u, v).

Altogether, from the program (with, as said, the member clauses) and ∀u∀v ¬better(u, v) we get the
following 8 clauses:

1. animals(f(dog, f(lion, f(elephant, emptylist))))
2. bigger(lion, cat)
3. faster(lion, cat)
5. member(E, f(E,L))
6. member(E, f(X,L)) ∨ ¬member(E,L)
7. better(X,Y) ∨ ¬animals(L) ∨ ¬member(X,L) ∨ ¬bigger(X,Y) ∨ ¬faster(X,Y).
8. ¬better(u, v)

We now prove by resolution that this set of 8 clauses is unsatisfiable. We get:
9. ¬animals(L) ∨ ¬member(X,L) ∨ ¬bigger(X,Y) ∨ ¬faster(X,Y)

by resolution between 7 and 8, σ = {u = X, v = Y }
10. ¬animals(L) ∨ ¬member(lion, L) ∨ ¬faster(lion, cat)

by resolution between 9 and 2, σ = {X = lion, Y = cat}
11. ¬animals(L) ∨ ¬member(lion, L)

by resolution between 10 and 3, σ = { }
12. ¬member(lion, f(dog, f(lion, f(elephant, emptylist))))

by resolution between 11 and 1, σ = {L = f(dog, f(lion, f(elephant, emptylist)))}
13. ¬member(lion, f(lion, f(elephant, emptylist)))

by resolution between 12 and 6, σ = {E = lion,X = dog, L = f(lion, f(elephant, emptylist))}
14. the empty clause

by resolution between 13 and 5, σ = {E = lion, L = f(elephant, emptylist))}
Here u and v finally got the values u = X = lion and v = Y = cat.

