Lgica en la Informtica / Logic in Computer Science

Permutation B. Tuesday April 18th, 2017

Time: 1 h 45 min . No books, lecture notes or formula sheets allowed.

1) Let us remember the Heule-3 encoding for at-most-one (amo) that is, for expressing in CNF that at most one of the literals $x_{1} \ldots x_{n}$ is true, also written $x_{1}+\ldots+x_{n} \leq 1$. It uses the fact that $\operatorname{amo}\left(x_{1} \ldots x_{n}\right)$ iff $\operatorname{amo}\left(x_{1}, x_{2}, x_{3}, \operatorname{aux}\right)$ AND $\operatorname{amo}\left(\neg a u x, x_{4} \ldots x_{n}\right)$. Then the part $\operatorname{amo}\left(\neg a u x, x_{4} \ldots x_{n}\right)$, which has $n-2$ variables, can be encoded recursively in the same way, and $\operatorname{amo}\left(x_{1}, x_{2}, x_{3}, a u x\right)$ can be expressed using the quadratic encoding with 6 clauses. In this way, for eliminating two variables we need one auxiliary variable end six clauses, so in total we need $n / 2$ variables and $3 n$ clauses.

1a We now want to extend the encoding for at-most-two (amt, also written $x_{1}+\ldots+x_{n} \leq 2$). Prove that $\operatorname{amt}\left(x_{1} \ldots x_{n}\right)$ has a model I iff $\operatorname{amt}\left(x_{1}, x_{2}, x_{3}, a u x_{1}, a u x_{2}\right) \wedge a m t\left(\neg a u x_{1}, \neg a u x_{2}, x_{4} \ldots x_{n}\right)$ has a model I^{\prime}, with $I\left(x_{i}\right)=I^{\prime}\left(x_{i}\right)$ for all i in $1 \ldots n$.
1b Write all clauses for encoding $\operatorname{amt}\left(x_{1}, x_{2}, x_{3}, a u x_{1}, a u x_{2}\right)$ with no more auxiliary variables.
1c How many clauses and auxiliary variables are needed in total for $\operatorname{amt}\left(x_{1} \ldots x_{n}\right)$ in this way?
1d The Heule-3 encoding for $\operatorname{amo}\left(x_{1}, \ldots, x_{n}\right)$ has a good property: if one of the literals x_{i} becomes true, all other literals in x_{1}, \ldots, x_{n} are set to false by unit propagation. Does this amt encoding have such a property?, that is, if two of $x_{1} \ldots x_{n}$ become true, will unit propagation set the other variables to false? Explain why.
2) Every propositional formula F over n variables can also expressed by a Boolean circuit with n inputs and one output. In fact, sometimes the circuit can be much smaller than F because each subformula only needs to be represented once. For example, if F is

$$
x_{1} \wedge\left(x_{3} \wedge x_{4} \vee x_{3} \wedge x_{4}\right) \quad \vee \quad x_{2} \wedge\left(x_{3} \wedge x_{4} \vee x_{3} \wedge x_{4}\right)
$$

a circuit for F with only five gates, representing the output of each logical gate as a new variable (a natural number, and using 0 as the output), is:

$$
\begin{array}{lll}
0=\operatorname{or}(1,2) & 1=\operatorname{and}(x 1,3) & 3=\operatorname{or}(4,4) \\
& 2=\operatorname{and}(x 2,3) & 4=\operatorname{and}(x 3, x 4)
\end{array}
$$

Explain very briefly how you would use a standard SAT solver for CNFs to efficiently determine whether two circuits C_{1} and C_{2}, represented like this, are logically equivalent.
3) For each one of the following statements, indicate here whether it is true or false without giving any explanations why.

1. If F is unsatisfiable, then for every G we have $G \models F$.
2. If F is unsatisfiable, then for every G we have $F \models G$.
3. Let F, G, H be formulas. If $F \vee G \models H$ then $F \wedge \neg H$ is unsatisfiable.
4. The formula $p \vee p$ is a logical consequence of the formula $(p \vee q \vee r) \wedge(\neg q \vee r) \wedge(\neg r)$.
5. The formula $(p \vee q) \wedge(\neg p \vee q) \wedge(\neg p \vee \neg q) \wedge(\neg q \vee p)$ is unsatisfiable.
6. If F is a tautology, then for every G we have $F \models G$.
7. Let F, G, H be formulas. If $F \wedge G \not \vDash H$ then $F \wedge G \wedge H$ is unsatisfiable.
8. Let F, G, H be formulas. If $F \wedge G \models \neg H$ then $F \wedge G \wedge H$ is unsatisfiable.
9. If F es a tautology, then for every G we have $G \models F$.
10. Assume $|\mathcal{P}|=n$. There are 2^{n} interpretations. Moreover there are exactly $k=2^{2^{n}}$ formulas F_{1}, \ldots, F_{k} such that for all i, j with $i \neq j$ in $1 \ldots k, F_{i} \neq F_{j}$. Each one of these F_{i} represents a different Boolean function.
