Lgica en la Informtica / Logic in Computer Science

Permutation B. Tuesday April 18th, 2017 Time: 1h45min. No books, lecture notes or formula sheets allowed.

1) Let us remember the Heule-3 encoding for at-most-one (amo) that is, for expressing in CNF that at most one of the literals $x_1 \ldots x_n$ is true, also written $x_1 + \ldots + x_n \leq 1$. It uses the fact that $amo(x_1 \ldots x_n)$ iff $amo(x_1, x_2, x_3, aux)$ AND $amo(\neg aux, x_4 \ldots x_n)$. Then the part $amo(\neg aux, x_4 \ldots x_n)$, which has n-2 variables, can be encoded recursively in the same way, and $amo(x_1, x_2, x_3, aux)$ can be expressed using the quadratic encoding with 6 clauses. In this way, for eliminating two variables we need one auxiliary variable end six clauses, so in total we need n/2 variables and 3n clauses.

1a We now want to extend the encoding for *at-most-two* (*amt*, also written $x_1 + \ldots + x_n \leq 2$). Prove that $amt(x_1 \ldots x_n)$ has a model I iff $amt(x_1, x_2, x_3, aux_1, aux_2) \wedge amt(\neg aux_1, \neg aux_2, x_4 \ldots x_n)$ has a model I', with $I(x_i) = I'(x_i)$ for all i in $1 \ldots n$.

1b Write all clauses for encoding $amt(x_1, x_2, x_3, aux_1, aux_2)$ with no more auxiliary variables.

1c How many clauses and auxiliary variables are needed in total for $amt(x_1...x_n)$ in this way?

1d The Heule-3 encoding for $amo(x_1, \ldots, x_n)$ has a good property: if one of the literals x_i becomes true, all other literals in x_1, \ldots, x_n are set to false by unit propagation. Does this *amt* encoding have such a property?, that is, if two of $x_1 \ldots x_n$ become true, will unit propagation set the other variables to false? Explain why.

2) Every propositional formula F over n variables can also expressed by a Boolean circuit with n inputs and one output. In fact, sometimes the circuit can be much smaller than F because each subformula only needs to be represented once. For example, if F is

 $x_1 \wedge (x_3 \wedge x_4 \vee x_3 \wedge x_4) \vee x_2 \wedge (x_3 \wedge x_4 \vee x_3 \wedge x_4),$ a circuit for F with only five gates, representing the output of each logical gate as a new variable (a natural number, and using 0 as the output), is:

0 = or(1,2)

 $\begin{array}{l}1 = \mathrm{and}(\mathrm{x1,3}) & 3 = \mathrm{or}(4,4)\\2 = \mathrm{and}(\mathrm{x2,3}) & 4 = \mathrm{and}(\mathrm{x3,x4})\end{array}$

Explain very briefly how you would use a standard SAT solver for CNFs to efficiently determine whether two circuits C_1 and C_2 , represented like this, are logically equivalent.

3) For each one of the following statements, indicate here whether it is true or false without giving any explanations why.

- 1. If F is unsatisfiable, then for every G we have $G \models F$.
- 2. If F is unsatisfiable, then for every G we have $F \models G$.
- 3. Let F, G, H be formulas. If $F \lor G \models H$ then $F \land \neg H$ is unsatisfiable.
- 4. The formula $p \lor p$ is a logical consequence of the formula $(p \lor q \lor r) \land (\neg q \lor r) \land (\neg r)$.
- 5. The formula $(p \lor q) \land (\neg p \lor q) \land (\neg p \lor \neg q) \land (\neg q \lor p)$ is unsatisfiable.
- 6. If F is a tautology, then for every G we have $F \models G$.
- 7. Let F, G, H be formulas. If $F \wedge G \not\models H$ then $F \wedge G \wedge H$ is unsatisfiable.
- 8. Let F, G, H be formulas. If $F \wedge G \models \neg H$ then $F \wedge G \wedge H$ is unsatisfiable.
- 9. If F es a tautology, then for every G we have $G \models F$.
- 10. Assume $|\mathcal{P}| = n$. There are 2^n interpretations. Moreover there are exactly $k = 2^{2^n}$ formulas F_1, \ldots, F_k such that for all i, j with $i \neq j$ in $1 \ldots k$, $F_i \not\equiv F_j$. Each one of these F_i represents a different Boolean function.