
Lógica en la Informática / Logic in Computer Science

Monday June 13, 2016

Time: 2h30min. No books, lecture notes or formula sheets allowed.

Note on evaluation:
eval(propositional logic) = max{ eval(Problems 1,2,3), eval(partial exam) }.
eval(first-order logic) = eval(Problems 4,5,6).

1a) Let F and G be propositional formulas such that F is a tautology. Is it true that F ∧ G ≡ G?
Prove it using only the definitions of propositional logic.

Answer: By definition of ≡, we have to prove that ∀I evalI(F ∧G) = evalI(G).
Let I be an interpreation. Then:
evalI(F ∧G) = by definition of evalI of a ∧
min(evalI(F ), evalI(G)) = since F is tautology
min(1, evalI(G)) = by def. of min and since evalI(G) is either 0 or 1
evalI(G).

1b) Let F and G be propositional formulas such that F is satisfiable and F → G is also satisfiable.
Is it true that G is satisfiable? Prove it using only the definitions of propositional logic.

Answer: This is false. Counter example: let F be p and let G be p∧¬p. Then F is satisfiable with the
model I such that I(p) = 1. And F → G is also satisfiable, with the model I such that I(p) = 0. But
p ∧ ¬p is unsatisfiable.

2) Let us remember the well-known graph coloring problem. Input: a natural number k, and an
(undirected) graph with n vertices and m edges of the form (u1, v1) . . . (um, vm), with all ui and vi in
{1 . . . n}, and Question: is there a way to “color” each vertex with a color (a number) in 1 . . . k such
that adyacent vertices get different colors?

We know that graph coloring is NP-complete in general. But what is its complexity if k = 2?
Explain why using sat-based arguments.

Answer: One can express a graph coloring problem (for any k) as a SAT problem with variables xi,j
meaning “vertex i gets color j”. We need one clause xi,1 ∨ . . . ∨ xi,k for each vertex i (it gets at least
one color). We also need a two-literal clause ¬xi,k ∨ ¬xj,k for each edge (i, j) and color k (i and j do
not both get color k).

If k = 2 this is a 2-SAT problem, which can in fact be solved in linear time.

3) Let S be a satisfiable set of propositional Horn clauses.
3a) What is the complexity of finding the minimal model of S, that is, the model I with the minimal
number of symbols p such that I(p) = 1?
3b) What is the complexity of deciding whether S has only one model or more than one?
For both questions, explain very, very, briefly why.

Answer:

3a) Horn SAT can be decided by unit propagation of positive unit literals (see problem 3 of the April
2016 exam for details and examples). Once the unit propagation finishes, a model I is obtained, in
linear time, by setting the propagated positive units to 1 and all other variables to 0 (I(p) = 1 iff p is
a propagated positive unit). This model I is minimal, since each positive unit p that gets propagated
is a logical consequence of S and hence must be true in all models of S.
3b) Any other model must extend the unique minimal model I with at least one more true symbol.
It suffices to do the following after the propagation of case 3a: pick one q such that I(q) = 0, and
propagate q. Another (non-minimal) model exists iff for some such a picked q this does not generate the
empty clause. Therefore this problem is polynomial as well, since at most |P| more unit propagations
have to be tried.



4) We want to write a computer program that takes as input two arbitrary first-order formulas F
and G and always terminates writing “yes” if F ≡ G, and “no” otherwise. Explain very shortly the
steps you would follow to do this, or to get something as similar as possible.

Answer: No such program can exist, since this question is undecidable. It is only semi-decidable: the
best one can get is a program that terminates with “yes” if F ≡ G, and otherwise terminates with
“no” or does not terminate. Steps for this:
1. Convert (F ∧ ¬G) ∨ (¬F ∧G) into its clausal form S0. We have F ≡ G iff S0 unsat.
2. Compute the closure under resolution+factoring of S0 by levels, in successive steps for i = 0, 1, 2 . . .:

2a: If the empty clause is in Si, terminate with “yes: F ≡ G”.
2b: Otherwise, obtain Si+1 by adding to Si all new clauses one can get by one step of resolution or

factoring on clauses in Si.
2c: If no new clause was obtained from Si, terminate with “no”; else, go to 2a with the next i.

5) Formalize and prove by resolution that sentence E is a logical consequence of the other four.
A: If a person likes logic, he does not like football.
B: Brothers of football players like football.
C: Messi is a football player and Ney is his brother.
D: Ney likes logic.
E: Our teacher is a nice guy who knows a lot about football and logic.

Answer: We prove that A∧B ∧C ∧D is unsatisfiable and therefore A∧B ∧C ∧D |= E. Formalizing
with unary predicates ll, lf , fp, binary predicate br, the constants messi and ney, and expressing the
sentences in clausal form, we get the clauses:

A) ¬ll(X) ∨ ¬lf (X)
B) ¬fp(X) ∨ ¬br(X,Y ) ∨ lf (Y )
C1) fp(messi)
C2) br(messi, ney)
D) ll(ney)

By resolution we obtain the empty clause as follows:
num : by : mgu : get :

1) res(A,D) X = ney ¬lf (ney)
2) res(B,C1) X = messi ¬br(messi, Y ) ∨ lf (Y )
3) res(2, C2) Y = ney lf (ney)
4) res(3, C2) Y = ney 2

6) Complete the following graph coloring program (see problem 2). Do makeConstraints recursively,
using #\= and the built-in predicate nth1(I,L,X) (“the Ith element of the list L is X”).

:- use_module(library(clpfd)).

numVertices(5).

edges([ 1-2, 1-3, 2-3, 2-4, 2-5, 3-5 ]).

numColors(3).

main:- numVertices(N),edges(Edges), listOfNPrologVars(N,Vars), ...

Vars ins ...

makeConstraints(Edges,Vars),

...

write(Vars), nl.

makeConstraints(...

listOfNPrologVars(...



Answer:

main:- numVertices(N),edges(Edges), listOfNPrologVars(N,Vars), numColors(K),

Vars ins 1..K,

makeConstraints(Edges,Vars),

label(Vars), write(Vars), nl.

makeConstraints([],_).

makeConstraints( [ U-V | Edges ], Vars ):-

nth1( U, Vars, VarU ),

nth1( V, Vars, VarV ),

VarU #\= VarV,

makeConstraints(Edges,Vars).

listOfNPrologVars(0,[]):-!.

listOfNPrologVars(N,[_|Vars]):- N1 is N-1, listOfNPrologVars(N1,Vars).


