Lógica en la Informática / Logic in Computer Science

Monday June 13, 2016

Time: 2 h 30 min . No books, lecture notes or formula sheets allowed.

```
Note on evaluation:
\(\operatorname{eval}(\) propositional logic \()=\max \{\operatorname{eval}(\) Problems 1,2,3), eval(partial exam) \(\}\). eval(first-order logic) \(=\operatorname{eval}(\) Problems 4,5,6).
```

1a) Let F and G be propositional formulas such that F is a tautology. Is it true that $F \wedge G \equiv G$? Prove it using only the definitions of propositional logic.

Answer: By definition of \equiv, we have to prove that $\forall I \operatorname{eval}_{I}(F \wedge G)=\operatorname{eval}_{I}(G)$.
Let I be an interpreation. Then:
$\operatorname{eval}_{I}(F \wedge G)=$
$\min \left(e v a l_{I}(F)\right.$, eval $\left._{I}(G)\right)=$
by definition of eval ${ }_{I}$ of a \wedge
$\min \left(1\right.$, eval $\left._{I}(G)\right)=$
by def. of min and since $e v a l_{I}(G)$ is either 0 or 1
$\operatorname{eval}_{I}(G)$.
1b) Let F and G be propositional formulas such that F is satisfiable and $F \rightarrow G$ is also satisfiable. Is it true that G is satisfiable? Prove it using only the definitions of propositional logic.

Answer: This is false. Counter example: let F be p and let G be $p \wedge \neg p$. Then F is satisfiable with the model I such that $I(p)=1$. And $F \rightarrow G$ is also satisfiable, with the model I such that $I(p)=0$. But $p \wedge \neg p$ is unsatisfiable.
2) Let us remember the well-known graph coloring problem. Input: a natural number k, and an (undirected) graph with n vertices and m edges of the form $\left(u_{1}, v_{1}\right) \ldots\left(u_{m}, v_{m}\right)$, with all u_{i} and v_{i} in $\{1 \ldots n\}$, and Question: is there a way to "color" each vertex with a color (a number) in $1 \ldots k$ such that adyacent vertices get different colors?

We know that graph coloring is NP-complete in general. But what is its complexity if $k=2$? Explain why using sat-based arguments.

Answer: One can express a graph coloring problem (for any k) as a SAT problem with variables $x_{i, j}$ meaning "vertex i gets color j ". We need one clause $x_{i, 1} \vee \ldots \vee x_{i, k}$ for each vertex i (it gets at least one color). We also need a two-literal clause $\neg x_{i, k} \vee \neg x_{j, k}$ for each edge (i, j) and color k (i and j do not both get color k).

If $k=2$ this is a 2-SAT problem, which can in fact be solved in linear time.
3) Let S be a satisfiable set of propositional Horn clauses.

3a) What is the complexity of finding the minimal model of S, that is, the model I with the minimal number of symbols p such that $I(p)=1$?
$\mathbf{3 b}$) What is the complexity of deciding whether S has only one model or more than one?
For both questions, explain very, very, briefly why.
Answer:
3a) Horn SAT can be decided by unit propagation of positive unit literals (see problem 3 of the April 2016 exam for details and examples). Once the unit propagation finishes, a model I is obtained, in linear time, by setting the propagated positive units to 1 and all other variables to $0(I(p)=1 \mathrm{iff} p$ is a propagated positive unit). This model I is minimal, since each positive unit p that gets propagated is a logical consequence of S and hence must be true in all models of S.
3b) Any other model must extend the unique minimal model I with at least one more true symbol. It suffices to do the following after the propagation of case 3a: pick one q such that $I(q)=0$, and propagate q. Another (non-minimal) model exists iff for some such a picked q this does not generate the empty clause. Therefore this problem is polynomial as well, since at most $|\mathcal{P}|$ more unit propagations have to be tried.
4) We want to write a computer program that takes as input two arbitrary first-order formulas F and G and always terminates writing "yes" if $F \equiv G$, and "no" otherwise. Explain very shortly the steps you would follow to do this, or to get something as similar as possible.
Answer: No such program can exist, since this question is undecidable. It is only semi-decidable: the best one can get is a program that terminates with "yes" if $F \equiv G$, and otherwise terminates with "no" or does not terminate. Steps for this:

1. Convert $(F \wedge \neg G) \vee(\neg F \wedge G)$ into its clausal form S_{0}. We have $F \equiv G$ iff S_{0} unsat.
2. Compute the closure under resolution+factoring of S_{0} by levels, in successive steps for $i=0,1,2 \ldots$:

2a: If the empty clause is in S_{i}, terminate with "yes: $F \equiv G$ ".
2b: Otherwise, obtain S_{i+1} by adding to S_{i} all new clauses one can get by one step of resolution or factoring on clauses in S_{i}.
2c: If no new clause was obtained from S_{i}, terminate with "no"; else, go to 2a with the next i.
5) Formalize and prove by resolution that sentence E is a logical consequence of the other four.
A : If a person likes logic, he does not like football.
B : Brothers of football players like football.
C : Messi is a football player and Ney is his brother.
D : Ney likes logic.
E : Our teacher is a nice guy who knows a lot about football and logic.
Answer: We prove that $A \wedge B \wedge C \wedge D$ is unsatisfiable and therefore $A \wedge B \wedge C \wedge D \vDash E$. Formalizing with unary predicates $l l, l f, f p$, binary predicate $b r$, the constants messi and ney, and expressing the sentences in clausal form, we get the clauses:
A) $\neg l l(X) \vee \neg l f(X)$
B) $\neg f p(X) \vee \neg b r(X, Y) \vee l f(Y)$

C1) $f p$ (messi)
C2) $\quad b r($ messi,ney $)$
D) $\quad l l(n e y)$

By resolution we obtain the empty clause as follows:

num $:$	by:	mgu:	get:
1)	$\operatorname{res}(A, D)$	$X=$ ney	$\neg l f($ ney $)$
2)	$\operatorname{res}(B, C 1)$	$X=$ messi	$\neg b r($ messi,$Y) \vee l f(Y)$
$3)$	$\operatorname{res}(2, C 2)$	$Y=$ ney	$l f($ ney $)$
4)	$\operatorname{res}(3, C 2)$	$Y=$ ney	\square

6) Complete the following graph coloring program (see problem 2). Do makeConstraints recursively, using \# $=$ = and the built-in predicate $\mathrm{nth} 1(\mathrm{I}, \mathrm{L}, \mathrm{X})$ ("the Ith element of the list L is X ").
```
:- use_module(library(clpfd)).
numVertices(5).
edges([ 1-2, 1-3, 2-3, 2-4, 2-5, 3-5 ]).
numColors(3).
main:- numVertices(N),edges(Edges), listOfNPrologVars(N,Vars), ...
    Vars ins ...
    makeConstraints(Edges,Vars),
    write(Vars), nl.
makeConstraints(...
listOfNPrologVars(...
```

Answer

```
main:- numVertices(N),edges(Edges), listOfNPrologVars(N,Vars), numColors(K),
    Vars ins 1..K,
    makeConstraints(Edges,Vars),
    label(Vars), write(Vars), nl.
makeConstraints([],_).
makeConstraints( [ U-V | Edges ], Vars ):-
    nth1( U, Vars, VarU ),
    nth1( V, Vars, VarV ),
    VarU #\= VarV,
    makeConstraints(Edges,Vars).
listOfNPrologVars(0, []):-!.
listOfNPrologVars(N,[_|Vars]):- N1 is N-1, listOfNPrologVars(N1,Vars).
```

