Lógica en la Informática / Logic in Computer Science

Monday June 13, 2016

Time: 2h30min. No books, lecture notes or formula sheets allowed.

Note on evaluation:

```
eval(propositional logic) = max\{ eval(Problems 1,2,3), eval(partial exam) \}.
eval(first-order logic) = eval(Problems 4,5,6).
```

1a) Let F and G be propositional formulas such that F is a tautology. Is it true that $F \wedge G \equiv G$? Prove it using only the definitions of propositional logic.

Answer: By definition of \equiv , we have to prove that $\forall I \ eval_I(F \land G) = eval_I(G)$. Let I be an interpretation. Then: $eval_I(F \land G) =$ by definition of $eval_I$ of a \land $min(eval_I(F), eval_I(G)) =$ since F is tautology $min(1, eval_I(G)) =$ by def. of min and since $eval_I(G)$ is either 0 or 1 $eval_I(G)$.

1b) Let F and G be propositional formulas such that F is satisfiable and $F \to G$ is also satisfiable. Is it true that G is satisfiable? Prove it using only the definitions of propositional logic.

Answer: This is false. Counter example: let F be p and let G be $p \land \neg p$. Then F is satisfiable with the model I such that I(p) = 1. And $F \to G$ is also satisfiable, with the model I such that I(p) = 0. But $p \land \neg p$ is unsatisfiable.

2) Let us remember the well-known graph coloring problem. Input: a natural number k, and an (undirected) graph with n vertices and m edges of the form $(u_1, v_1) \dots (u_m, v_m)$, with all u_i and v_i in $\{1 \dots n\}$, and Question: is there a way to "color" each vertex with a color (a number) in $1 \dots k$ such that adyacent vertices get different colors?

We know that graph coloring is NP-complete in general. But what is its complexity if k = 2? Explain why using sat-based arguments.

Answer: One can express a graph coloring problem (for any k) as a SAT problem with variables $x_{i,j}$ meaning "vertex *i* gets color *j*". We need one clause $x_{i,1} \vee \ldots \vee x_{i,k}$ for each vertex *i* (it gets at least one color). We also need a two-literal clause $\neg x_{i,k} \vee \neg x_{j,k}$ for each edge (i, j) and color k (*i* and *j* do not both get color k).

If k = 2 this is a 2-SAT problem, which can in fact be solved in linear time.

3) Let S be a satisfiable set of propositional Horn clauses.

3a) What is the complexity of finding the *minimal* model of S, that is, the model I with the minimal number of symbols p such that I(p) = 1?

3b) What is the complexity of deciding whether *S* has only one model or more than one? For both questions, explain very, very, briefly why.

Answer:

3a) Horn SAT can be decided by unit propagation of positive unit literals (see problem 3 of the April 2016 exam for details and examples). Once the unit propagation finishes, a model I is obtained, in linear time, by setting the propagated positive units to 1 and all other variables to 0 (I(p) = 1 iff p is a propagated positive unit). This model I is minimal, since each positive unit p that gets propagated is a logical consequence of S and hence *must* be true in *all* models of S.

3b) Any other model must *extend* the unique minimal model I with at least one more true symbol. It suffices to do the following after the propagation of case 3a: pick one q such that I(q) = 0, and propagate q. Another (non-minimal) model exists iff for some such a picked q this does not generate the empty clause. Therefore this problem is polynomial as well, since at most $|\mathcal{P}|$ more unit propagations have to be tried.

4) We want to write a computer program that takes as input two arbitrary first-order formulas F and G and always terminates writing "yes" if $F \equiv G$, and "no" otherwise. Explain very shortly the steps you would follow to do this, or to get something as similar as possible.

Answer: No such program can exist, since this question is undecidable. It is only semi-decidable: the best one can get is a program that terminates with "yes" if $F \equiv G$, and otherwise terminates with "no" or does not terminate. Steps for this:

- 1. Convert $(F \land \neg G) \lor (\neg F \land G)$ into its clausal form S_0 . We have $F \equiv G$ iff S_0 unsat.
- 2. Compute the closure under resolution+factoring of S_0 by levels, in successive steps for i = 0, 1, 2...2a: If the empty clause is in S_i , terminate with "yes: $F \equiv G$ ".
 - 2b: Otherwise, obtain S_{i+1} by adding to S_i all new clauses one can get by one step of resolution or factoring on clauses in S_i .
 - 2c: If no new clause was obtained from S_i , terminate with "no"; else, go to 2a with the next i.
- 5) Formalize and prove by resolution that sentence E is a logical consequence of the other four. A: If a person likes logic, he does not like football.
 - B: Brothers of football players like football.
 - C: Messi is a football player and Ney is his brother.
 - D: Ney likes logic.
 - E: Our teacher is a nice guy who knows a lot about football and logic.

Answer: We prove that $A \wedge B \wedge C \wedge D$ is unsatisfiable and therefore $A \wedge B \wedge C \wedge D \models E$. Formalizing with unary predicates ll, lf, fp, binary predicate br, the constants *messi* and *ney*, and expressing the sentences in clausal form, we get the clauses:

- $A) \quad \neg ll(X) \lor \neg lf(X)$
- $B) \quad \neg fp(X) \lor \neg br(X,Y) \lor lf(Y)$
- C1) fp(messi)
- C2) br(messi, ney)
- D) ll(ney)

By resolution we obtain the empty clause as follows:

num:	by:	mgu:	get:
1)	res(A, D)	X = ney	$\neg lf(ney)$
2)	res(B, C1)	X = messi	$\neg br(messi, Y) \lor lf(Y)$
3)	res(2, C2)	Y = ney	lf(ney)
4)	res(3, C2)	Y = ney	

6) Complete the following graph coloring program (see problem 2). Do makeConstraints recursively, using #\= and the built-in predicate nth1(I,L,X) ("the Ith element of the list L is X").

```
:- use_module(library(clpfd)).
numVertices(5).
edges([ 1-2, 1-3, 2-3, 2-4, 2-5, 3-5 ]).
numColors(3).
main:- numVertices(N),edges(Edges), listOfNPrologVars(N,Vars), ...
Vars ins ...
makeConstraints(Edges,Vars),
...
write(Vars), nl.
```

makeConstraints(...

listOfNPrologVars(...

Answer:

```
main:- numVertices(N),edges(Edges), listOfNPrologVars(N,Vars), numColors(K),
        Vars ins 1..K,
        makeConstraints(Edges,Vars),
        label(Vars), write(Vars), nl.
makeConstraints([],_).
makeConstraints([ U-V | Edges ], Vars ):-
        nth1( U, Vars, VarU ),
        nth1( V, Vars, VarU ),
        Nth1( V, Vars, VarV ),
        VarU #\= VarV,
        makeConstraints(Edges,Vars).
listOfNPrologVars(0,[]):-!.
listOfNPrologVars(N,[_|Vars]):- N1 is N-1, listOfNPrologVars(N1,Vars).
```