Lgica en la Informtica / Logic in Computer Science

Permutation B. Tuesday April 18th, 2017
Time: 1h45min. No books, lecture notes or formula sheets allowed.

1) Let us remember the Heule-3 encoding for at-most-one (amo) that is, for expressing in CNF that at most one of the literals $x_{1} \ldots x_{n}$ is true, also written $x_{1}+\ldots+x_{n} \leq 1$. It uses the fact that $\operatorname{amo}\left(x_{1} \ldots x_{n}\right)$ iff $\operatorname{amo}\left(x_{1}, x_{2}, x_{3}, a u x\right)$ AND $\operatorname{amo}\left(\neg a u x, x_{4} \ldots x_{n}\right)$. Then the part $\operatorname{amo}\left(\neg a u x, x_{4} \ldots x_{n}\right)$, which has $n-2$ variables, can be encoded recursively in the same way, and $a m o\left(x_{1}, x_{2}, x_{3}\right.$, aux) can be expressed using the quadratic encoding with 6 clauses. In this way, for eliminating two variables we need one auxiliary variable end six clauses, so in total we need $n / 2$ variables and $3 n$ clauses.

1a We now want to extend the encoding for at-most-two (amt, also written $x_{1}+\ldots+x_{n} \leq 2$). Prove that $\operatorname{amt}\left(x_{1} \ldots x_{n}\right)$ has a model I iff $\operatorname{amt}\left(x_{1}, x_{2}, x_{3}, a u x_{1}, a u x_{2}\right) \wedge \operatorname{amt}\left(\neg a u x_{1}, \neg a u x_{2}, x_{4} \ldots x_{n}\right)$ has a model I^{\prime}, with $I\left(x_{i}\right)=I^{\prime}\left(x_{i}\right)$ for all i in $1 \ldots n$.

Answer:

\Longrightarrow : If $I \models \operatorname{amt}\left(x_{1} \ldots x_{n}\right)$ and k is the number of literals of $\left\{x_{1}, x_{2}, x_{3}\right\}$ that are true in I, then we extend I into I^{\prime} as follows: if $k=0$ we set $I^{\prime}\left(a u x_{1}\right)=I^{\prime}\left(a u x_{2}\right)=1$; if $k=1$ we set (for example) $I^{\prime}\left(a u x_{1}\right)=1$ and $I^{\prime}\left(a u x_{2}\right)=0$; if $k=2$ we set $I^{\prime}\left(a u x_{1}\right)=I^{\prime}\left(a u x_{2}\right)=0$. In all three cases $I^{\prime} \models \operatorname{amt}\left(x_{1}, x_{2}, x_{3}, a u x_{1}, a u x_{2}\right) \wedge \operatorname{amt}\left(\neg a u x_{1}, \neg a u x_{2}, x_{4} \ldots x_{n}\right)$.
\Longleftarrow : If $I^{\prime} \models \operatorname{amt}\left(x_{1}, x_{2}, x_{3}, a u x_{1}, a u x_{2}\right) \wedge a m t\left(\neg a u x_{1}, \neg a u x_{2}, x_{4} \ldots x_{n}\right)$ then, "forgetting" the part of the auxiliary variables, in all cases the resulting I is a model of $\operatorname{amt}\left(x_{1} \ldots x_{n}\right)$, because:

- if $I^{\prime}\left(a u x_{1}\right)=I^{\prime}\left(a u x_{2}\right)=1$ then $I \models \neg x_{1} \wedge \neg x_{2} \wedge \neg x_{3}$ and $I \models \operatorname{amt}\left(x_{4} \ldots x_{n}\right)$
- if $I^{\prime}\left(a u x_{1}\right)=I^{\prime}\left(a u x_{2}\right)=0$ then $I \models a m t\left(x_{1}, x_{2}, x_{3}\right)$ and $I \models \neg x_{4} \wedge \ldots \wedge \neg x_{n}$
- if $I^{\prime}\left(a u x_{1}\right)=0$ and $I^{\prime}\left(a u x_{2}\right)=1$ (or vice versa) then $I \models \operatorname{amo}\left(x_{1}, x_{2}, x_{3}\right)$ and $I \models a m o\left(x_{4} \ldots x_{n}\right)$.

1b Write all clauses for encoding $\operatorname{amt}\left(x_{1}, x_{2}, x_{3}, a u x_{1}, a u x_{2}\right)$ with no more auxiliary variables.
Answer: We need one clause for each subset of 3 elements out of 5 , that is, $\binom{5}{3}=10$ clauses:

| $\neg x_{1} \vee \neg x_{2} \vee \neg x_{3}$, | $\neg x_{1} \vee \neg x_{2} \vee \neg a u x_{1}$, | $\neg x_{1} \vee \neg x_{2} \vee \neg a u x_{2}$, |
| :--- | :---: | :---: |$\neg x_{1} \vee \neg x_{3} \vee \neg a u x_{1}$,

$\neg x_{2} \vee \neg a u x_{1} \vee \neg a u x_{2}, \quad \neg x_{3} \vee \neg a u x_{1} \vee \neg a u x_{2}$

1c How many clauses and auxiliary variables are needed in total for $\operatorname{amt}\left(x_{1} \ldots x_{n}\right)$ in this way?
Answer: The part $\operatorname{amt}\left(\neg a u x_{1}, \neg a u x_{2}, x_{4} \ldots x_{n}\right)$ has one literal less. So to eliminate one literal, we need 10 clauses and 2 auxiliary variables and hence in total $10 n$ clauses and $2 n$ auxiliary variables.

1d The Heule-3 encoding for $\operatorname{amo}\left(x_{1}, \ldots, x_{n}\right)$ has a good property: if one of the literals x_{i} becomes true, all other literals in x_{1}, \ldots, x_{n} are set to false by unit propagation. Does this amt encoding have such a property?, that is, if two of $x_{1} \ldots x_{n}$ become true, will unit propagation set the other variables to false? Explain why.

Answer: No. For example, if x_{1} and x_{4} become true, no unit propagation takes place at all.
2) Every propositional formula F over n variables can also expressed by a Boolean circuit with n inputs and one output. In fact, sometimes the circuit can be much smaller than F because each subformula only needs to be represented once. For example, if F is

$$
x_{1} \wedge\left(x_{3} \wedge x_{4} \vee x_{3} \wedge x_{4}\right) \quad \vee \quad x_{2} \wedge\left(x_{3} \wedge x_{4} \vee x_{3} \wedge x_{4}\right)
$$

a circuit for F with only five gates, representing the output of each logical gate as a new variable (a natural number, and using 0 as the output), is:

$$
\begin{array}{lll}
0=\operatorname{or}(1,2) & 1=\operatorname{and}(x 1,3) & 3=\operatorname{or}(4,4) \\
2=\operatorname{and}(x 2,3) & 4=\operatorname{and}(x 3, x 4)
\end{array}
$$

Explain very briefly how you would use a standard SAT solver for CNFs to efficiently determine whether two circuits C_{1} and C_{2}, represented like this, are logically equivalent.

Answer: We can apply the Tseitin transformation directly to each sub-circuit: each gate already has its auxiliary variable. Each gate $n=a n d(x, y)$, generates three clauses: $\neg n \vee x$, $\neg n \vee y$, and $n \vee \neg x \vee \neg y$, and each gate $n=\operatorname{or}(x, y)$ another three: $n \vee \neg x, n \vee \neg y$, and $\neg n \vee x \vee y$. Negations can also be handled as usual. Let S_{1} and S_{2} be the resulting sets of clauses for the gates of C_{1} and C_{2}, respectively, using different names $0^{\prime}, 1^{\prime}, 2^{\prime} \ldots$ for the auxiliary variables of C_{2}. Then we have:
$C_{1} \equiv C_{2}$ (both circuits have the same models) iff
there is no model of $S_{1} \cup S_{2}$ such that the root variables 0 and 0^{\prime} get different values iff on (CNF) input $S_{1} \cup S_{2} \cup\left\{\neg 0 \vee \neg 0^{\prime}, \quad 0 \vee 0^{\prime}\right\}$, the SAT solver returns unsatisfiable.
Note: if we first transform the circuits (directed acyclic graphs) into formulas (trees) and then apply Tseitin, the CNF can become much larger, due to multiple copies of sub-circuits.
3) For each one of the following statements, indicate here whether it is true or false without giving any explanations why.

1. If F is unsatisfiable, then for every G we have $G \models F$. False
2. If F is unsatisfiable, then for every G we have $F \models G$. True
3. Let F, G, H be formulas. If $F \vee G \models H$ then $F \wedge \neg H$ is unsatisfiable. True
4. The formula $p \vee p$ is a logical consequence of the formula $(p \vee q \vee r) \wedge(\neg q \vee r) \wedge(\neg r)$. True
5. The formula $(p \vee q) \wedge(\neg p \vee q) \wedge(\neg p \vee \neg q) \wedge(\neg q \vee p)$ is unsatisfiable. True
6. If F is a tautology, then for every G we have $F \models G$. False
7. Let F, G, H be formulas. If $F \wedge G \not \vDash H$ then $F \wedge G \wedge H$ is unsatisfiable. False
8. Let F, G, H be formulas. If $F \wedge G \models \neg H$ then $F \wedge G \wedge H$ is unsatisfiable. True
9. If F es a tautology, then for every G we have $G \models F$. True
10. Assume $|\mathcal{P}|=n$. There are 2^{n} interpretations. Moreover there are exactly $k=2^{2^{n}}$ formulas F_{1}, \ldots, F_{k} such that for all i, j with $i \neq j$ in $1 \ldots k, \quad F_{i} \not \equiv F_{j}$. Each one of these F_{i} represents a different Boolean function. True
