Last names: ... 1st name: ... DNI: ...

Lgica en la Informtica / Logic in Computer Science

Permutation B. Tuesday April 18th, 2017 Time: 1h45min. No books, lecture notes or formula sheets allowed.

1) Let us remember the *Heule-3 encoding* for at-most-one (amo) that is, for expressing in CNF that at most one of the literals $x_1 cdots x_n$ is true, also written $x_1 + cdots + x_n \leq 1$. It uses the fact that $amo(x_1 cdots x_n)$ iff $amo(x_1, x_2, x_3, aux)$ AND $amo(\neg aux, x_4 cdots x_n)$. Then the part $amo(\neg aux, x_4 cdots x_n)$, which has n-2 variables, can be encoded recursively in the same way, and $amo(x_1, x_2, x_3, aux)$ can be expressed using the quadratic encoding with 6 clauses. In this way, for eliminating two variables we need one auxiliary variable end six clauses, so in total we need n/2 variables and 3n clauses.

1a We now want to extend the encoding for at-most-two $(amt, also written <math>x_1 + \ldots + x_n \leq 2)$. Prove that $amt(x_1 \ldots x_n)$ has a model I iff $amt(x_1, x_2, x_3, aux_1, aux_2) \wedge amt(\neg aux_1, \neg aux_2, x_4 \ldots x_n)$ has a model I', with $I(x_i) = I'(x_i)$ for all i in $1 \ldots n$.

Answer:

 \implies : If $I \models amt(x_1 \dots x_n)$ and k is the number of literals of $\{x_1, x_2, x_3\}$ that are true in I, then we extend I into I' as follows: if k = 0 we set $I'(aux_1) = I'(aux_2) = 1$; if k = 1 we set (for example) $I'(aux_1) = 1$ and $I'(aux_2) = 0$; if k = 2 we set $I'(aux_1) = I'(aux_2) = 0$. In all three cases $I' \models amt(x_1, x_2, x_3, aux_1, aux_2) \land amt(\neg aux_1, \neg aux_2, x_4 \dots x_n)$.

 \Leftarrow : If $I' \models amt(x_1, x_2, x_3, aux_1, aux_2) \land amt(\neg aux_1, \neg aux_2, x_4 \dots x_n)$ then, "forgetting" the part of the auxiliary variables, in all cases the resulting I is a model of $amt(x_1 \dots x_n)$, because:

```
- if I'(aux_1) = I'(aux_2) = 1 then I \models \neg x_1 \land \neg x_2 \land \neg x_3 and I \models amt(x_4 \dots x_n)
```

- if $I'(aux_1) = I'(aux_2) = 0$ then $I \models amt(x_1, x_2, x_3)$ and $I \models \neg x_4 \land \ldots \land \neg x_n$

 $-\operatorname{if} I'(aux_1) = 0$ and $I'(aux_2) = 1$ (or vice versa) then $I \models amo(x_1, x_2, x_3)$ and $I \models amo(x_4 \dots x_n)$.

1b Write all clauses for encoding $amt(x_1, x_2, x_3, aux_1, aux_2)$ with no more auxiliary variables.

Answer: We need one clause for each subset of 3 elements out of 5, that is, $\binom{5}{3} = 10$ clauses: $\neg x_1 \lor \neg x_2 \lor \neg x_3$, $\neg x_1 \lor \neg x_2 \lor \neg aux_1$, $\neg x_1 \lor \neg x_2 \lor \neg aux_2$, $\neg x_1 \lor \neg x_3 \lor \neg aux_1$, $\neg x_1 \lor \neg x_3 \lor \neg aux_1$, $\neg x_2 \lor \neg aux_2$, $\neg x_3 \lor \neg aux_2$, $\neg x_3 \lor \neg aux_1 \lor \neg aux_2$.

1c How many clauses and auxiliary variables are needed in total for $amt(x_1 \dots x_n)$ in this way?

Answer: The part $amt(\neg aux_1, \neg aux_2, x_4 \dots x_n)$ has one literal less. So to eliminate one literal, we need 10 clauses and 2 auxiliary variables and hence in total 10n clauses and 2n auxiliary variables.

1d The Heule-3 encoding for $amo(x_1, ..., x_n)$ has a good property: if one of the literals x_i becomes true, all other literals in $x_1, ..., x_n$ are set to false by unit propagation. Does this amt encoding have such a property?, that is, if two of $x_1...x_n$ become true, will unit propagation set the other variables to false? Explain why.

Answer: No. For example, if x_1 and x_4 become true, no unit propagation takes place at all.

2) Every propositional formula F over n variables can also expressed by a Boolean circuit with n inputs and one output. In fact, sometimes the circuit can be much smaller than F because each subformula only needs to be represented once. For example, if F is

$$x_1 \wedge (x_3 \wedge x_4 \vee x_3 \wedge x_4) \vee x_2 \wedge (x_3 \wedge x_4 \vee x_3 \wedge x_4),$$

a circuit for F with only five gates, representing the output of each logical gate as a new variable (a natural number, and using 0 as the output), is:

$$0 = or(1,2)$$
 $1 = and(x1,3)$ $3 = or(4,4)$
 $2 = and(x2,3)$ $4 = and(x3,x4)$

Explain very briefly how you would use a standard SAT solver for CNFs to efficiently determine whether two circuits C_1 and C_2 , represented like this, are logically equivalent.

Answer: We can apply the Tseitin transformation directly to each sub-circuit: each gate already has its auxiliary variable. Each gate n = and(x, y), generates three clauses: $\neg n \lor x$, $\neg n \lor y$, and $n \lor \neg x \lor \neg y$, and each gate n = or(x, y) another three: $n \lor \neg x$, $n \lor \neg y$, and $\neg n \lor x \lor y$. Negations can also be handled as usual. Let S_1 and S_2 be the resulting sets of clauses for the gates of C_1 and C_2 , respectively, using different names $0', 1', 2' \ldots$ for the auxiliary variables of C_2 . Then we have:

```
C_1 \equiv C_2 (both circuits have the same models) iff
there is no model of S_1 \cup S_2 such that the root variables 0 and 0' get different values iff
on (CNF) input S_1 \cup S_2 \cup \{ \neg 0 \lor \neg 0', \ 0 \lor 0' \}, the SAT solver returns unsatisfiable.
```

Note: if we first transform the circuits (directed acyclic graphs) into formulas (trees) and then apply Tseitin, the CNF can become much larger, due to multiple copies of sub-circuits.

- 3) For each one of the following statements, indicate here whether it is true or false without giving any explanations why.
 - 1. If F is unsatisfiable, then for every G we have $G \models F$. False
 - 2. If F is unsatisfiable, then for every G we have $F \models G$. True
 - 3. Let F, G, H be formulas. If $F \vee G \models H$ then $F \wedge \neg H$ is unsatisfiable. **True**
 - 4. The formula $p \vee p$ is a logical consequence of the formula $(p \vee q \vee r) \wedge (\neg q \vee r) \wedge (\neg r)$. **True**
 - 5. The formula $(p \lor q) \land (\neg p \lor q) \land (\neg p \lor \neg q) \land (\neg q \lor p)$ is unsatisfiable. **True**
 - 6. If F is a tautology, then for every G we have $F \models G$. False
 - 7. Let F, G, H be formulas. If $F \wedge G \not\models H$ then $F \wedge G \wedge H$ is unsatisfiable. False
 - 8. Let F, G, H be formulas. If $F \wedge G \models \neg H$ then $F \wedge G \wedge H$ is unsatisfiable. **True**
 - 9. If F es a tautology, then for every G we have $G \models F$. True
 - 10. Assume $|\mathcal{P}| = n$. There are 2^n interpretations. Moreover there are exactly $k = 2^{2^n}$ formulas F_1, \ldots, F_k such that for all i, j with $i \neq j$ in $1 \ldots k$, $F_i \not\equiv F_j$. Each one of these F_i represents a different Boolean function. **True**