Lógica en la Informática / Logic in Computer Science

Friday November 10th, 2019

Time: 1h30min. No books, lecture notes or formula sheets allowed.

1) (4 points)

Consider the following statement. For all propositional formulas F, G, H, $(F \rightarrow G) \wedge(H \rightarrow G)$ is satisfiable \quad iff $\quad \neg G \models \neg F \wedge \neg H$.
Prove the following using only the definitions of propositional logic.
1a) Is the \Longrightarrow implication of this iff statement true?
1b) Is the \Longleftarrow implication of this iff statement true?
1c) Is it true that if $\neg G \models \neg F \wedge \neg H$, then $(F \rightarrow G) \wedge(H \rightarrow G)$ is a tautology?
(hint for 1c: use what you did in 1 b).
2) (4 points) Let S_{1}, S_{2} be the two sets of clauses given below. How many models does each one of them have? Give a very short and simple answer, based on what these sets encode.

$$
\begin{array}{ll}
S_{1}=\left\{\begin{array}{ll}
\neg x_{0} \vee \neg x_{1}, \quad \neg x_{0} \vee \neg x_{2}, & \neg x_{0} \vee \neg a_{1}, \quad \neg x_{1} \vee \neg x_{2}, \quad \neg x_{1} \vee \neg a_{1}, \quad \neg x_{2} \vee \neg a_{1}, \\
& a_{1} \vee \neg x_{3}, \quad a_{1} \vee \neg x_{4}, \\
& \neg x_{3} \vee \neg x_{4}
\end{array}\right\} \\
S_{2}=\left\{\begin{array}{ll}
& \neg x_{0} \vee \neg a_{2}, \quad \neg x_{0} \vee \neg a_{1}, \\
& \neg x_{0} \vee \neg a_{0} \\
& \neg x_{1} \vee \neg a_{2}, \quad \neg x_{1} \vee \neg a_{1}, \\
\neg x_{1} \vee a_{0} \\
& \neg x_{2} \vee \neg a_{2}, \quad \neg x_{2} \vee a_{1}, \quad \neg x_{2} \vee \neg a_{0} \\
& \neg x_{3} \vee \neg a_{2}, \quad \neg x_{3} \vee a_{1}, \quad \neg x_{3} \vee a_{0} \\
& \neg x_{4} \vee a_{2}, \quad \neg x_{4} \vee \neg a_{1}, \quad \neg x_{4} \vee \neg a_{0}
\end{array}\right\}
\end{array}
$$

3) (2 points) Given a graph, we want to decide whether it is 2 -colorable, that is, if we can assign one of 2 colors to each node such that, for every edge (u, v), nodes u and v get different colors. Give a short and simple answer based on propositional logic of the following: what is the computational complexity of this problem? Is it polynomial, or NP-complete, or ... ?
