
Lexical Analysis (Scanning)
José Miguel Rivero

rivero@cs.upc.edu

Barcelona School of Informatics (FIB)

Universitat Politècnica de Catalunya BarcelonaTech (UPC)

José Miguel Rivero Lexical Analysis – p. 1/??

Credits

Some of the material in these slides has been extracted
from:

the one elaborated by Prof. Stephen A. Edwards
(University of Columbia) for the course COMS
W4115 (Programming Languages and Translators)

the ones elaborated by Profs. Jordi Cor-
tadella, Guillem Godoy and Robert Nieuwenhuis
(Barcelona Tech (UPC)) for the course Compilers
(Barcelona School of Informatics)

José Miguel Rivero Lexical Analysis – p. 2/??

Summary

Objectives of Lexical Analysis

Scanning in Compilers / Interpreters

Regular Expressions. Applications

The Basic Problem: w ∈ L(er) ?
Nondeterministic Automata NFA(re)
Deterministic Automata DFA(re)
Comparing Both Approaches

The Problem of Lexical Analysis

Lexical Errors. Recovery

Automatic Generation of Scanners: ANTLR, flex, . . .

José Miguel Rivero Lexical Analysis – p. 3/??

Objective. Tokens

Objective:
split the sequence of characters of the
source program into a sequence of
lexical components (tokens)

Tokens to be recognized and be sent to the parser:
language keywords (while, vars, write)
operators (+, /, <=, OR, :=)
punctuation symbols (parenthesis, comma,
semicolon)
identifiers (numels), integer values (834), strings
("Hello world!"), floats (3.04E-3)
. . .

José Miguel Rivero Lexical Analysis – p. 4/??

Other Lexical Components

Tokens to be recognized but without interest
for later phases:

separators: blanks, tabs
comments: /* ... */ in C, # ... in Perl
newlines. To localize syntactical errors

Token Attributes
for all of them: the position
for identifiers, numerical values, strings:
the corresponding text (“v0”, “54.7”)

José Miguel Rivero Lexical Analysis – p. 5/??

Example
Source program:

Program

 EndVars

 EndWhile
 r := r / i ; i := i + 1

 Vars

EndProgram

 Integer i
 Real r

 Write ("end")

 i := 4 ; r := 1.17
 While i <= 25 Do // 22 times

 EndVars

 EndWhile
 r := r / i ; i := i + 1

EndProgram

 Vars
 Integer i
 Real r

 Write ("end")

Program1:

2:

3:

4:

5:

6:

7:

9:

10:

11:

12:

8:

 i := 4 ; r := 1.17
 While i <= 25 Do // 22 times

Sequence of tokens: PROGRAM VARS INTEGER IDENT("i") REAL IDENT("r")

ENDVARS IDENT("i") ASSIG INTCONST("4") SEMI IDENT("r") ASSIG REALCONST("1.17") WHILE

IDENT("i") LESS INTCONST("25") DO IDENT("r") ASSIG IDENT("r") REALDIV IDENT("i") SEMI

IDENT("i") ASSIG IDENT("i") PLUS INTCONST("1") ENDWHILE WRITE LEFTPAR

STRINGCONST("end") RIGHTPAR ENDPROGRAM

José Miguel Rivero Lexical Analysis – p. 6/??

Scanning in Compilers / Interpreters

Conceptual structure

 program

 source

ANALYSIS
 LEXICAL

 list of

tokens SINTACTIC
 ANALYSIS

 tree

sintactic

SEMANTIC
ANALYSIS

annotated

 sintactic

 tree

Usual structure

 program

 source

ANALYSIS
 LEXICAL tree

sintactic

SEMANTIC
ANALYSIS

SINTACTIC
 ANALYSIS

annotated

 sintactic

 tree

 token

internal representations

1st pass 2nd pass

nextToken()

José Miguel Rivero Lexical Analysis – p. 7/??

Motivation

Why a specific phase for the lexical analysis?

Conceptually is a specialized task: filter and break
the input in those items interesting for the next phase,
the syntactical analysis

Applied techniques are
simple and efficient:
“Not use a sledgehammer to crack a nut”
flexible (lexical changes can be easily resolved)
portable and general

These techniques are applied in many
other applications

José Miguel Rivero Lexical Analysis – p. 8/??

Some Applications

Information retrieval queries

Genetic problems

Syntax-driven text editors

Operating systems (shell script languages, grep)
Example (in unix): % rm prog*.[ch]

Pattern/action programming languages: (awk)

Analysis of digital circuits

State controllers of video games

. . .

José Miguel Rivero Lexical Analysis – p. 9/??

Regular Expressions

Lexical components of a language are specified through
regular expressions over an alphabet Σ.

Formation rules:
re = ǫ is a regular expression

re = a is a regular expression for all a ∈ Σ

if re1 and re2 are regular expressions,
re = re1| re2 is a regular expression

if re1 and re2 are regular expressions,
re = re1re2 is a regular expression

if re1 is a regular expression re = re∗1 , re = re+1 and
re = re1? (re1 | ǫ) are regular expressions

if re1 is a regular expression, re = (re1) is a regular expression

José Miguel Rivero Lexical Analysis – p. 10/??

Expressive Power

The set of well-balanced expressions, for example
{ anbn | n > 0 }, cannot be accepted by a finite
automata: “finite automata cannot count”

Neither can be accepted the words of the language
{nan | n ≥ 0} = { 0, 1a, 2aa, 3aaa, . . . }
The language of repeated strings {w cw | w ∈ (a|b)∗ }
cannot be described by a regular expression, nor even
by a context-free grammar.

José Miguel Rivero Lexical Analysis – p. 11/??

NFA(re) Construction
Thompson’s algorithm: transform a regular
expression er into a nondeterministic automata N(er).
Given the regular expressions ǫ, a, re1 | re2, re1 re2,
re∗1 and (re1), and the automata N(re1) and N(re2) :

er =

a

a

ε

ε

ε

er = er1 er2|

N(er2)

N(er1)
ε

er = er1 er2

N(er2)N(er1) εε

ε

ε

er = er1*

N(er1)
N(er1)

N(er)

er = (er1)

er =

ε
ε

José Miguel Rivero Lexical Analysis – p. 12/??

NFA(re) Construction

Construction invariant: every NFA have an initial state
without input edges, and only one final state without
output edges

The number of states of NFA(re) ≤ 2|re|, because at
most 2 new states are added at each construction step

There are at most 2 output edges (2 transitions) for
each automata’s state. Therefore, we obtain a compact
representation of the automata

José Miguel Rivero Lexical Analysis – p. 13/??

Example 1
Nondeterministic finite automata for the regular expression

re = (a|b)∗abb.
These are the first steps of the NFA(er) construction:

er = a

a

ε

ε

er = a | b

a

b ε

ε

er = b

b

er = (a | b)*

ε

ε

a

b

ε

ε

ε

ε ε

ε

a

er =

ε

ε

a

b

ε

ε

ε

ε ε

ε

(a | b)* a

José Miguel Rivero Lexical Analysis – p. 14/??

Example 2

Combination of NFA’s for the disjunction of a set of regular
expressions rei’s (similar to lexical analysis)

.

.

.

1 | 2 | | nre = re re ... re

ε

ε

N(re)n

N(re)

N(re)

1

2 f2

f1

fn

i

ε

José Miguel Rivero Lexical Analysis – p. 15/??

Decision Algorithm for w ∈ NFA(re)
First we define two auxiliary functions:

ǫ-closure(S) is the set of states accessible from states in S

with zero o more ǫ-transitions.

move(S, a) is the set of states accessible from states in S

with a transition labelled with a.

Algorithm to decide if w ∈NFA(re):
Pre : s0 is the initial state of the automata NFA

F is the set of final states of NFA

eof is the symbol ending w

S := ǫ-closure({s0});
a := NextSymbol();

while a != eof do

S := ǫ-closure(move(S, a));

a := NextSymbol();

endwhile

Post : NFA accepts w iff S ∩ F 6= ∅

José Miguel Rivero Lexical Analysis – p. 16/??

Simulating the input: · aabb

ε

ε

a

b

ε

ε

ε

ε

ε

bε a b
0 1

2 3

7 8 9 10

4 5

6

ε

ε

a

b

ε

ε

ε

ε

ε

bε a b
0 1

2 3

7 8 9 10

4 5

6

José Miguel Rivero Lexical Analysis – p. 17/??

Simulating the input: a · abb

ε

ε

a

b

ε

ε

ε

ε

ε

bε a b
0 1

2 3

7 8 9 10

4 5

6

ε

ε

a

b

ε

ε

ε

ε

ε

bε a b
0 1

2 3

7 8 9 10

4 5

6

José Miguel Rivero Lexical Analysis – p. 18/??

Simulating the input: aa · bb

ε

ε

a

b

ε

ε

ε

ε

ε

bε a b
0 1

2 3

7 8 9 10

4 5

6

ε

ε

a

b

ε

ε

ε

ε

ε

bε a b
0 1

2 3

7 8 9 10

4 5

6

José Miguel Rivero Lexical Analysis – p. 19/??

Simulating the input: aab · b

ε

ε

a

b

ε

ε

ε

ε

ε

bε a b
0 1

2 3

7 8 9 10

4 5

6

ε

ε

a

b

ε

ε

ε

ε

ε

bε a b
0 1

2 3

7 8 9 10

4 5

6

José Miguel Rivero Lexical Analysis – p. 20/??

Simulating the input: aabb ·

ε

ε

a

b

ε

ε

ε

ε

ε

bε a b
0 1

2 3

7 8 9 10

4 5

6

ε

ε

a

b

ε

ε

ε

ε

ε

bε a b
0 1

2 3

7 8 9 10

4 5

6

José Miguel Rivero Lexical Analysis – p. 21/??

Algorithm Costs

Temporal cost:
O(|re| · |w|)

Spatial cost (size of NFA’s transition table):
O(|re|)

José Miguel Rivero Lexical Analysis – p. 22/??

DFA(re) Construction

Determination algorithm. Example

DFA spatial cost

Minimization algorithm. Example

Decision algorithm for w ∈DFA(er)

Compression techniques

José Miguel Rivero Lexical Analysis – p. 23/??

Determination Algorithm

Deterministic finite automata: no ǫ-transition nor any
state with more than one edge for the same symbol
a ∈ Σ.

Computing subsets of states. Each possible subset of
states in the NFA will correspond to one state in the
DFA. Transitions between these states will be computed

Algorithm:
Dstate (the set of DFA states) and Dtran (the DFA
transition table) will be computed.
A state in Dstate will be marked when all their
transitions in Dtran have been defined

José Miguel Rivero Lexical Analysis – p. 24/??

Determination Algorithm
Pre: s0 is the initial state of NFA

F is the set of final states of NFA

ǫ-closure({s0}) is the only state in Dstate and is not marked

while exist a state S not marked in Dstate do

mark S

foreach input symbol a ∈ Σ do

S′ := ǫ-closure(move(S, a));

if S′ /∈ Dstate then

add S′ (without mark) to Dstate

endif

Dtran[S, a] := S′;

endfor

endwhile

Post: The initial state of DFA is ǫ-closure({s0})
Final states of DFA are those (sets of)

states containing at least one state of F

José Miguel Rivero Lexical Analysis – p. 25/??

Example

Compute the deterministic FA for the regular expression
re = (a|b)∗abb

ε

ε

a

b

ε

ε

ε

ε

ε

bε a b

NFA:

0 1

2 3

7 8 9 10

4 5

6

ǫ-closure({0}) = {0, 1, 2, 4, 7} = A

ǫ-closure(move(A, a)) = ǫ-closure({3, 8})
= {1, 2, 3, 4, 6, 7, 8} = B

Dtran[A, a] = B

ǫ-closure(move(A, b)) = ǫ-closure({5})
= {1, 2, 4, 5, 6, 7} = C

Dtran[A, b] = C

. . .

José Miguel Rivero Lexical Analysis – p. 26/??

Example

Dtran:

symbol

state a b

A B C

B B D

C B C

D B E

E B C

A D E

b b

b

a

a b b

a

a a

B

C

DFA:

José Miguel Rivero Lexical Analysis – p. 27/??

DFA(re) Spatial Cost

The spatial cost (number of states in Dtran) may be
exponential wrt. the length of re :

The number of different subsets of a set of N elements is 2N

Example: Given the regular expression (a|b)∗a(a|b)k ,
the automata NFA will be constructed in the following way:

An initial state 0 with edges labelled with a and b
towards itself, and an edge labelled with a towards
state 1

Transitions from state i labelled with a and b towards
state i+1 , for i ∈ [1..k]

State k+1 is the final state

José Miguel Rivero Lexical Analysis – p. 28/??

DFA(re) Spatial Cost

a, b

a a, b . . . ka, b a, b k+10 1

The size of the corresponding DFA is exponential in k
because it needs to remember k + 1 bits (the latest k + 1
symbols that have been read)

With k = 3 :

abba (final state) −→a bbaa (non-final state)

baba (non-final state) −→b abab (final state)

José Miguel Rivero Lexical Analysis – p. 29/??

DFA Minimization Algorithm
Compute successive partitions of the set of states.

Pre : S is the set of DFA states

s0 is the DFA initial state

F is the set of DFA final states

Post : DFA′ accepts the same language than DFA

having the minimum number of states

José Miguel Rivero Lexical Analysis – p. 30/??

DFA Minimization Algorithm
Compute successive partitions of the set of states.
initial partition Π = Πnew with two grups :

final states F and non-final states S \ F
repeat

Π := Πnew

for each grup G of Π do

1. divide G in subgrups s.t. two states s and t

of G leave in the same subgrup iff for all

symbol a ∈ Σ, s and t have transitions

towards states in the same subgrup of Π.

2. replace G in Πnew by the set of formed subgrups

endfor

until Πnew = Π

José Miguel Rivero Lexical Analysis – p. 31/??

DFA Minimization Algorithm
Now build the automata DFA′:

1. Its states are defined choosing a representative for
each group

2. Transitions in DFA′ will correspond to the transitions
between the representative states in the DFA

3. The initial state of DFA′ will be the representative of
the group containing s0

4. The final states will be those having representatives
in F

José Miguel Rivero Lexical Analysis – p. 32/??

Example
Minimization of the DFA that recognizes (a|b)∗abb

A D E

b b

b

a

a b b

a

a a

B

C

DFA:

Comments Partitions
non-final / final states

(ABCD) (E)

A,B,C →b (ABCD) but D →b (E)

(ABC) (D) (E)

A, C →b (ABC) but B →b (D)

(AC) (B) (D) (E)

final partition

José Miguel Rivero Lexical Analysis – p. 33/??

Example

Dtran:

symbol

state a b

AC B AC

B B D

D B E

E B AC

DFA :min

D E
b b

a

a a

B

b

AC

b

a

José Miguel Rivero Lexical Analysis – p. 34/??

Another way to construct DFA(re)

Avoids determinating the NFA(re), and applying
subsequently the minimization algorithm.
Carry out these two steps in one

Not always obtain the minimum DFA(re) but is a good
technique in most cases

Comment very briefly . . .

José Miguel Rivero Lexical Analysis – p. 35/??

Decision Algorithm for w ∈ DFA(re)
Pre : s0 is the initial state of the automata DFA

F is the set of final states of DFA

eof is the ending symbol of w

s := s0;

a := NextSymbol();

while a != eof do

s := Dtran[s, a];

a := NextSymbol();

endwhile

Post : DFA accepts w iff s ∈ F

Temporal cost: O(|w|)
Spatial cost (size of Dtran):
O((number of states of the DFA) ∗ (number of symbols of Σ)) = O(2|re|)

José Miguel Rivero Lexical Analysis – p. 36/??

Compression Techniques

Different implementations for the DFA transition
function: the most direct using a transition table.

size(Dtran) = #states · |Σ |
Usually:
1. the number of states is very high, and
2. for each state: most of transitions are

undefined, or go to the same state

So this huge table may be quite empty (sparse table)

José Miguel Rivero Lexical Analysis – p. 37/??

Compression Techniques

One dimensional vector of states.
For each state we have the list of defined transitions
plus the default transition in case of error.
Very easy but make worse the time of compute
a transition

Other techniques seek to exploit, for each state,
contiguous empty squares before the first and
after the last symbol with transition.

Use several additional tables
Improves the time to compute a transition
Wasted space is much lower

José Miguel Rivero Lexical Analysis – p. 38/??

Compression Techniques

Two or more rows can be overlapped when transitions
defined in both don’t match.
This technique is shown in the following figure:

s

s’

.

+ a

.check

next

base

s s s’ s s’s’s’ s s’s’

t

+ b

 next(s, a) = next[base[s] + a]
if check[base[s] + a] = s then

else
 next(s, a) = error

tran(s, a) = t tran(s’, b) = error

José Miguel Rivero Lexical Analysis – p. 39/??

Comparing Both Approaches

Summing up costs:

Automata Temporal cost Spatial cost

NFA O(|re| · |w|) O(|re|)
DFA O(|w|) O(2|re|)

In general, when both methods are feasible (the DFA spatial
cost is reasonable) the following could be concluded:

NFA is suitable when |re| ↓↓
DFA is suitable when |re| ↑↑ or |w| ↑↑

José Miguel Rivero Lexical Analysis – p. 40/??

Lazy Finite Automata

Combines: space requirements of NFA with
advantage in time of DFA

Works like an indeterministic automaton, computing
only the subsets of states that are needed.
These subsets (and their transitions) are stored in a
cache so it is not required to recompute them again.

To sum up:
Lower requirements of space:

size of NFA transition table (O(|re|)) + size of cache

Transitions for non used states are not computed
Nearly as fast as DFA

José Miguel Rivero Lexical Analysis – p. 41/??

The Problem of Lexical Analysis

Problem description

Criteria to remove ambiguities

Examples

An algorithm for lexical analysis

Lexical errors

Be careful with the language!

José Miguel Rivero Lexical Analysis – p. 42/??

Problem Description (v0)

Given a list of regular expressions re1, . . . , ren describing
the n different tokens that can be recognized, and a word
w (the source program), it must be found a partition
v1v2 · · · vk of w such that each subword vi is in the
language of some rej.

Example 1:
er1 = bca
er2 = a∗bc
w = bcabc

solution #1: v1 = bca ∈ L(er1) and v2 = bc ∈ L(er2)
solution #2: v1 = bc ∈ L(er2) and v2 = abc ∈ L(er2)

so more precisely...

José Miguel Rivero Lexical Analysis – p. 43/??

Problem Description (v1)

Given a list of regular expressions re1, . . . , ren and a word
w , it must be found a partition v1v2 · · · vk of w such that
each word vi is the longest successive prefix in the
language of some rej.

Example 1:
er1 = bca
er2 = a∗bc
w = bcabc

solution: v1 = bca ∈ L(er1) and v2 = bc ∈ L(er2)

José Miguel Rivero Lexical Analysis – p. 44/??

Problem Description (v1)

Given a list of regular expressions re1, . . . , ren and a word
w , it must be found a partition v1v2 · · · vk of w such that
each word vi is the longest successive prefix in the
language of some rej.

Example 2:
er1 = a(b|c)
er2 = a∗c
er3 = b w = acb

solution #1: v1 = ac ∈ L(er1) and v2 = b ∈ L(er3)
solution #2: v1 = ac ∈ L(er2) and v2 = b ∈ L(er3)

so even more precisely...

José Miguel Rivero Lexical Analysis – p. 44/??

Problem Description (v2)

Given a list of regular expressions re1, . . . , ren and a word
w , it must be found a partition v1v2 · · · vk of w such that
each word vi is the longest successive prefix in the
language of some rej.
If some longest prefix vi is in the language of more than
one token, the regular expression with the lowest index will
be selected.

Example 2:
er1 = a(b|c)
er2 = a∗c
er3 = b
w = acb

solution: v1 = ac ∈ L(er1) and v2 = b ∈ L(er3)

José Miguel Rivero Lexical Analysis – p. 45/??

Problem Description (v2)

Given a list of regular expressions re1, . . . , ren and a word
w , it must be found a partition v1v2 · · · vk of w such that
each word vi is the longest successive prefix in the
language of some rej.
If some longest prefix vi is in the language of more than
one token, the regular expression with the lowest index will
be selected.

These restrictions may make impossible to find a solution
even when a partition exists:
Example 3:

er1 = a∗b
er2 = aa
er3 = bc w = aabc

José Miguel Rivero Lexical Analysis – p. 45/??

Problem Description

Given a list of regular expressions re1, . . . , ren and a word
w = v w′ , it must be found the longest prefix v of w s.t.
v ∈ L(rej) .
If v ∈ L(rej) for more than one rej, the regular expression
with the lowest index j will be selected.

The lexical analyzer, the function nextToken(), returns
both the prefix v and the index j indicating the recognized
token.

The next call to nextToken() makes the same with the
remaining input w′ .

José Miguel Rivero Lexical Analysis – p. 46/??

Criteria to Remove Ambiguities
Recognize always the longest prefix

Specify the regular expressions corresponding to
keywords before (lowest i) than the identifiers: any
keyword is also a word in the language of the identifiers,
but must be recognized as keyword.

Example of some tokens specified in PCCTS:

#token PROGRAM "PROGRAM"

#token VARS "VARS"

...

#token COMMA ","

...

#token INT_CONST "[0-9]+"

#token IDENT "[A-Za-z][A-Za-z0-9]*"

...

José Miguel Rivero Lexical Analysis – p. 47/??

Some Examples

With the input "whilei>5 ..." it will not be obtained
the keyword while followed by the identifier i

With "if(..." it will not be recognized the identifier
"if". The keyword "if" takes precedence

With "ab24.8 ..." it will not be recognized the
identifier "ab" followed by the real "24.8" (unless the
identifiers can only include alphabetical characters)

With "10..20 ..." it will be obtained the integer
"10" because, after trying to recognize a longer prefix
(a real beginning with "10."), it fails in the second ’.’.
In successive calls, the tokens double-dot and another
integer will retrieved.

⇒ This introduce non-linearity! :-((

José Miguel Rivero Lexical Analysis – p. 48/??

Non linearity

Example:
er1 = b∗a∗c
er2 = a

er3 = b w = a a a a a a a a a a a a a a a a a a a b

Remember the position ending an accepted prefix, and
the number of the DFA involved.
If success in finding a longer one, update that
information; otherwise, come back to the last successful
point.

To avoid non-linearity, and once some accepted prefix
has been detected, it can be imposed that each new
symbol also form a new longer recognized prefix

José Miguel Rivero Lexical Analysis – p. 49/??

Lexical Analysis Algorithm
Exercise. Suppose that the symbols of w are in an array IN [1..m], and
the n DFA transition functions corresponding to the n tokens are δi (Dtrani).
Write an algorithm that partition the input —working over the DFA
recognition algorithm for each token—, and obtain successive prefixes
v = IN [f] · · · IN [l] matching some token a (v ∈ L(rea)).
The initial and final states of DFAi are Inii and the set Fi. When a DFAi

does not define transition for state q and symbol IN [p], then δi(q, IN [p])

returns the value Erri.
The partition algorithm successively returns the pair of indexes 〈f, l〉 and
the number a of the DFA, such that:

the word IN [f] · · · IN [l] is the longest prefix of IN [f] · · · IN [m]

matching some rei

a is the minimal value of the i’s for the rei’s that accept this longest
prefix. If no prefix exists, a lexical error is generated

José Miguel Rivero Lexical Analysis – p. 50/??

Lexical Analysis Algorithm

Ini

DFA

Ini

DFA

Ini

DFA

F

Err

q

q
F

Err

q

1

1 1

1

1

i

i

ii

i

n

n n

i

Fn

nErr

IN

1 m

recognized
longest

generated
token

last

f l p

atoken (by DFA)

José Miguel Rivero Lexical Analysis – p. 51/??

Lexical Analysis Algorithm (v0)
p := f := 1; l := 0;

∀i : 1 ≤ i ≤ n : qi := Inii; // Initial states

while p ≤ m do

∀i : 1 ≤ i ≤ n : qi := δi(qi, IN[p]); p :=p+ 1; // State Transitions

if ∃ i : 1 ≤ i ≤ n : qi ∈ Fi then // Some final state

l := p− 1; a = smallest i such that qi ∈ Fi;

elseif ∀ i : 1 ≤ i ≤ n : qi ∈ Erri then // All Erri states

if l ≥ f then

Generate token of type a with word IN[f.. l]

p := f := l + 1; l := f − 1;

∀i : 1 ≤ i ≤ n : qi := Inii;

else

Generate and Recover from a Lexical Error

endif

endif

endwhile

if l < f then Generate a Lexical error endif

José Miguel Rivero Lexical Analysis – p. 52/??

Lexical Analysis Algorithm
p := f := 1; l := 0;

∀i : 1 ≤ i ≤ n : qi := Inii; // Initial states

while f ≤ m do

while p ≤ m do

∀i : 1 ≤ i ≤ n : qi := δi(qi, IN[p]); p :=p + 1; // State Transitions

if ∃ i : 1 ≤ i ≤ n : qi ∈ Fi then // Some final state

l := p − 1; a = smallest i such that qi ∈ Fi;

elseif ∀ i : 1 ≤ i ≤ n : qi ∈ Erri then // All Erri states

if l ≥ f then

Generate token of type a with word IN[f.. l]

p := f := l + 1; l := f − 1;

∀i : 1 ≤ i ≤ n : qi := Inii;

else

Generate and Recover from a Lexical Error

endif

endif

endwhile

if l ≥ f then

Generate token of type a with word IN[f.. l]

p := f := l + 1; l := f − 1;

∀i : 1 ≤ i ≤ n : qi := Inii;

else

Generate and Recover from a Lexical Error

endif

endwhile

José Miguel Rivero Lexical Analysis – p. 52/??

Lexical Analysis Algorithm

Recover from a Lexical Error :

p := f := f + 1; l := f − 1;

∀i : 1 ≤ i ≤ n : qi := Inii;

José Miguel Rivero Lexical Analysis – p. 52/??

Lexical Errors

How does a lexical error occur?

Context: the lexical analyzer is looking for the longest
prefix v of the input w , s.t. v ∈ L(rei) for some i

Suppose that on symbol a there is no defined transition
from any of the current states qi of the set of DFA’s.
In that case the last valid prefix has to be returned

What does it happen if no previous valid prefix had
been found? The input w cannot be partitioned

José Miguel Rivero Lexical Analysis – p. 53/??

Lexical Error Recovery

Panic mode: ignoring the first character of w —and
successive if necessary— until some prefix can be
recognized

Only strange characters (not in Σ) can be removed:
’¿’, ’ç’, ’@’, . . . in languages like C or Python

Corrections are allowed: insert a character, replace a
character by a different one, swap adjacent characters
(wihle can be turned into while).
It is a rare technique

José Miguel Rivero Lexical Analysis – p. 54/??

Be Careful with the Language!
Accurately define the tokens and the syntax of a language.
Some strange situations:

in Fortran IV, the construction DO 5 I = 1,25 ...
is the header of a loop. Changing 1,25 by 1.25 it
represents an assignment to the variable DO5I

if real numbers can have an empty fractional part, then
the array range 10..40 will be incorrectly analyzed

also in Fortran IV, labels are required to start at the first
column ⇒ not free-format

in Python while b < 10:
print b
a, b = b, a+b

José Miguel Rivero Lexical Analysis – p. 55/??

