
Exercises on Compilers

Jordi Cortadella

February 7, 2022

Semantic Analysis

1. We look at a simple language with an exception mechanism:

S → throw id

S → S catch id⇒ S

S → S or S

S → other

A throw statement throws a named exception. This is caught by the nearest enclosing catch

statement (i.e., where the throw statement is in the left sub-statement of the catch statement) using
the same name, whereby the statement after the arrow in the catch statement is executed. An or

statement is a non-deterministic choice between the two statements, so either one can be executed.
other is a statement that does not throw any exceptions. We want the type checker to ensure that all
possible exceptions are caught and that no catch statement is superfluous, i.e., that the exception it
catches can, in fact, be thrown by its left sub-statement. Write type-check functions that implement
these checks.

Hint: Let the type of a statement be the set of possible exceptions it can throw.

2. [From Aho-Sethi-Ullman’s book.]

Let us consider the grammar of a simple language, represented by the nonterminal P , consisting of
a sequence of declarations D followed by a single expression E.

P → D ; E

D → D ; D | id : T

T → char | integer | array [num] of T | ∗ T
E → literal | num | id | E mod E | E [E] | E∗

One program generated by the grammar is:

key: integer;

key mod 1999

The language has two basic types, char and integer ; a third basic type type error is used to signal
errors. For arrays, the number inside the square brackets represents it size. For exmaple,

array [256] of char

leads to the type expression array(256, char). The prefix operator ∗ in declarations builds a pointer
type, so *integer leads to the type expression pointer(integer).

The action associated with the production D → id : T saves a type in the symbol-table entry for an
identifier. The action addtype(id.entry, T .type) is applied to the synthesized attribute entry pointing
to the symbol-table entry for id and a type expression represented by the synthesized attribute entry
of the nonterminal T .

If T generates char or integer, then T .type is defined to be char or integer, respectively. The upper
bound of an array is obtained from the attribute val of token num that gives the integer represented
by num. Since the declarations appear before the expression, we can be sure that the types of all
declared indentifiers will be saved in the symbol table before the expression is checked.

Next, part of the semantic actions that save the type of an identifier in the symbol table is shown:

P → D ; E

D → D ; D

D → id : T { addtype(id.entry, T.type) }
T → char { T.type := char }
T → integer { T.type := integer }
T → ∗T1 { T.type := pointer(T1.type) }
T → array [num] of T1 { T.type := array(num.val, T1.type) }

The tokens literal and num have type char and integer, respectively. The expressions formed by
applying the mod operator to two subexpressions of type integer has type integer ; otherwise, its type
is type error. In an array referece E1[E2], the index expression E2 must have type integer. The type
of E∗ is the type t of the object pointed to by the pointer E.

Add the type checking actions of the grammar to synthesize the attribute E.type for the expression.
We can use the function lookup(id.entry) to fetch the type saved in the symbol table for the entry
corresponding to the identifier id.

Page 2

3. Let us consider the following fragment of C code:

struct {

int a;

char b;

} c;

(int *) d[10];

struct {

struct {

int *e;

char f[10];

} *g;

(char *) h[10];

} e, *f;

1: (*((*f).g)).f[*(d[4])] = c.b;

2: e.h[11] = &(c.b);

3: *(e.g + int) = *((*f).g);

4: d[12] = &(c.a+1);

5: c.a = e.2[h];

6: (*f)..h[1];

� Give an AST for the type of variable f. Use the label struct to represent the root node of
a struct’s AST and the label array[n] to represent the root node of an array of n elements.
When representing a struct, annotate the label of each field at the tree edge associated to the
field.

� Give an AST representing the assignment in line 1 and infer the type associated to each node
of the AST. Represent the access to a struct (x.y) as a binary tree (.,x,y) and the access
to an array (a[i]) as a binary tree ([],a,i). Is it a correct assignment?

� Detect all possible errors in the lines of code 1-6. Indicate when the error is detected (lexical,
syntax, semantic, runtime).

� Indicate when the following errors are detected (lexical, syntax, semantic, runtime):

– & can only be used for an addressable memory location.

– Missing semicolon at the end of a statement.

– The LHS and RHS types of an assignment are not compatible.

– A character does not belong to the alphabet of the language.

– An array index is out of bounds.

– An array index must be integer.

– Unclosed parenthesis in an expression.

– Division by zero.

– Unclosed quotes (") of a string.

– Only integer values can be added to pointers.

Page 3

