Exercises on Compilers

Jordi Cortadella
February 7, 2022

Code optimization

1. Consider the following basic block:

$$
\begin{aligned}
\mathrm{g} & =\mathrm{x}+\mathrm{y} \\
\mathrm{~h} & =\mathrm{u}-\mathrm{v} \\
\mathrm{i} & =\mathrm{x}+\mathrm{y} \\
\mathrm{x} & =\mathrm{u}-\mathrm{v} \\
\mathrm{u} & =\mathrm{g}+\mathrm{h} \\
\mathrm{v} & =\mathrm{i}+\mathrm{x} \\
\mathrm{w} & =\mathrm{u}+\mathrm{v}
\end{aligned}
$$

- Build the DAG representation.
- Generate code under the assumption that the set of live variables is $\{g, h, u, w\}$.
- Generate code under the assumption that the set of live variables is $\{u, h, x\}$.

2. Consider the following code:
```
m = 0
v = 0
t = x+4
if v >= n goto 18
r = v
s}=
k = 0
k = k+1
z = k*4
q = M[z]
s = s+q
if s <= m goto 14
m = S
r = r+1
if r < n goto 8
v = v+1
goto 3
return m
```

- Calculate the basic blocks and draw the associated control-flow graph.
- Calculate the tree of dominators.
- Identify the back edges and loops of the control-flow graph.
- Perform loop optimizations (assume that all variables are alive at the exit of the code).

3. Consider the code in the figure:

- Apply all possible optimizations considering the live variables specified at the exit of the code.
- Show the final code after the optimizations and explain the transformations produced by each optimization.

4.

Consider the code in the figure and assume that the array z is the only variable alive at the exit of the code.

- Which variables are alive at the end of block B7?
- Which blocks dominate B7?
- Assume that x and y are parameters of the function initialized before the function call. Is there any variable that could be potentially used without having been initialized before?
- Apply all possible optimizations you know.

5. Consider the code in the figure:

- Apply all possible optimizations.
- Discuss how much information can be extracted at compile time about the execution of the code.

6.

1: $\mathrm{a}=\mathrm{y}+\mathrm{c}$
$2: \mathrm{d}=\mathrm{a}+\mathrm{x}$
$3: \mathrm{b}=\mathrm{x}+\mathrm{y}$
$4: \mathrm{a}=\mathrm{b} * \mathrm{~d}$
$5: \mathrm{e}=\mathrm{x}-\mathrm{a}$
$6: \mathrm{y}=\mathrm{b}+\mathrm{x}$
$7: \mathrm{a}=\mathrm{e} * \mathrm{~b}$

Let us assume that the set of live variables at the end of the code at the left is $\{a, y\}$.

- Indicate which variables are alive at each point of the code.
- Rewrite the code using a minimum number of registers. Name the registers as R1, R2, R3, R4, etc.

