Transformer models

Marta R. Costa-jussà

with slides from Peter Boem, Ashish Vaswani and Anna Huang
What are Transformers?

- transformer: any sequence-based model that primarily uses self-attention to propagate along the time dimension
- more broadly: any model that primarily uses self-attention to propagate information between basic units of our instances
 - pixels
 - graph nodes
 - speech

- motivation:
 - take advantage of all data available (parallelizable)
 - benefit from long-range dependencies
Outline

- Background: Language Modeling, Seq2Seq with Attention
- Key Concepts of the Transformer
 - Self Attention
 - Multi-Head Attention
- Position Information
- Transformer Layers/Blocks
- Encoder vs Decoder (Masking, Inter Attention, Softmax)
BACKGROUND
Background: Language modeling with RNN

\[\hat{y}^{(4)} = P(x^{(5)} | \text{the students opened their}) \]
Background: Seq2Seq

Encoding of the source sentence.

Source sentence (input)

<START> he hit me with a pie <END>

Target sentence (output)

Encoding of the source sentence.
Attention Is All You Need

Ashish Vaswani*
Google Brain
avaswani@google.com

Noam Shazeer*
Google Brain
noom@google.com

Niki Parmar*
Google Research
nikip@google.com

Jakob Uszkoreit*
Google Research
usz@google.com

Llion Jones*
Google Research
llion@google.com

Aidan N. Gomez†
University of Toronto
aidan@cs.toronto.edu

Lukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Ilia Polosukhin*†
ilia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions.

http://jalammar.github.io/illustrated-transformer/
TRANSFORMER
Different attentions

Encoder-Decoder Attention

Encoder Self-Attention

MaskedDecoder Self-Attention
Key concepts

- Self-attention and multi-head attention
TRANSFORMER: SELF ATTENTION
Self-attention: step-by-step I: intuition

\[y_i = \sum_j w_{ij} x_j \]

not a parameter
Self-attention: step-by-step II: equations

\[y_i = \sum_j w_{ij} x_j \]

\[w_{ij}' = x_i^T x_j \]

\[w_{ij} = \frac{\exp w_{ij}'}{\sum_j \exp w_{ij}'} \]

VECTORIZED

\[\mathbf{W}' = \mathbf{X}^T \mathbf{X} \]

\[\mathbf{W} = \text{softmax}(\mathbf{W}') \]

\[\mathbf{Y}^T = \mathbf{W} \mathbf{X}^T \]
In *simple* self-attention w_{ii} (x_i to y_i) usually has the most weight. Not a big problem, but we’ll allow this to change later.

Simple self-attention has *no parameters*. Whatever parameterized mechanism generates x_i (like an embedding layer) drives the self attention.

There is a linear operation between X and Y. Non-vanishing gradients through $Y = WX^T$, vanishing gradients through $W = \text{softmax}(X^TX)$.

best of two worlds: linear and non-linear operations
Self-attention: notes

No problem looking **far back** into the sequence.
In fact, every input has the same distance to every output.

More of a *set model* than a *sequence model*. No access to the sequential information.
We’ll fix by encoding the sequential structure into the embeddings. Details later.

Permutation equivariant.
for any permutation p of the input: $p(\text{sa}(X)) = \text{sa}(p(X))$
Modifications to Self-Attention

- Scaled dot product
- Key, value and query transformations
it keeps the weights within a certain range, not depending on the dimensionality of the vector

\[w'_{ij} = \frac{x_i^T x_j}{\sqrt{k}} \]

← input dimension
every vector occurs in 3 different positions

value: weighted sum that provides the output

query: input vector that corresponds to the current output matched against every other input vector

key: the vector that the query vector is matched against

```
D = {'a': 1, 'b': 2, 'c': 3}
D['b'] = 2
```

<table>
<thead>
<tr>
<th>key</th>
<th>value</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>1</td>
</tr>
<tr>
<td>b</td>
<td>2</td>
</tr>
<tr>
<td>c</td>
<td>3</td>
</tr>
</tbody>
</table>
Databases store information as pair of keys and values (K,V).

Example:

```
<Key>
<Value>
```

Figure: Nikhil Shah, “Attention? An Other Perspective! [Part 1]” (2020)
The (K,Q,V) terminology used to retrieve information from databases is adopted to formulate attention. Attention is a mechanism to compute a context vector (c) for a query (Q) as a weighted sum of values (V).

Figure: Nikhil Shah, “Attention? An Other Perspective! [Part 1]” (2020)
introduce matrices K, Q, V for linear transforms and associated biases

\[k_i = Kx_i + b_k \]
\[q_i = Qx_i + b_q \]
\[v_i = Vx_i + b_v \]
Attention is Cheap!

- **Self-Attention**: $O(\text{length}^2 \cdot \text{dim})$
- **RNN (LSTM)**: $O(\text{length} \cdot \text{dim}^2)$

specially attractive when your dim $>>$ length (case of MT)
Question

- Given a query vector and two keys:

\[q = [0.3, 0.2, 0.1] \]
\[k_1 = [0.1, 0.3, 0.1] \]
\[k_2 = [0.6, 0.4, 0.2] \]

- What are the attention weights \(a_1 \) and \(a_2 \) computing the dot product?
- What are the attention weights \(a_1 \) & \(a_2 \) when computing the scaled dot product?
- Which key vector will receive more attention?
Attention head: Who

different words relate to each other by different relations
Attention head: Did What?

Who

Did what?

kicked

I

kicked

the

ball
Attention head: To Whom?

- Who
- Did what?
- I
- kicked
- the
- ball
- To whom?
Parallel attention heads

To model all these different kinds of relation in one self-attention operation we split the self-attention into different heads which are basically self-attention layers applied in parallel.
Multi-head attention

1. input sequence through linear operations to decrease dimensionality
2. each split of the input vector is fed into a head attention.
Multi-head attention

IMPLEMENTATION NOTE

head 1 input
head 1 key
head 1 query
head 1 value

head 1 input
head 2 input
head 1 key
head 2 key
h1 query
h2 query
h1 value
h2 value
As we encode the word "it", one attention head is focusing most on "the animal", while another is focusing on "tired" -- in a sense, the model's representation of the word "it" bakes in some of the representation of both "animal" and "tired".

https://www.youtube.com/watch?v=187JyiA4pyk
TRANSFORMER: POSITION INFORMATION
Relevance of position information

- This is not a real restaurant, it’s a filthy burger joint
- This is not a filthy Burger joint, it’s a real restaurant

The transformer contains no recurrence and no convolution. We have to add **positional** information to the input word vectors

Methods:
- Positional embeddings
- Positional encodings
Positional embeddings

word embeddings:
\[\mathbf{v}_\text{the}, \mathbf{v}_\text{man}, \mathbf{v}_\text{pets}, \mathbf{v}_\text{cat}, \mathbf{v}_\text{again} \]

position embeddings:
\[\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3, \mathbf{v}_4, \mathbf{v}_5, \cdots \]
What is the problem with positional embeddings?
Positional Encoding

We can add **positional encodings** to the input word vectors:

- **Fixed.** A usual choice is sine and cosine functions of different frequencies, since it allow the model to attend by relative positions

\[
PE(pos, dim) = \sin(\omega_i \cdot pos) \quad \text{if } dim = 2i \\
PE(pos, dim) = \cos(\omega_i \cdot pos) \quad \text{if } dim = 2i + 1
\]

\[
\omega_i = \frac{1}{10000^{2 \cdot i/d_{embedding}}}
\]

- \(pos\) is the position of the token in the sentence,
- \(dim\) the dimension of the embeddings
- \(i\) the position within the embedding.
Questions

- Why positional embeddings are summed with word embeddings instead of concatenation?
- Doesn't the position information get vanished once it reaches the upper layers?
TRANSFORMER:
LAYERS/BLOCKS
Transformer layers

- Layer normalization
- Residual connections
Transformer of 2 stacked encoders and decoders
The Transformer: Encoder vs Decoder layers
QUESTION: What are we doing in the red square?
Encoder vs Decoder layers

- **Masking.** The decoder cannot see *the future* when predicting the next word.

- **Enc-Dec Attention.** Queries are taken from the layer below it, but keys and values from the final output of the encoder.

- The decoder adds an additional linear and softmax layer (just as RNNs NMT)
Encoder Self-Attention (no masking)

\[A(Q, K, V) = \text{softmax} \left(\frac{QK^T}{\sqrt{d_k}} \right)V \]
Decoder Self-Attention (with masking)
Masking

MASKING: MAKING SELF-ATTENTION CAUSAL

- \(W' = X^T X \)
- \(W'_{ij} \leftarrow -\infty \) if \(j > i \)
- \(W = \text{softmax}(W') \)
- \(Y^T = WX^T \)
Encoder vs Decoder layers

- **Masking.** The decoder cannot see the future when predicting the next word.

- **Enc-Dec Attention.** Queries are taken from the layer below it, but keys and values from the final output of the encoder.

- The decoder adds an additional linear and softmax layer (just as RNNs NMT)
The Transformer: Encoder vs Decoder layers

```
Let's represent this sentence,
```

```
Representieren wir diesen Satz,
```

```
softmax
```

```
Feed-forward
```

```
Self-Attention
```

```
Position-wise Feed-forward
```

```
Encoder-Decoder Attention
```

```
Softmax
```

```
Feed-forward
```

```
Encoder-Decoder Attention
```

```
Self-Attention
```

```
Position-wise Feed-forward
```

```
FFNN
```

THE ORIGINAL TRANSFORMER

machine translation model
no recurrent layers or convolutions
encoder/decoder configuration
teacher forcing
position **encoding**

512 dims, 8 heads, 2x6 blocks
FF: Lin(512, 2048), relu, Lin(2048, 512)
trained for 3.5 days on 8 GPUs

Attention Is All You Need, Vaswani et al, 2017.
Recap

- Key Concepts of the Transformer
 - Self Attention
 - Multi-Head Attention
- Position Information
- Transformer Layers/Blocks
- Encoder vs Decoder (Masking, Inter Attention, Softmax)
Self-Attention

- Constant ‘path length’ between any two positions.
- Unbounded memory.
- Trivial to parallelize (per layer).
- Models Self-Similarity.
Active Research Area

- Non autoregressive transformer (Gu and Bradbury et al., 2018)
- Improving Language Understanding by Generative Pre-Training (Radford, Narsimhan, Salimans, and Sutskever)
- BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding (Devlin, Chang, Lee, and Toutanova)