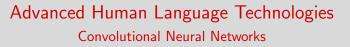
Master on Artificial Intelligence

Motivation CNN basics Application Examples

Conclusions



UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Facultat d'Informàtica de Barcelona

Outline

Conclusions

1 Motivation

CNN basics

Convolutions

- Examples
- Pooling
 - Examples

3 Application Examples

Motivation

Limitations of RNNs

- Long-distance relationships are faded due to vanishing gradient.
- Final representation carries to much weight for last words.
- Computations are no parallelizable since each word depends on the previous one.

Idea of CNNs

- Group subsequences of n-words
- Compute a vector for each subsequence

Combine the obtained vectors in a global representation CNNs introduce parallelism, and weight for distant words is not vanished

Motivation CNN basics Application

Examples Conclusions

Outline

Motivation CNN basics Application Examples

Conclusions

1 Motivation

2 CNN basics

- Convolutions
 - Examples
- Pooling
 - Examples

3 Application Examples

Outline

1 Motivation

Motivation CNN basics Convolutions

Application Examples

Conclusions

2 CNN basics

Convolutions

- Examples
- Pooling
 - Examples

3 Application Examples

0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

- Slide a small filter matrix (kernel, a.k.a filter) over the input matrix.
- At each position, compute the product of kernel and input values, and add them together.
- The output matrix is the concatenation of the application of the filter over the input matrix.
- kernel weights are trained

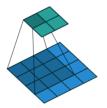
Motivation
CNN basics Convolutions
Application Examples

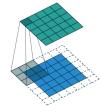
0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

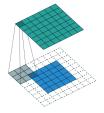
- Convolutional layers detect local features.
- Detection is invariant to feature position.
- Stacked convolutional layers detect more elaborate hierarchical features
- Application domains:
 - Text: Sequence of tokens 1D convolution
 - Images: Matrix of pixels 2D convolution
 - Video: Sequence of images 3D convolution

Motivation CNN basics Convolutions Application Examples

Conclusions





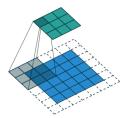


input size: 4×4 kernel size: 3padding: 0output size: 2×2 input size: 5×5 kernel size: 3padding: 1output size: 5×5 input size: 5×5 kernel size: 3padding: 2output size: 7×7

https://raw.githubusercontent.com/vdumoulin/conv_arithmetic

Motivation CNN basics Convolutions Application Examples

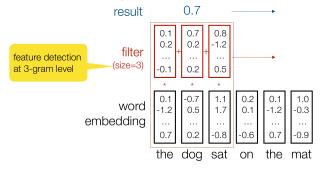
Conclusions



input size: 5×5 kernel size: 3 padding: 1 stride: 2 output size: 3×3 input size: 7×7 kernel size: 3 padding: 0 dilation: 2 output size: 3×3

https://raw.githubusercontent.com/vdumoulin/conv_arithmetic

- Text is a sequence of tokens, each represented by a vector (e.g. embedding)
- We can see the sentence as a matrix, and use convolutions
- However, it does not make senses to capture pieces of an embedding, so the kernel will have fixed width (the embeding dimension)



Motivation CNN basics Convolutions Application Examples

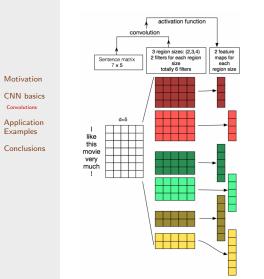
Motivation CNN basics Convolutions Application Examples

Conclusions

Embedding dim.: d = 3Input size: $6 \times d$ Kernel size: 3Padding: 1Output size: 6

this →	0.2	0.4	-0.3
movie>	0.1	0.2	0.6
has —	-0.1	0.4	-0.1
amazing —	0.7	-0.5	0.4
diverse>	0.1	-0.2	0.1
characters>	0.6	-0.3	0.8

Multiple kernels



- We can use several kernels, with different sizes, padding, and stride
- Each kernel will learn to encode a different feature

Vanilla convolution

Motivation CNN basics Examples

Application Examples

Conclusions

tentative	0.2	0.1	-0.3	0.4
deal	0.5	0.2	-0.3	-0.1
reached	-0.1	-0.3	-0.2	0.4
to	0.3	-0.3	0.1	0.1
keep	0.2	-0.3	0.4	0.2
government	0.1	0.2	-0.1	-0.1
open	-0.4	-0.4	0.2	0.3

t,d,r 📗	-1.0
d,r,t 🚦	-0.5
r,t,k	-3.6
t,k,g	-0.2
k,g,o	0.3

Apply a filter (or kernel) of size 3

3	1	2	-3
-1	2	1	-3
1	1	-1	1

With padding = 1

Motivation CNN basics Examples

Application Examples

Conclusions

Ø	0.0	0.0	0.0	0.0
tentative	0.2	0.1	-0.3	0.4
deal	0.5	0.2	-0.3	-0.1
reached	-0.1	-0.3	-0.2	0.4
to	0.3	-0.3	0.1	0.1
keep	0.2	-0.3	0.4	0.2
government	0.1	0.2	-0.1	-0.1
open	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Ø,t,d	-0.6
t,d,r	-1.0
d,r,t	-0.5
r,t,k	-3.6
t,k,g	-0.2
k,g,o	0.3
g,o,Ø	-0.5

Apply a filter (or kernel) of size 3

3	1	2	-3
-1	2	1	-3
1	1	-1	1

With padding = 1, kernels = 3

Ø	0.0	0.0	0.0	0.0
tentative	0.2	0.1	-0.3	0.4
deal	0.5	0.2	-0.3	-0.1
reached	-0.1	-0.3	-0.2	0.4
to	0.3	-0.3	0.1	0.1
keep	0.2	-0.3	0.4	0.2
government	0.1	0.2	-0.1	-0.1
open	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Motivation CNN basics Examples Application Examples Conclusions

Ø,t,d	-0.6	0.2	1.4
t,d,r	-1.0	1.6	-1.0
d,r,t	-0.5	-0.1	0.8
r,t,k	-3.6	0.3	0.3
t,k,g	-0.2	0.1	1.2
k,g,o	0.3	0.6	0.9
g,o,Ø	-0.5	-0.9	0.1

Apply 3 filters of size 3

3	1	2	-3	1	0	0	1	1	-1	2	-1
-1	2	1	-3	1	0	-1	-1	1	0	-1	3
1	1	-1	1	0	1	0	1	0	2	2	1

With padding = 1, kernels = 3, stride = 2

			0.0	0.0	0.0	0.0					
:e	ntativ	e	0.2	0.1	-0.3	0.4					
de	al		0.5	0.2	-0.3	-0.1		Ø,t,d	-0.6	0.2	1.
re	ached		-0.1	-0.3	-0.2	0.4				-0.1	0.
to			0.3	-0.3	0.1	0.1		d,r,t	-0.5	-0.1	
ke	ер		0.2	-0.3	0.4	0.2		t,k,g	-0.2		1.2
go	vernn	nent	0.1	0.2	-0.1	-0.1		g,o,Ø	-0.5	-0.9	0.1
ор	en		-0.4	-0.4	0.2	0.3					
Ø			0.0	0.0	0.0	0.0					
Aŗ	ply	3 filt	ers o	f size	3						
	3	1	2	-3		1 (0 C	1	1	-1	2
	-1	2	1	-3		1 (0 -1	-1	1	0	-1
	1	1	-1	1		0 3	1 0	1	0	2	2

Motivation CNN basics Examples

Application Examples

Conclusions

Source: Stanford cs224n course 2019. Chris Manning

With padding = 1, kernels = 3, dilation = 2

Ø				0.0	0.0)	0.0	0.0	D				Ø,t,d	
te	ntat	ive		0.2	0.3	L	-0.3	0.4	4				t,d,r	
de	eal			0.5	0.2	2	-0.3	-0.3	1				d,r,t	
re	ache	ed		-0.1	-0.3	3	-0.2	0.4	4				r,t,k	
to)			0.3	-0.3	3	0.1	0.3	1				t,k,g	
ke	eep			0.2	-0.3	3	0.4	0.2	2				k,g,o	,
gc	overi	nmer	nt	0.1	0.2	2	-0.1	-0.3	1				g,o,Ø	5
o	ben			-0.4	-0.4	1	0.2	0.3	3			_		
Ø				0.0	0.0)	0.0	0.0	D				1,3,5	
A	oply	/ 3 1	filt	ers o	f siz	е З	3						2,4,6 3,5,7	
3	1	2	-3	1	. 0	0	1	1	-1	2	-1		3,3,7	
1	2	1	-3	1	. 0	-1	-1	1	0	-1	3			
1	1	-1	1		1	0	1	0	2	2	1			

Motivation CNN basics Examples

Application Examples

Conclusions

	3	1	0	3	1	-1	
Source: Stanford cs	224n	cour	se 20	019. (Chris M	Mann	ing

-0.6

-1.0

-0.5

-3.6

-0.2

0.3

-0.5 -0.9

0.3

3 1

-1 -1

0.2

-0.1

0.3 0.3

0.1

0.6 0.9

0.0

1 3 1

1 -1 -1

1.4 1.6 -1.0

0.8

1.2

0.1

Outline

Motivation CNN basics Pooling

Application Examples

Conclusions

1 Motivation

2 CNN basics Convolutions

- Examples
- Pooling
 - Examples

3 Application Examples

Pooling

- Pooling is used after convolution to reduce complexity while capturing relevant information from previous layer
- A sliding window is moved along the convolution sequence, and a single value (e.g. maximum, average) is computed for each position.

https://lena-voita.github.io/nlp_course/models/convolutional.html

- Motivation CNN basics Pooling
- Application Examples
- Conclusions

Pooling

 Average pooling computes average of all positions instead of maximum.

Motivation CNN basics Pooling

Application Examples

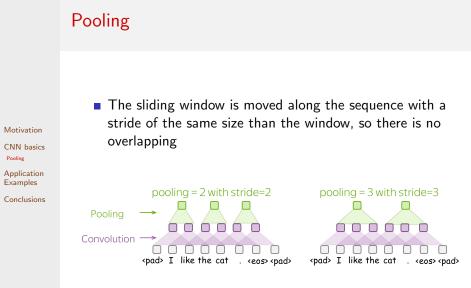
Conclusions

 k-max pooling keeps the k highest values in the sequence, producing a k dimensions vector for each position, instead of a single value

0.1	1.2	0.4	0.9	0.3	0.2	2-max	1.2	0.9
0.3	0.2	0.4	1.4	1.3	0.1	2-max	1.4	1.3
0.2	0.4	1.3	0.4	0.1	0.5	2-max	1.3	0.5
: 0.5	: 0.1	: 0.1	: 0.3	: 1.1	0.2	2-max	0.5	1.1

k-max pooling: k highest values in their original order

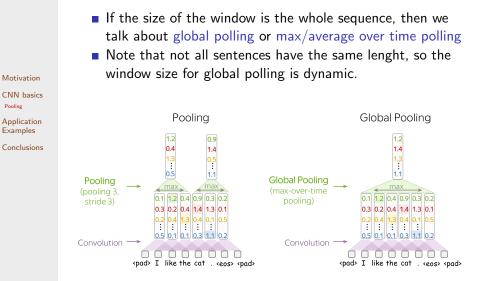
https://lena-voita.github.io/nlp_course/models/convolutional.html



https://lena-voita.github.io/nlp_course/models/convolutional.html

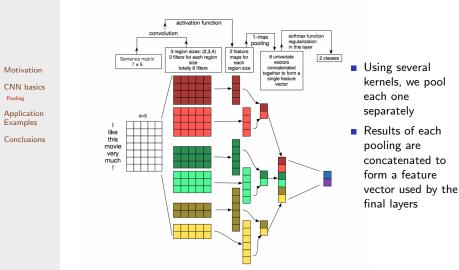
Pooling

Pooling



https://lena-voita.github.io/nlp course/models/convolutional.html

Multiple kernels



With padding = 1, kernels = 3, max pooling over time

Ø			0.0	0.0	0.	0	0.0				Ø,t,c		-0.	6	0.2
tent	ative		0.2	0.1	-0.	3	0.4				t,d,r		-1.	С	1.6
dea			0.5	0.2	-0.	3	-0.1				d,r,t		-0.	5	-0.1
read	hed		-0.1	-0.3	-0.	2	0.4				r,t,k		-3.	6	0.3
to			0.3	-0.3	0.	1	0.1				t,k,g		-0.	2	0.1
kee	p		0.2	-0.3	0.	4	0.2				k,g,c		0.	3	0.6
gov	ernme	ent	0.1	0.2	-0.	1	-0.1				g,o,(Ø	-0.	5	-0.9
ope	n		-0.4	-0.4	0.	2	0.3								
Ø			0.0	0.0	0.	0	0.0				max	р	0.	3	1.6
App	oly 3	filt	ers o	f size	3										
	3	1	2	-3		1	0	0		1		1		-1	2
	-1	2	1	-3		1	0	-1	-	1		1		0	-1
	1	1	-1	1		0	1	. 0		1		()	2	2

Motivation CNN basics Examples Application

Examples Conclusions

Source: Stanford cs224n course 2019. Chris Manning

1.4 -1.0 0.8

0.3

1.2

0.9

0.1

1.4

-1

1 3 2 1

1

1 -1

With padding = 1, kernels = 3, avg pooling over time

Ø		0.0	0.0	0.0	0.0			Ø,t,d	
tentative	e	0.2	0.1	-0.3	0.4			t,d,r	
deal		0.5	0.2	-0.3	-0.1			d,r,t	
reached		-0.1	-0.3	-0.2	0.4			r,t,k	
to		0.3	-0.3	0.1	0.1			t,k,g	
keep		0.2	-0.3	0.4	0.2			k,g,o	
governm	nent	0.1	0.2	-0.1	-0.1			g,o,Ø	
open		-0.4	-0.4	0.2	0.3				
Ø		0.0	0.0	0.0	0.0			ave p	
Apply 3	3 filt	ers o	f size	3					
3	1	2	-3		1 (0 0	1		
-1	2	1	-3		1 (0 -1	-1		

1

1

0 1

0

-0.5 -0.1-3.6 0.3 -0.2 0.1 0.3 0.6 -0.5 -0.9 -0.87 0.26 0.53 2 1 -1

-0.6

-1.0

0.2

1.6 -1.0

1.4

0.8

0.3

1.2

0.9

0.1

-1

3

Source: Stanford cs224n course 2019. Chris Manning

0

0 -1

2 2 1

Motivation CNN basics Examples

Application Examples

With padding = 1, kernels = 3, stride = 2, local max pool

Ø		0.0	0.0		0.0	0.0				Ø,t,d
tentative	e	0.2	0.1		-0.3	0.4	Ļ			t,d,r
deal		0.5	0.2		-0.3	-0.1				d,r,t
reached		-0.1	-0.3		-0.2	0.4	ł.			r,t,k
to		0.3	-0.3		0.1	0.1				t,k,g
keep		0.2	-0.3		0.4	0.2	2			k,g,o
governm	nent	0.1	0.2		-0.1	-0.1				g,o,Ø
open		-0.4	-0.4		0.2	0.3	;			Ø
Ø		0.0	0.0		0.0	0.0				
Apply 3	3 filt	ers o	fsize	e 3						Ø,t,d,r
	2 -3			0	1	1	-1	2	-1	d,r,t,k
	1 -3		-	-1	-1	1	0	-1	-1	t,k,g,o
1 1 -	1 :	1 0	1	0	1	0	2	2	1	g,o,Ø,Ø

Ø,t,d	-0.6	0.2	1.4
t,d,r	-1.0	1.6	-1.0
d,r,t	-0.5	-0.1	0.8
r,t,k	-3.6	0.3	0.3
t,k,g	-0.2	0.1	1.2
k,g,o	0.3	0.6	0.9
g,o,Ø	-0.5	-0.9	0.1
Ø	–Inf	-Inf	–Inf

Ø,t,d,r	-0.6	1.6	1.4
d,r,t,k	-0.5	0.3	0.8
t,k,g,o	0.3	0.6	1.2
g,o,Ø,Ø	-0.5	-0.9	0.1

Motivation CNN basics Examples Application Examples

With padding = 1, kernels = 3, 2-max pool over time

Ø		0.0	0.0	0.0	0.0			Ø,t,d		-0.6	
tentative	9	0.2	0.1	-0.3	0.4			t,d,r		-1.0	
deal		0.5	0.2	-0.3	-0.1			d,r,t		-0.5	
reached		-0.1	-0.3	-0.2	0.4			r,t,k		-3.6	
to		0.3	-0.3	0.1	0.1			t,k,g		-0.2	
keep		0.2	-0.3	0.4	0.2			k,g,o		0.3	
governm	ent	0.1	0.2	-0.1	-0.1			g,o,⊄)	-0.5	
open		-0.4	-0.4	0.2	0.3						
Ø		0.0	0.0	0.0	0.0			2-m a	хр	-0.2	
Apply 3	ß filt	ers o	f size	3						0.3	
3	1	2	-3		1 (0 0	1		1	-1	
-1	2	1	-3		1 (0 -1	-1		1	C)
1	1	-1	1		0 1	L O	1		0	2	

Motivation CNN basics Examples

Application Examples

Conclusions

Source: Stanford cs224n course 2019. Chris Manning

1.4 -1.0 0.8

0.3

1.2

0.9

0.1

1.4 1.2

> -1 3 1

Outline

Motivation CNN basics Application Examples Conclusions

Convolutions

- Examples
- Pooling
 - Examples

3 Application Examples

Sentence Classification

Sentence classification is a generic task that can be used for different goals, depending on the target classes.

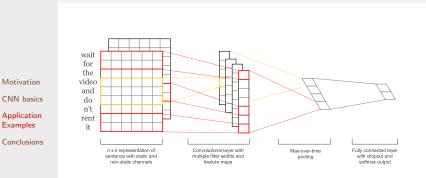
- Sentiment analysis (positive/negative/neutral)
- Q&A: Question target identification (person/place/number/...)
- Relation extraction (e.g. Drug-drug interaction detection)
- Sentence similarity (equivalent/similar/unrelated/opposite)
- Textual entailment (yes/no)
- Textual inference

. . .

(equivalent/entailment/unrelated/contradiction)

Motivation CNN basics Application Examples

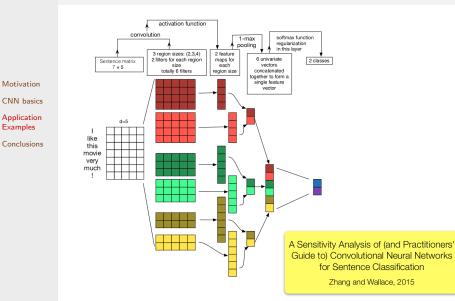
Sentence Classification



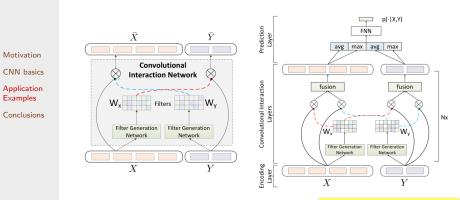
Convolutional Neural Networks for Sentence Classification

Kim, 2014

Sentence Classification

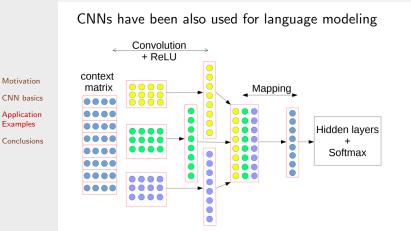


Textual Inference



Convolutional Interaction Network for Natural Language Inference Gong et al., 2018

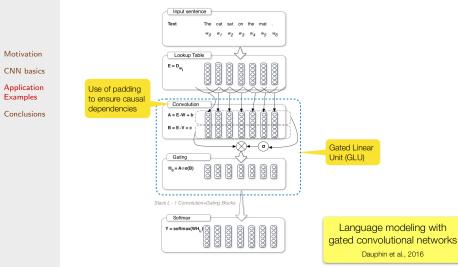
Language Modeling



Convolutional Neural Network Language Models Pham et al., 2016

Language Modeling

CNNs have been also used for language modeling



Outline

Motivation CNN basics Application Examples

Conclusions

Convolutions

1 Motivation

- Examples
- Pooling
 - Examples

3 Application Examples

Conclusions

Motivation CNN basics Application Examples

- Convolutions are local feature detectors.
- Convolutions are invariant to position.
- Stacked convolutions detect hierarchical features.
- Convolutions are fast
- Convolutions have been applied to multiple NLP tasks, including Machine Translation, Language Modeling, Text Classification, Word Representation, Textual Inference, etc.

Acknowledgements

- Motivation CNN basics Application Examples
- Conclusions

- Slides in this session are based on images and ideas from lectures by
 - Noe Casas
 - Christopher Manning