

Advanced Human Language
Technologies

Master on Artificial Intelligence

Lluís Padró
Computer Science Department – UPC
padro@cs.upc.edu

Word Embeddings

● Never ask for the meaning of a word in isolation, but only in the
context of a sentence (Frege, 1884)

● For a large class of cases... the meaning of a word is its use in
the language (Wittgenstein, 1953)

● You shall know a word by the company it keeps (Firth, 1957)
● Words that occur in similar contexts tend to have similar

meaning (Harris, 1954)

Distributional semantics hypothesis
Word Embeddings

Word Embeddings: Timeline
Word Embeddings

Word Vectors
Word Embeddings

2 methods to pretrain embeddings
● CBOW (Continuous bag-of-words)

– Train a NN that given a set of context words, learns to
predict the missing one.

● Skip-gram
– Train a NN that given a word, learns to predict likely words

in its context.

Word2Vec (Mikolov 2013)
Word Embeddings > Word2Vec

● A dense low-rank vector representing a word is
extracted from the internal representation of a
Neural Network.
– Word context words c1, c2, c3 appearing around word

 wi are used as a training example.
– The NN is trained to predict the missing word for a

given input context.
– The hidden layer input weights encode the

distribution of likely words in each context.
– Words appearing in similar contexts will have similar

hidden layer weights.
– Hidden layer weights for each word are used as

their dense vector representation

Word2Vec: CBOW
CBOW

Word Embeddings > Word2Vec > CBOW

● c : input vector, context words
V : input layer weights
hc : hidden layer state for input c

● U : hidden layer weights
z : output scores

● Softmax to convert scores to prob. distribution

Word2Vec: CBOW
CBOW

Word Embeddings > Word2Vec > CBOW

c

h

w

V

v1

c
v2 v3

zi

U

hc=V⋅c=∑
i

V i
T⋅c= ∑

i : ci=1
V i

T

zi=U i⋅hc

wi=
exp(zi)

∑
j
exp (z j)

=
exp(U i⋅hc)

∑
j
exp (U j⋅hc)

● Training: Use cross entropy of estimated probability
distribution Q(w) with respect to gold distribution P(W)

● In our case equals to minimizing the negative log-
likelihood of the target vector given the context

Word2Vec: CBOW
CBOW

Word Embeddings > Word2Vec > CBOW

c

h

w

V

v1

c
v2 v3

zi

U

CE(P ,Q) =E P [−logQ (w)]=−∑w
P(w)logQ(w)

=E P [−logQ (w)+log P(w)−logP(w)]

=E P [log
P(w)
Q (w)

]+EP [−logP(w)]

=DKL(P∥Q)+ H (P)

Loss =−∑w
P(w) logQ (w)=−1⋅logQ (wi∣c)

=−log
exp(U i⋅hc)

∑ j
exp (U j⋅hc)

=−U i⋅hc+ log∑ j
exp (U j⋅hc)

● A dense low-rank vector representing a word is
extracted from the internal representation of a
Neural Network.
– Word wi appearing near context words c1, c2, c3 is

used as a training example.
– The NN is trained to predict usual context words for

a given input word.
– The hidden layer input weights encode the usual

contexts of each input word.
– Word appearing in similar contexts will have similar

hidden layer weights.
– Hidden layer weights for each word are used as

their dense vector representation

Word2Vec: Skip-gram
Skip-gram

Word Embeddings > Word2Vec > Skip-gram

● BUT:
– The size of the vocabulary is usually large

(e.g. 10,000 words)
– If the hidden layer has, e.g. 300 dimensions,

that means 300 x 10,000 x 2 parameters to
update for each training example.

 Too high computational cost

Word2Vec: Skip-gram
Skip-gram

Word Embeddings > Word2Vec > Skip-gram

● We show the network only one target word at a
time, so the amount of parameters to update is
much smaller

 But...
● If we use only positive examples, the network will

overgeneralize and may end up assigning prob 1
to all words

 We need to introduce negative examples

Word2Vec: Skip-gram
Skip-gram

Word Embeddings > Word2Vec > Skip-gram

Skip-gram with negative sampling
● We change the task to predict whether the words belong in the same context (0 or 1)

Word Embeddings > Word2Vec > Skip-gram training

Negative examples

● This can computed very efficienty – processing millions of examples in
minutes.

● We can afford to introduce some negative examples at a resonable cost

Word Embeddings > Word2Vec > Skip-gram training

Negative examples

● We add a few negative examples for each positive pair in the dataset, with
the same input word, a non-related context word, and a 0 label.

We are contrasting the actual signal (positive
examples of neighboring words) with noise
(randomly selected words that are not neighbors),
allowing the model to learn a trade-off.

Word Embeddings > Word2Vec > Skip-gram training

Training process

1) Pre-process the training text:
● Determine model vocabulary (which words are to be included in the model,

and which will be the size of the model (number of vectors) |V|
● Decide the dimension of the embedding E. Usual values are 100, 200, 300...

2) Create two matrices:
● Embedding matrix |V|xE
● Context matrix: |V|xE

Both matrices have an entry for
each word in the vocabulary.
Both are initialized with random
values.

Word Embeddings > Word2Vec > Skip-gram training

Training process

● In each training step, we take one positive example and its associated
negative examples.

Word Embeddings > Word2Vec > Skip-gram training

Training process

● For each eaxample, we have four words:
– input word: not
– output/context words:

● thou (actual neighbor)
● aaron, taco (negative examples).

● Step 1: Look up current
embeddings
– For input word, we look up

in the Embedding matrix.
– For context words, we look up

 in the Context matrix

Word Embeddings > Word2Vec > Skip-gram training

Training process

● Step 2:
– Compute the dot product of the input word embedding with each of the context

words embeddings, obtaining a similarity value
– Use sigmod to convert these scores to probabilty-like values

Note that taco has the highest score and aaron still has the
lowest score both before and after the sigmoid operations.

Word Embeddings > Word2Vec > Skip-gram training

Training process

● Step 3:
– Compute error in the model prediction.

(subtract the sigmoid scores from the target labels)

Word Embeddings > Word2Vec > Skip-gram training

Training process

● Step 4: Update model.
Use error score to adjust the embeddings of not, thou, aaron, and taco
so that the next time the result would be closer to the target scores

Word Embeddings > Word2Vec > Skip-gram training

Training process
● After processing this example, embeddings for the words involved in this step are

slightly improved. We can proceed to the next example and repeat the process:

● Cycle through the entire dataset a number of times (or epochs).
● Finally, discard the Context matrix, and use the Embeddings matrix as our pre-

trained embeddings model

Word Embeddings > Word2Vec > Skip-gram training

● Instead of words, other units may be used:

– Phrases: Washington_Post is a newspaper
Phrases can be generated using counts, e.g.

– Characters: W a s h i n g t o n _ P o s t _ i s _ a _ n e w s p a p e r
Create an embedding for each character, word representations are
created combining its character vectors.

– Subwords: Wash #ing #ton Post is a new #spaper
Different strategies to decide what subwords are used: n-grams, Byte
Pair Encoding (BPE), Wordpiece, Sentencepiece, ...

Other methods: Not simply words
Word Embeddings > Other units

PMI=log
P(w1 ,w2)

P(w1)⋅P(w2)

● fastText: Subword (n-gram) based skip-gram.
– Embedding vector for a word w is the sum of the embeddings

of its n-grams ().
– e.g. The fastText representation of word where is the sum of

15 embedding vectors, for the n-grams:
● 3-grams: _wh, whe, her, ere, re_
● 4-grams: _whe, wher, here, ere_
● 5-grams: _wher, where, here_
● 6-grams: _where, where_
● Whole word: _where_

Other methods: fastText
Word Embeddings > fastText

3≤n≤6

GloVe: Global Vectors for Word Representation.
● Ratios of word-word co-occurrence probabilities have the

potential for encoding semantic similarity
 Xij : occurrences of word j the context of word i
 Xi : occurrences of any word in the context of word i

Other methods: GloVe
Word Embeddings > GloVe

P (j∣i)=
xij

xi

GloVe: Global Vectors for Word Representation.
● solid has a much higher co-occurrence probability with ice than

with steam

Other methods: GloVe
Word Embeddings > GloVe

GloVe: Global Vectors for Word Representation.
● gas has a much higher co-occurrence probability with steam

than with ice

Other methods: GloVe
Word Embeddings > GloVe

GloVe: Global Vectors for Word Representation.
● water has a similar (high) co-occurrence probability with both ice

and steam

Other methods: GloVe
Word Embeddings > GloVe

GloVe: Global Vectors for Word Representation.
● fashion has a similar (low) co-occurrence probability with both
ice and steam

Other methods: GloVe
Word Embeddings > GloVe

GloVe: Global Vectors for Word Representation.
● Training: Learn two vectors for each word, such that we have a

multinomial logistic regression of the the co-ocurrence probability

● We can solve it minimizing :

● To reduce noise introduced by rare co-occurrences, the loss is actualy
weigthed:
 where f(Xij) is a weight in [0,1] that grows
 with the co-occurrence frequency Xij

Other methods: GloVe
Word Embeddings > GloVe

wi⋅~w j≈log P (j∣i)

L=∑i , j∈V
(wi⋅~w j−log P (j∣i))2

L=∑i , j∈V
f (X ij)(w i⋅~w j−log P (j∣i))2

GloVe: Global Vectors for Word Representation.
● Stochastic gradient descent (SGD) is used to minimize the squared

error between the dot product of word vectors and the logarithm of
their co-occurrence count.

● Once the model is trained, we have 2 vectors for each word
– : vector representing word i as the center word
– : vector representing word i as a context word

● Either one of them (or their sum) are used as the word
representation vector.

Other methods: GloVe
Word Embeddings > GloVe

wi

w i+~wi

~wi

GloVe: Global Vectors for Word Representation.
● Stochastic gradient descent (SGD) is used to minimize the squared

error between the dot product of word vectors and the logarithm of
their co-occurrence count.

● Once the model is trained, we have 2 vectors for each word
– : vector representing word i as the center word
– : vector representing word i as a context word

● Either one of them (or their sum) are used as the word
representation vector.

Other methods: GloVe
Word Embeddings > GloVe

wi

w i+~wi

~wi

No neural net involved

GloVe: Global Vectors for Word Representation.

● GloVe captures both local and global statistical information from text.

● More effective for analogy tasks due to its explicit modeling of word
relationships.

● Often results in better embeddings for uncommon words compared to
Word2Vec.

Other methods: GloVe
Word Embeddings > GloVe

Embedding Space
Word Embeddings > Visualization

 Source: Ali Basirat 2018, Principal Word Vectors, PhD Thesis, Uppsala Univ.

Distributional
semantics methods
produce close
vectors for words
occurring in similar
contexts

Moreover, word embeddings
keep similar distance
between words with the same
semantic relationship.

Embedding Space
Word Embeddings > Visualization

Word embeddings also keep
similar distances between
words with the same
morphological relationship.

Embedding Space
Word Embeddings > Visualization

● These spatial relations can be modeled and exploited using vector
operations:
– [wednesday] + ([tuesday] – [monday]) = [thursday]
– [three] + ([two] – [one]) = [four]
– [three] + ([2] – [two]) = [3]
– [lives] + ([knew] – [knows]) = [lived]
– [this] + ([those] – [that]) = [these]
– [Poland] + ([French] – [France]) = [Polish]
– [uncle] + ([woman] – [man]) = [aunt]

Embedding Space
Word Embeddings > Visualization

● Intrinsic Evaluation
– Use embeddings for tasks that can be directly evaluated

● Similarity:
Find closest word to w:

● Analogy:
 wa is to wb like wc is to <?>
Find wd that is the closest to wc+(wb-wa)

● Extrinsic Evaluation
– Use embeddings in downstream task (translation, sentiment

analysis, text classification, etc.) and evaluate impact on task
performance.

Embedding evaluation
Word Embeddings > Evaluation

cos(w1 ,w 2)=
w1⋅w2

|w1||w2|

● Compositionality: Word embeddings do not encode composited meanings such as not
happy↔sad or hot dog↔sausage, since they rely on statistical co-occurrence rather than
syntactic structure or adjacency.

● Polysemy: Words like bat (animal vs. sports equipment) or apple (fruit vs. company) have a
single vector in traditional embeddings, making it impossible to distinguish meanings.
Contextual embeddings (e.g., BERT, ELMo) address this issue but require a different model
structure. [see session 8.Transformers]

● Rare/unseen words: Traditional embeddings assign fixed vectors to words seen during
training, meaning rare or unseen words are not well-represented. Subword-based models like
fastText aim to address this, but limitations still exist.

● Hierarchical/Ontological Relationships: Word embeddings do not naturally capture
strict hierarchical structures like dog→mammal→animal or part-whole relationships like
wheel→car.

● Causal/Temporal Relationships: They do not capture cause-effect relationships, such
as smoking→cancer or winter→cold.

Limitations
Word Embeddings > Limitations

● The same word may have different meanings in different
contexts:
– Please type everything in lowecase
– What type of food do you like?

● Static word embeddings provide a unique representation for
each word, regardless of the context. Polysemous words get
mixed representations.

● Contextual embeddings provide different representations for
the same word in different contexts.

Contextual Embeddings
Word Embeddings > Contextual Embeddings

● Contextual embeddings are trained (similarly to static embeddings)
on a task that requires learning word representations.

● Static word embedding models are simply a vector with the hidden
layer weights for each word.

● Contextual word embedding models are dynamic, and produce on-
the-fly the embeddings for each word in the sentence.

● This pre-trained model can be:
– Straightforwardly used to compute embeddings which will be input for

another task.
– Fine-tuned to perform a different task.

Contextual Embeddings
Word Embeddings > Contextual Embeddings

Unlike static embeddings, contextual embeddings generate different
word vectors based on surrounding context.

● ELMo (2018) – BiLSTM-based, captures deep contextual & morphological info.
● BERT (2019) – Transformer-based, deep bidirectional representations (MLM &

NSP).
● XLNet (2019) – Improves BERT using permutation-based training.
● RoBERTa (2019) – Optimized BERT with more data & no NSP.
● T5 (2020) – Encoder-decoder model, unifies NLP tasks in a text-to-text format.
● GPT (2018–2023) – Transformer decoder (unidirectional), excels in generative

tasks.

Contextual Embeddings
Word Embeddings > Contextual Embeddings

Acknowledgements

● Slides in this session are based on ideas and images from
lectures by:
– Marta Ruiz Costa-jussà
– José Adrián Rodríguez Fonollosa
– Salvador Medina Herrera

	Diapositiva 1
	Diapositiva 2
	Diapositiva 3
	Diapositiva 4
	Diapositiva 5
	Diapositiva 6
	Diapositiva 7
	Diapositiva 8
	Diapositiva 9
	Diapositiva 10
	Diapositiva 11
	Diapositiva 12
	Diapositiva 13
	Diapositiva 14
	Diapositiva 15
	Diapositiva 16
	Diapositiva 17
	Diapositiva 18
	Diapositiva 19
	Diapositiva 20
	Diapositiva 21
	Diapositiva 22
	Diapositiva 23
	Diapositiva 24
	Diapositiva 25
	Diapositiva 26
	Diapositiva 27
	Diapositiva 28
	Diapositiva 29
	Diapositiva 30
	Diapositiva 31
	Diapositiva 32
	Diapositiva 33
	Diapositiva 34
	Diapositiva 35
	Diapositiva 36
	Diapositiva 37
	Diapositiva 38
	Diapositiva 39
	Diapositiva 40
	Diapositiva 41
	Diapositiva 42

