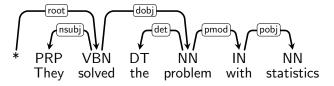
Master in Artificial Intelligence

Dependency Parsing

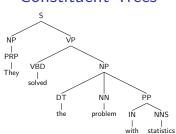
Advanced Human Language Technologies Dependency Parsing

Outline

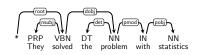

Dependency Parsing

- 1 Dependency Parsing
 - Dependency Trees
 - Arc-factored Dependency Parsing
 - Parsing Projective Structures
 - Parsing non-Projective Structures
 - Transition-Based parsers

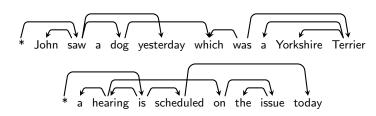
Outline


- 1 Dependency Parsing
 - Dependency Trees
 - Arc-factored Dependency Parsing
 - Parsing Projective Structures
 - Parsing non-Projective Structures
 - Transition-Based parsers

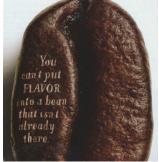
Dependency Trees


Theories of Syntactic Structure

Constituent Trees

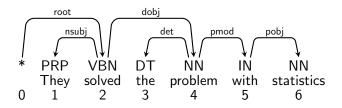

- Main element: constituents (or phrases, or bracketings)
- Constituents = abstract linguistic units
- Focus on word order
- Builds nested trees

Dependency Trees

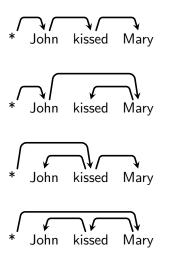


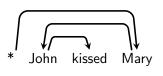
- Main element: dependency
- Focus on relations between words
- Nicely handles free word order (fish the cat eats*) and non-projectivity (John saw the dog yesterday which was a Yorkshire Terrier)
- Builds dependency graphs

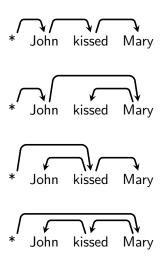
Non-projective dependency trees

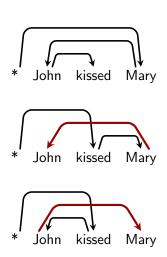


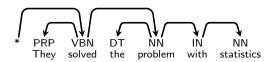
Dependency Parsing Dependency Trees


©Starbuck's 2013

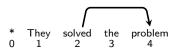

Dependency trees


- * is a special root symbol
- Each dependency is a tuple (h, m, l) where
 - h is the index of the head word (root is 0)
 - lacksquare m is the index of the modifier word
 - l is a dependency label
 - e.g.: (0, 2, root), (2, 1, nsubj), (2, 5, dobj), (4, 3, det), (4, 5, pmod), (5, 6, pobj)
- Sometimes we just consider unlabeled dependencies


Dependency trees for "John kissed Mary"



Dependency trees for "John kissed Mary"



Conditions on Dependency Structures

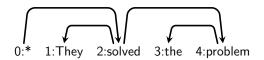
- y is a dependency tree if:
 - (a) Each non-root token has exactly an incoming arc (i.e. one parent)
 - (b) The graph is connected
 - (c) There are no cycles
 - That is, dependency arcs form a directed tree rooted at *
- y is a projective dependency tree if:
 - Is a dependency tree
 - There are no crossing dependencies
- Note that a projective tree is also in the non-projective set
 -must be read as non-necessarily-projective

Some Notation

Dependency Parsing Dependency Trees

Given a sentence with n words:

 ${\mathcal D}$ is the set of all possible dependencies that can be assigned to the sentence. Eg.


$$\mathcal{D} = \left\{ \begin{array}{c} (0,1), (0,2), (0,3), (0,4), (1,2), (1,3), (1,4) \\ (2,1), (2,3), (2,4), (3,1), (3,2), (3,4) \\ (4,1), (4,2), (4,3) \end{array} \right\}$$

- $lue{y}$ is a valid parse for s if:
 - $\mathbf{y} \subseteq \mathcal{D}$
 - y is a dependency tree
- $\mathcal{Y} \subseteq 2^{\mathcal{D}}$ is the set of all valid dependency trees for the sentence

Outline

- 1 Dependency Parsing
 - Dependency Trees
 - Arc-factored Dependency Parsing
 - Parsing Projective Structures
 - Parsing non-Projective Structures
 - Transition-Based parsers

Probabilistic Arc-Factored Dependency Parsing

Dependency Parsing Arc-factored Dependency Parsing

- Assume we have $p(\text{modifier word} \mid \text{head word})$
- In a probabilistic arc-factored model:

$$p(\mathbf{x}, \mathbf{y}) = p(\mathbf{x}, (*, 2), (2, 1), (2, 4), (4, 3))$$

$$= p(\mathbf{x}_{2}, (*, 2)) \times p(\mathbf{x}_{1}, (2, 1), (2, 4), (4, 3) | \mathbf{x}_{2}, (*, 2))$$

$$= p(*) \times p(\mathbf{x}_{2} | *) \times p(\mathbf{x}_{1}, (2, 1), (2, 4), (4, 3) | \mathbf{x}_{2}, (*, 2))$$

$$= \dots$$

$$= p(\mathbf{x}_{2} | *) \times p(\mathbf{x}_{1} | \mathbf{x}_{2}) \times p(\mathbf{x}_{4} | \mathbf{x}_{2}) \times p(\mathbf{x}_{3} | \mathbf{x}_{4})$$

$$= \prod_{(h,m) \in \mathbf{y}} p(\mathbf{x}_{m} | \mathbf{x}_{h})$$

Note that we assume independence between arcs

Towards Linear Arc-Factored Dependency Parsing

Consider an arc-factored probabilistic model

$$p(\mathbf{x}, \mathbf{y}) = \prod_{(h,m) \in \mathbf{y}} p(\mathbf{x}_m \mid \mathbf{x}_h)$$

Prediction is:

Dependency

Parsing

Arc-factored
Dependency Parsing

A CRF for Arc-Factored Dependency Parsing

lacksquare A log-linear distribution of trees f y given f x

$$p(\mathbf{y} \mid \mathbf{x}; \mathbf{w}) = \frac{\exp(\sum_{(h,m,l) \in \mathbf{y}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, h, m, l))}{Z(\mathbf{x}; \mathbf{w})}$$

- ${\bf f}({\bf x},h,m)$ is a vector of d features of (h,m,l) assigned to x
- $\mathbf{w} \in \mathbb{R}^d$ are the parameters of the model
- $Z(\mathbf{x}; \mathbf{w}) = \sum_{\mathbf{y} \in \mathcal{Y}} \exp(\sum_{(h,m,l) \in \mathbf{y}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, h, m, l))$
- Prediction is linear:

$$\underset{\mathbf{y} \in \mathcal{Y}^*}{\operatorname{argmax}} P(\mathbf{y}|\mathbf{x}; \mathbf{w}) = \underset{\mathbf{y} \in \mathcal{Y}^*}{\operatorname{argmax}} \frac{\exp(\sum_{(h, m, l) \in \mathbf{y}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, h, m, l))}{Z(\mathbf{x}; \mathbf{w})}$$
$$= \underset{\mathbf{y} \in \mathcal{Y}^*}{\operatorname{argmax}} \sum_{(h, m, l) \in \mathbf{y}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, h, m, l)$$

Features in Arc-Factored Dependency Parsing

 $\mathbf{f}(\mathbf{x},l,h,m)$: a vector of features of (h,m,l) assigned to x

- As in PoS tagging or NERC, we typically use indicator features
- Templates in (McDonald et al 2005):

word features						
h-word, h -pos						
h-word						
h-pos						
m-word, m -pos						
m-word						
m-pos						

dependency features
$h ext{-word}$, $h ext{-pos}$, $m ext{-word}$, $m ext{-pos}$
$h ext{-pos},\ m ext{-word},\ m ext{-pos}$
$h ext{-}word,\ m ext{-}word,\ m ext{-}pos$
$h ext{-word},\ h ext{-pos},\ m ext{-pos}$
$h ext{-word}$, $h ext{-pos}$, $m ext{-word}$
$h ext{-}word,\ m ext{-}word$
h-pos, m -pos

Example: (feature template + dependency direction)

$$\mathbf{f}_j(\mathbf{x}, h, m, l) = \left\{ \begin{array}{ll} 1 & \text{if } \operatorname{word}(h) = \mathit{solve} \text{ and } \operatorname{word}(m) = \mathit{problem} \\ & \text{and } l = \mathit{dobj} \text{ and } h < m \\ 0 & \text{otherwise} \end{array} \right.$$

A CRF for Arc-Factored Dependency Parsing

 $p(\mathbf{y} \mid \mathbf{x}; \mathbf{w}) = \frac{\exp(\sum_{(h, m, l) \in \mathbf{y}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, h, m, l))}{Z(\mathbf{x}; \mathbf{w})}$

■ Parameter estimation: Learn parameters w given training data

$$\left\{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)}) \right\}$$

Decoding: predict the best dependency tree for x

$$\underset{\mathbf{y} \in \mathcal{Y}}{\operatorname{argmax}} P(\mathbf{y}|\mathbf{x}; \mathbf{w})$$

when

- \mathbf{y} is the set of projective trees for \mathbf{x}
- lacksquare $\mathcal Y$ is the set of non-projective trees for $\mathbf x$

Parameter Estimation: CRFs for Parsing

...analogous to CRFs for Tagging

■ Goal: Estimate w given a training set

$$\left\{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)}) \right\}$$

Define the conditional log-likelihood of the data:

$$L(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} \log P(\mathbf{y}^{(k)} | \mathbf{x}^{(k)}; \mathbf{w})$$

 $L(\mathbf{w})$ measures how well \mathbf{w} explains the data. A good value for \mathbf{w} will give a high value for $P(\mathbf{y}^{(k)}|\mathbf{x}^{(k)};\mathbf{w})$ for all training examples $k=1\ldots m$.

■ We want \mathbf{w} that maximizes $L(\mathbf{w})$

Dependency Parsing

Arc-factored Dependency Parsing

Learning the Parameters of a CRF

... analogous to CRFs for Tagging

Consider a regularized objective:

$$\mathbf{w}^* = \operatorname*{argmax}_{\mathbf{w} \in \mathbb{R}^D} L(\mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||^2$$

where

- The first term is the log-likelihood of the data
- The second term is a regularization term, it penalizes solutions with large norm
- $flue{\lambda}$ is a parameter to control the trade-off between fitting the data and model complexity

Learning the Parameters of a CRF

...analogous to CRFs for Tagging

Find

Dependency Parsing

Arc-factored Dependency Parsing

$$\mathbf{w}^* = \operatorname*{argmax}_{\mathbf{w} \in \mathbb{R}^D} L(\mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||^2$$

- In general there is no analytical solution to this optimization
- We use iterative techniques, i.e. gradient-based optimization
 - 1 Initialize $\mathbf{w} = \mathbf{0}$
 - **2** Take derivatives of $L(\mathbf{w}) \frac{\lambda}{2} ||\mathbf{w}||^2$, compute gradient
 - f 3 Move f w in steps proportional to the gradient
 - 4 Repeat steps 2 and 3 until convergence

Computing the gradient

...analogous to CRFs for Tagging

Dependency Parsing Arc-factored Dependency Parsing

$$\frac{\partial L(\mathbf{w})}{\partial \mathbf{w}_{j}} = \frac{1}{m} \sum_{k=1}^{m} \mathbf{f}_{j}(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})$$
$$- \sum_{k=1}^{m} \sum_{\mathbf{y} \in \mathcal{Y}^{*}} P(\mathbf{y} | \mathbf{x}^{(k)}; \mathbf{w}) \mathbf{f}_{j}(\mathbf{x}^{(k)}, \mathbf{y})$$

where

$$\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{(h, m, l) \in \mathbf{y}} \mathbf{f}_{j}(\mathbf{x}, h, m, l)$$

- First term: observed mean feature value
- Second term: expected feature value under current w

Computing the gradient

... analogous to CRFs for Tagging

■ The first term is easy to compute, by counting explicitly

$$\frac{1}{m} \sum_{k=1}^{m} \sum_{(h,m,l) \in \mathbf{y}^{(k)}} \mathbf{f}_j(\mathbf{x}, h, m, l)$$

■ The second term is more involved,

$$\sum_{k=1}^{m} \sum_{\mathbf{y} \in \mathcal{Y}} P(\mathbf{y}|\mathbf{x}^{(k)}; \mathbf{w}) \sum_{(h,m,l) \in \mathbf{y}} \mathbf{f}_{j}(\mathbf{x}^{(k)}, h, m, l)$$

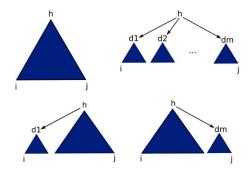
because it sums over all trees $\mathbf{y} \in \mathcal{Y}$

■ There exist efficient algorithms for summing over \mathcal{Y} , both for projective and non-projective sets of trees

Dependency Parsing Arc-factored

Dependency Parsing

Outline

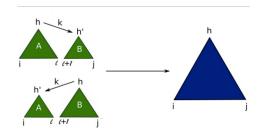

Dependency Parsing Parsing Projective Structures

- 1 Dependency Parsing
 - Dependency Trees
 - Arc-factored Dependency Parsing
 - Parsing Projective Structures
 - Parsing non-Projective Structures
 - Transition-Based parsers

Parsing Projective Structures (I)

Any projective tree can be written as the combination of:

- two smaller adjacent projective trees and
- a dependency connecting their roots

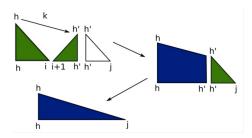


Dependency Parsing Parsing Projective

Structures

Parsing Projective Structures (II)

- The algorithm is a variation of CKY
- lacksquare $\pi[i,j,h]$: score of best dependency tree from i to j with head h


$$\pi[i,j,h] = \max_{\substack{i \le l < j \\ 1 \le k \le K}} \left\{ \max_{\substack{l < h' \le j \\ i \le h' \le l}} \pi[i,l,h] + \pi[l+1,j,h'] + \mathbf{w} \cdot \mathbf{f}(\mathbf{x},h,h',k) \right.,$$
$$\max_{\substack{i \le h' \le l \\ i \le h' \le l}} \pi[i,l,h'] + \pi[l+1,j,h] + \mathbf{w} \cdot \mathbf{f}(\mathbf{x},h,h',k) \right. \}$$

$$\blacksquare \text{ Cost: } O(Kn^5)$$

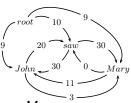
Dependency Parsing Parsing Projective Structures

Parsing Projective Structures (III)

- (Eisner 1996), (Eisner 2000): an algorithm in $O(Kn^3)$
- Main idea: split constituents in half so that heads are at the boundary

Dependency Parsing Parsing Projective Structures

Outline


Dependency Parsing Parsing non-Projective Structures

1 Dependency Parsing

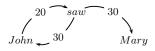
- Dependency Trees
- Arc-factored Dependency Parsing
- Parsing Projective Structures
- Parsing non-Projective Structures
- Transition-Based parsers

Parsing Non-Projective Structures

 (McDonald et al 2005): non-projective parsing as maximum-spanning trees, using the Chu-Liu-Edmonds algorithm

- Example for John saw Mary
- Build a graph:
 - Nodes are tokens (plus the root token)
 - A weighted directed edge between any two vertices

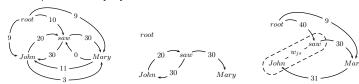
$$w_{i,j} = \max_{1 \le k \le K} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, j, k)$$


Dependency Parsing

Parsing non-Projective Structures

Chu-Liu-Edmonds, example

Dependency Parsing


Parsing non-Projective Structures ■ Step 1: for each word, find highest-scoring incoming edge

- If we get a tree, we have found the Minimum Spanning Tree (MST)
- If not, there has to be a cycle

Chu-Liu-Edmonds, example

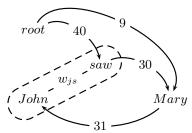
Step 2: identify cycle and contract it into a new node c

- Weight of edges between c and other nodes i:
 - $lackbox{ } c
 ightarrow i$: max weight of any node in c to i c
 ightarrow Mary:

$$\max(John \to Mary, saw \to Mary) = \max(3, 30) = \textbf{30}$$

■ $i \rightarrow c$: max weight of tree with root i that spans c $root \rightarrow c$:

$$\max(root \rightarrow saw \rightarrow John, root \rightarrow John \rightarrow saw) = \\ = \max(10 + 30, 9 + 20) = 40$$

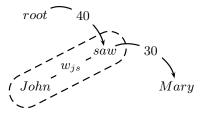

$$Mary \rightarrow c$$
:
 $\max(Mary \rightarrow saw \rightarrow John, Mary \rightarrow John \rightarrow saw) =$
 $= \max(0 + 30, 11 + 20) = 31$

Dependency Parsing

non-Projective Structures

Chu-Liu-Edmonds

■ Theorem (Leonidas 2003): the weight of the MST on the contracted graph is equal to the weight of the MST in the original graph


Recursively call the algorithm on the new graph

Dependency Parsing

non-Projective Structures

Chu-Liu-Edmonds

After one recursive call we get

- It is a tree! (if not, contract and recurse)
- The original MST can be reconstructued by undoing the contraction operations (see (McDonald et al 2005) for details)
- Cost: $O(n^3)$ (naive), $O(n^2)$ (improved)

Dependency Parsing

Parsing non-Projective Structures

Outline

Dependency Parsing Transition-Based parsers

1 Dependency Parsing

- Dependency Trees
- Arc-factored Dependency Parsing
- Parsing Projective Structures
- Parsing non-Projective Structures
- Transition-Based parsers

Transition-Based parsers

Dependency Parsing Transition-Based parsers

- Inspired on shift-reduce parsers.
- The parser has a current state or configuration consisting of a stack (of tokens processed and tree built so far) and a buffer (tokens remaining).
- At each step, a transition is chosen to alter the configuration and move.
- Parsing stops when a final configuration is reached
- No backtracking, cost is $\mathcal{O}(n)$

Shift-Reduce Parsing Example

							telescope
וט	NN	Vt	וט	IVIV	IIV	וט	ININ
	Stack	Buffe	r			Transition	
		DT NN Vt DT NN IN DT NN					

Dependency Parsing

Transition-Based parsers

Shift-Reduce Parsing Example

							telescope
DΤ	NN	Vt	DΤ	NN	IN	DΙ	NN
	Stack		Transition				
		DT N	IN Vt [I NN TC	N	shift	

Dependency Parsing

Transition-Based parsers

		woman NN							telescope NN
		Stack	Buffe	r				Tr	ansition
_	DT NN Vt DT NN IN DT NN DT NN Vt DT NN IN DT NN						sh	ift	

Dependency Parsing

	woman NN							telescope NN
_	Stack	Buffe	r				Tr	ansition
_	DT	DT N	IN Vt [/t DT [I NN TC NN NN D	IN DT N DT NN	IN	sh sh	ift ift

Dependency Parsing

The	woman	saw	the	man	with	the	telescope
DT	NN	Vt	DT	NN	IN	DT	NN
	Stack	Buffe	r				Transition
		DT N	IN Vt [I NN TC	IN DT N	IN :	shift
				NN IN D			shift
	DT NN	Vt D	T NN I	N DT N	IN		

Dependency Parsing

The	woman	saw	the	man	with	the	e telescope	
DT	NN	Vt	DT	NN	IN	D	T NN	
	Stack	Buffe	r				Transition	
					IN DT N	IN	shift	
	DT	NN V	/t DT I	NN IN D	T NN		shift	
	DT NN	Vt D	T NN I	N DT N	IN		reduce NP→DT NI	N

Dependency Parsing

The DT					with IN		telescope NN
	Stack	Buffe	r			7	Fransition
DT NN Vt DT NN IN DT NN							hift
	DT	NN V	t DT l	NN IN D	T NN	S	hift
	DT NN	Vt D	T NN I	N DT N	N	r	educe NP \rightarrow DT NN
	NP	Vt D	T NN I	N DT N	N		

Dependency Parsing Transition-Based

The DT	woman NN				with IN		telescope NN
	Stack	Buffe	r				Transition
DT NN Vt DT NN IN DT NN						N :	shift
	DT	NN V	t DT l	NN IN D	T NN		shift
DT NN Vt DT NN IN DT NN							reduce NP \rightarrow DT NN
	NP	Vt D	T NN I	N DT N	N		shift

Dependency Parsing Transition-Based

The DT	woman NN				with IN		telescope NN
	Stack	Buffe	r			1	Transition
		DT N	IN Vt [I NN TC	IN DT N	IN s	hift
	DT	NN V	t DT ľ	NN IN D	NN TO	S	hift
	DT NN	Vt D	T NN I	N DT N	IN	r	educe NP \rightarrow DT NN
	NP	Vt D	T NN I	N DT N	IN	S	hift
	NP Vt	DT N	IN IN E	NN TC			

Dependency Parsing Transition-Based

The DT	woman NN				with IN		telescope NN
	Stack	Buffe	r			Т	Transition
		DT N	IN Vt [I NN TC	N DT N	N s	hift
	DT	NN V	t DT ľ	NN IN D	T NN	s	hift
	DT NN	Vt D	T NN I	N DT N	N	r	educe NP \rightarrow DT NN
	NP	Vt D	T NN I	N DT N	N	S	hift
	NP Vt	DT N	IN IN [OT NN		S	hift

Dependency Parsing Transition-Based

The woman saw the man with the telescope DT NN ۷t DT NNIN DT NN Stack Buffer Transition DT NN Vt DT NN IN DT NN shift DT NN V+ DT NN IN DT NN shift DT NN Vt DT NN IN DT NN reduce NP→DT NN NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN

Dependency Parsing Transition-Based

The woman saw the man with the telescope DT NN ۷t DT NNIN DT NN Stack Buffer Transition DT NN Vt DT NN IN DT NN shift DT NN V+ DT NN IN DT NN shift DT NN Vt DT NN IN DT NN reduce NP→DT NN NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift

Dependency Parsing Transition-Based

The woman the man with the telescope saw DT NN ۷t DT NNIN DT NN Stack Buffer Transition DT NN Vt DT NN IN DT NN shift DT NN V+ DT NN IN DT NN shift DT NN Vt DT NN IN DT NN reduce NP→DT NN NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN

Dependency Parsing Transition-Based

The woman the man with the telescope saw DT NN ۷t DT NNIN DT NN Stack Buffer Transition DT NN Vt DT NN IN DT NN shift DT NN V+ DT NN IN DT NN shift DT NN Vt DT NN IN DT NN reduce NP→DT NN NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN reduce NP→DT NN

Dependency Parsing Transition-Based

The woman the man with the telescope saw DT NN ۷t DT NNIN DT NN Buffer Transition Stack DT NN Vt DT NN IN DT NN shift DT NN V+ DT NN IN DT NN shift DT NN Vt DT NN IN DT NN reduce NP→DT NN NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP V_t DT NN IN DT NN reduce NP→DT NN NP Vt NP IN DT NN

Dependency Parsing Transition-Based

The woman the man with the telescope saw DT NN ۷t DT NNIN DT NN Buffer Transition Stack DT NN Vt DT NN IN DT NN shift DT NN V+ DT NN IN DT NN shift DT NN Vt DT NN IN DT NN reduce NP→DT NN NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP V_t DT NN IN DT NN reduce NP→DT NN *reduce VP→Vt NP NP Vt NP IN DT NN

Dependency Parsing

The woman the man with the telescope saw DT NN ۷t DT NNIN DT NN Buffer Transition Stack DT NN Vt DT NN IN DT NN shift DT NN V+ DT NN IN DT NN shift DT NN Vt DT NN IN DT NN reduce NP→DT NN NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN reduce NP→DT NN *reduce VP→Vt NP NP Vt NP IN DT NN NP VP IN DT NN

Dependency Parsing Transition-Based

The the man with the telescope woman saw DT NN ۷t DT NNIN DT NN Buffer Transition Stack DT NN Vt DT NN IN DT NN shift DT NN V+ DT NN IN DT NN shift DT NN Vt DT NN IN DT NN reduce NP→DT NN NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP V_t DT NN IN DT NN reduce NP→DT NN NP Vt NP IN DT NN *reduce VP→Vt NP NP VP IN DT NN shift

Dependency Parsing Transition-Based

The the man with the telescope woman saw DT NN ۷t DT NNIN DT NN Buffer Transition Stack DT NN Vt DT NN IN DT NN shift DT NN V+ DT NN IN DT NN shift DT NN Vt DT NN IN DT NN reduce NP→DT NN NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN reduce NP→DT NN NP Vt NP IN DT NN *reduce VP→Vt NP NP VP IN DT NN shift NP VP IN DT NN

Dependency Parsing Transition-Based

The the man with the telescope woman saw DT NN ۷t DT NNIN DT NN Buffer Transition Stack DT NN Vt DT NN IN DT NN shift DT NN V+ DT NN IN DT NN shift DT NN Vt DT NN IN DT NN reduce NP→DT NN NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN reduce NP→DT NN NP Vt NP IN DT NN *reduce VP→Vt NP NP VP IN DT NN shift NP VP IN DT NN shift

Dependency Parsing Transition-Based

Parsers

The the man with the telescope woman saw DT NN ۷t DT NNIN DT NN Buffer Transition Stack DT NN Vt DT NN IN DT NN shift DT NN V+ DT NN IN DT NN shift DT NN Vt DT NN IN DT NN reduce NP→DT NN NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN reduce NP→DT NN NP Vt NP IN DT NN *reduce VP→Vt NP NP VP IN DT NN shift NP VP IN DT NN shift NP VP IN DT NN

Dependency Parsing Transition-Based

Transition-B parsers

The the man with the telescope woman saw DT NN ۷t DT NNIN DT NN Buffer Transition Stack DT NN Vt DT NN IN DT NN shift DT NN V+ DT NN IN DT NN shift DT NN Vt DT NN IN DT NN reduce NP→DT NN NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN reduce NP→DT NN NP Vt NP IN DT NN *reduce VP→Vt NP NP VP IN DT NN shift NP VP IN DT NN shift NP VP IN DT NN shift

Dependency Parsing Transition-Based

The the man with the telescope woman saw DT NN ۷t DT NNIN DT NN Buffer Transition Stack DT NN Vt DT NN IN DT NN shift DT NN V+ DT NN IN DT NN shift DT NN Vt DT NN IN DT NN reduce NP→DT NN NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN reduce NP→DT NN NP Vt NP IN DT NN *reduce VP→Vt NP NP VP IN DT NN shift NP VP IN DT NN shift NP VP IN DT NN shift NP VP IN DT NN

Dependency Parsing

The wor	nan saw	the	man	with	the	telescope
DT NN	Vt	DT	NN	IN	DT	NN
S	Stack Buffe	er			Tr	ansition
	DT	NN Vt [I NN TC	IN DT N	N sh	ft
	DT NN	Vt DT I	NN IN D	T NN	shi	ft
DT	NN Vt D	T NN T	N DT N	IN	red	duce NP \rightarrow DT NN
	NP Vt D	T NN T	N DT N	IN	sh	ft
N	P Vt DT	NN IN [NN TC		sh	ft
NP Vt	t DT NN	IN DT I	NN		sh	ft
NP Vt DT	NN IN D	NN TO			red	duce NP→DT NN
NP V	t NP IN D	NN TO			*re	educe VP→Vt NP
NF	P VP IN D	NN TO			shi	ft
NP V	P IN DT	NN			shi	ft
NP VP IN	I DT NN				shi	ft
NP VP IN DT	NN				red	duce NP \rightarrow DT NN

Dependency Parsing Transition-Based parsers

The the man with the telescope woman saw DT NN ۷t DT NNIN DT NN Stack Buffer Transition DT NN V+ DT NN IN DT NN shift DT NN V+ DT NN IN DT NN shift DT NN Vt DT NN IN DT NN reduce NP→DT NN NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN reduce NP→DT NN NP Vt NP IN DT NN *reduce VP→Vt NP NP VP IN DT NN shift NP VP IN DT NN shift NP VP IN DT NN shift NP VP IN DT NN reduce NP→DT NN NP VP IN NP

Dependency Parsing

The the man with the telescope woman saw DT NN ۷t DT NNIN DT NN Stack Buffer Transition DT NN V+ DT NN IN DT NN shift DT NN V+ DT NN IN DT NN shift DT NN Vt DT NN IN DT NN reduce NP→DT NN NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN reduce NP→DT NN NP Vt NP IN DT NN *reduce VP→Vt NP NP VP IN DT NN shift NP VP IN DT NN shift NP VP IN DT NN shift NP VP IN DT NN reduce NP→DT NN NP VP IN NP reduce PP→IN NP

Dependency Parsing

The the man with the telescope woman saw DT NN ۷t DT NNIN DT NN Stack Buffer Transition DT NN V+ DT NN IN DT NN shift DT NN V+ DT NN IN DT NN shift DT NN Vt DT NN IN DT NN reduce NP→DT NN NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN reduce NP→DT NN NP Vt NP IN DT NN *reduce VP→Vt NP NP VP IN DT NN shift NP VP IN DT NN shift NP VP IN DT NN shift NP VP IN DT NN reduce NP→DT NN NP VP IN NP reduce PP→IN NP NP VP PP

Dependency Parsing

The the with the telescope woman saw man DT NN ۷t DT NNIN DT NN Stack Buffer Transition DT NN V+ DT NN IN DT NN shift DT NN V+ DT NN IN DT NN shift DT NN Vt DT NN IN DT NN reduce NP→DT NN NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN reduce NP→DT NN NP Vt NP IN DT NN *reduce VP→Vt NP NP VP IN DT NN shift NP VP IN DT NN shift NP VP IN DT NN shift NP VP IN DT NN reduce NP→DT NN NP VP IN NP reduce PP→IN NP NP VP PP reduce VP→VP PP

Dependency Parsing Transition-Based parsers

The the with the telescope woman saw man DT NN ۷t DT NNIN DT NN Stack Buffer Transition DT NN V+ DT NN IN DT NN shift DT NN V+ DT NN IN DT NN shift DT NN Vt DT NN IN DT NN reduce NP→DT NN NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN reduce NP→DT NN NP Vt NP IN DT NN *reduce VP→Vt NP NP VP IN DT NN shift NP VP IN DT NN shift NP VP IN DT NN shift NP VP IN DT NN reduce NP→DT NN NP VP IN NP reduce PP→IN NP NP VP PP reduce VP→VP PP NP VP

Dependency Parsing Transition-Based

The the with the telescope woman saw man DT NN ۷t DT NNIN DT NN Buffer Stack Transition DT NN V+ DT NN IN DT NN shift DT NN V+ DT NN IN DT NN shift DT NN Vt DT NN IN DT NN reduce NP→DT NN NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN shift NP Vt DT NN IN DT NN reduce NP→DT NN NP Vt NP IN DT NN *reduce VP→Vt NP NP VP IN DT NN shift NP VP IN DT NN shift NP VP IN DT NN shift NP VP IN DT NN reduce NP→DT NN NP VP IN NP reduce PP→IN NP NP VP PP reduce VP→VP PP NP VP reduce S→NP VP

Dependency Parsing Transition-Based parsers

	The	woman	saw	the	man	with	the	telescope
	DT	NN	Vt	DT	NN	IN	DT	NN
		Stack	Buffe	r			T	ransition
_			DT N	IN Vt [NN TC	IN DT N	N sh	nift
		DT	NN V	/t DT I	NN IN D	NN TO	sh	nift
		DT NN	Vt D	T NN I	N DT N	IN	re	educe NP→DT NN
		NP	Vt D	T NN I	N DT N	IN	sh	nift
		NP Vt	DT N	IN IN [NN TC		sh	nift
		NP Vt DT	NN I	N DT I	NN		sh	nift
	NP '	Vt DT NN	IN D	T NN			re	educe NP \rightarrow DT NN
		NP Vt NP	IN D	T NN			*	reduce VP→Vt NP
		NP VP	IN D	T NN			sh	nift
		NP VP IN	DT N	IN			sh	nift
	NP	VP IN DT	NN				sh	nift
	NP VP	IN DT NN					re	$duce NP \rightarrow DT NN$
	NP	VP IN NP					re	educe PP→IN NP
		NP VP <mark>PP</mark>					re	educe VP→VP PP
		NP VP					re	$educe S \rightarrow NP VP$
		S						

Dependency Parsing Transition-Based parsers

	The	woman	saw	the	man	with	the	telescope
	DT	NN	Vt	DT	NN	IN	DT	NN
		Stack	Buffe	r			T	ransition
			DT N	IN Vt [I NN TC	N DT N	N sh	ift
y		DT	NN \	/t DT I	NN IN D	T NN	sh	ift
d		DT NN	Vt D	T NN I	N DT N	N	re	duce NP \rightarrow DT NN
		NP	Vt D	T NN I	N DT N	N	sh	ift
		NP Vt	DT N	IN IN [NN TC		sh	ift
		NP Vt DT	NN I	N DT I	١N		sh	ift
	NP	Vt DT NN	IN D	T NN			re	duce NP \rightarrow DT NN
		NP Vt NP	IN D	T NN			* r	educe VP→Vt NP
		NP VP	IN D	T NN			sh	ift
		NP VP IN	DT N	IN			sh	ift
	NP	VP IN DT	NN				sh	ift
	NP VP	IN DT NN					re	duce NP \rightarrow DT NN
	NP	VP IN NP					re	duce PP→IN NP
		NP VP PP					re	duce $VP \rightarrow VP PP$
		NP VP					re	$duce S \rightarrow NP VP$
		S					st	ор

Dependency Parsing Transition-Based

Transition-Based parsers

Dependency Parsing Transition-Based parsers

- Only one tree is produced: Not suitable for ambiguous grammars (common in NLP)
- We can add probabilities to select which transition is selected at each step: Similar to CKY with PCFGs, but greedy search (may be made less greedy with e.g. beam-search)
- Or better: we can add features and use ML to take the decision.

Let's see how it is applied to dependency parsing

Arc-Standard algorithm

Dependency Parsing Transition-Based parsers

- lacksquare A configuration (S, B, A) of the parser consists of:
 - lacksquare A stack S containing seen words
 - A buffer B containing not-yet seen words
 - The dependency graph A built so far (not a tree yet)
- Initial configuration: ([], $[0 \dots n]$, [])
- Final configuration: ([0], [], A)
- Possible transitions:
 - shift: push next word in the buffer onto the stack
 - lacksquare left-arc: add an arc from S[0] to S[1] and remove S[1] from the stack
 - ullet right-arc: add an arc from S[1] to S[0] and remove S[0] from the stack

Arc-Standard Transition definitions

Dependency Parsing Transition-Based

- shift (sh) $(\sigma, [i|\beta], A) \Rightarrow ([\sigma|i], \beta, A)$
- left-arc (la-L) $([\sigma|i|j], B, A) \Rightarrow ([\sigma|j], B, A \cup \{j, i, L\})$
- right-arc (ra-L): $([\sigma|i|j], B, A) \Rightarrow ([\sigma|i], B, A \cup \{i, j, L\})$

Arc-Standard Example

Stack	Buffer	Transition
	* the woman saw the man with glasses	

Dependency Parsing Transition-Based

parsers

the woman saw the man with glasses

Arc-Standard Example

Stack	Buffer	Transition
	* the woman saw the man with glasses	sh

Dependency Parsing Transition-Based

parsers

the woman saw the man with glasses

Arc-Standard Example

Stack	Buffer	Transition
	* the woman saw the man with glasses	sh
* the	woman saw the man with glasses	

Dependency Parsing Transition-Based

* the woman saw the man with glasses

Stack	Buffer	Transition
	* the woman saw the man with glasses	sh
* the	woman saw the man with glasses	sh

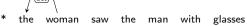
Dependency Parsing Transition-Based

* the woman saw the man with glasses

Stack	Buffer	Transition
	* the woman saw the man with glasses	sh
* the	woman saw the man with glasses	sh
* the woman	saw the man with glasses	

Dependency Parsing Transition-Based

* the woman saw the man with glasses


Stack	Buffer	Transition
	* the woman saw the man with glasses	sh
* the	woman saw the man with glasses	sh
* the woman	saw the man with glasses	la-det

Dependency Parsing Transition-Based

parsers

the woman saw the man with glasses

-	Stack	Buffer	Transition
_		* the woman saw the man with glasses	sh
	* the	woman saw the man with glasses	sh
	* the woman	saw the man with glasses	la-det
	* woman	saw the man with glasses	

Stack	Buffer	Transition
	* the woman saw the man with glasses	sh
* the	woman saw the man with glasses	sh
* the woman	saw the man with glasses	la-det
* woman	saw the man with glasses	sh

Dependency Parsing Transition-Based parsers

the woman

* the woman saw the man with glasses

-	Stack	Buffer	Transition
_		* the woman saw the man with glasses	sh
	* the	woman saw the man with glasses	sh
	* the woman	saw the man with glasses	la-det
	* woman	saw the man with glasses	sh
	* woman saw	the man with glasses	

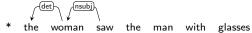
Dependency Parsing Transition-Based parsers

√ (det) \

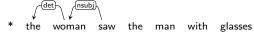
^{*} the woman saw the man with glasses

_	Stack	Buffer	Transition
_		* the woman saw the man with glasses	sh
	* the	woman saw the man with glasses	sh
	* the woman	saw the man with glasses	la-det
	* woman	saw the man with glasses	sh
	* woman saw	the man with glasses	la-subj

Dependency Parsing Transition-Based parsers


det

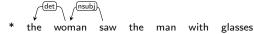
* the woman saw the man with glasses


Stack	Buffer	Transition
	* the woman saw the man with glasses	sh
* the	woman saw the man with glasses	sh
* the woman	saw the man with glasses	la-det
* woman	saw the man with glasses	sh
* woman saw	the man with glasses	la-subj
* saw	the man with glasses	

Dependency Parsing Transition-Based

parsers

Stack	Buffer	Transition
	* the woman saw the man with glasses	sh
* the	woman saw the man with glasses	sh
* the woman	saw the man with glasses	la-det
* woman	saw the man with glasses	sh
* woman saw	the man with glasses	la-subj
* saw	the man with glasses	sh


Buffer Transition Stack * the woman saw the man with glasses sh * the woman saw the man with glasses sh * the woman saw the man with glasses la-det * woman saw the man with glasses sh la-subi * woman saw the man with glasses * saw the man with glasses sh * saw the man with glasses

Dependency Parsing Transition-Based parsers

glasses

Buffer Transition Stack * the woman saw the man with glasses sh * the woman saw the man with glasses sh * the woman saw the man with glasses la-det * woman saw the man with glasses sh la-subi * woman saw the man with glasses * saw the man with glasses sh * saw the man with glasses sh

Buffer Transition Stack * the woman saw the man with glasses sh * the woman saw the man with glasses sh * the woman saw the man with glasses la-det * woman saw the man with glasses sh * woman saw the man with glasses la-subi * saw the man with glasses sh * saw the man with glasses sh * saw the man with glasses

Dependency Parsing Transition-Based parsers

glasses

Transition Stack * the woman saw the man with glasses sh * the woman saw the man with glasses sh * the woman saw the man with glasses la-det * woman saw the man with glasses sh Dependency * woman saw the man with glasses la-subi * saw the man with glasses sh * saw the man with glasses sh * saw the man with glasses la-det

Buffer

Parsing Transition-Based parsers

glasses

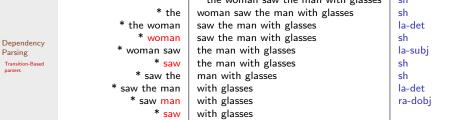
Stack

* the woman saw the man with glasses sh * the woman saw the man with glasses sh * the woman saw the man with glasses la-det * woman saw the man with glasses sh Dependency * woman saw the man with glasses la-subi * saw the man with glasses sh * saw the man with glasses sh * saw the man with glasses la-det * saw man with glasses

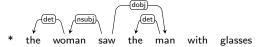
Buffer

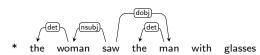
Parsing Transition-Based parsers

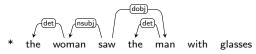
Stack


* the woman saw the man with glasses sh * the woman saw the man with glasses sh * the woman saw the man with glasses la-det * woman saw the man with glasses sh Dependency * woman saw the man with glasses la-subi * saw the man with glasses sh * saw the man with glasses sh * saw the man with glasses la-det * saw man with glasses ra-dobi

Buffer

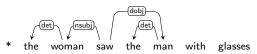

Parsing Transition-Based parsers


Stack * the woman saw the man with glasses sh * the woman saw the man with glasses sh * the woman saw the man with glasses la-det * woman saw the man with glasses sh * woman saw the man with glasses la-subi * saw the man with glasses sh * saw the man with glasses sh * saw the man with glasses la-det * saw man with glasses ra-dobi * saw with glasses

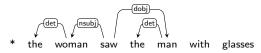

Buffer

Buffer Transition Stack * the woman saw the man with glasses sh * the woman saw the man with glasses sh * the woman saw the man with glasses la-det * woman saw the man with glasses sh * woman saw the man with glasses la-subi * saw the man with glasses sh * saw the man with glasses sh * saw the man with glasses la-det * saw man with glasses ra-dobi * saw with glasses sh

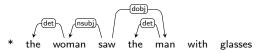
Stack	Buffer	Transition
	* the woman saw the man with glasses	sh
* the	woman saw the man with glasses	sh
* the woman	saw the man with glasses	la-det
* woman	saw the man with glasses	sh
* woman saw	the man with glasses	la-subj
* saw	the man with glasses	sh
* saw the	man with glasses	sh
* saw the man	with glasses	la-det
* saw man	with glasses	ra-dobj
* saw	with glasses	sh
* saw with	glasses	

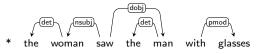


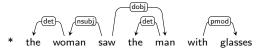
Stack


* the woman saw the man with glasses sh * the woman saw the man with glasses sh * the woman saw the man with glasses la-det * woman saw the man with glasses sh Dependency * woman saw the man with glasses la-subi * saw the man with glasses sh * saw the man with glasses sh * saw the man with glasses la-det * saw man with glasses ra-dobi * saw with glasses sh * saw with glasses sh

Buffer


Parsing Transition-Based parsers


Stack	Buffer	Transition
	* the woman saw the man with glasses	sh
* the	woman saw the man with glasses	sh
* the woman	saw the man with glasses	la-det
* woman	saw the man with glasses	sh
* woman saw	the man with glasses	la-subj
* saw	the man with glasses	sh
* saw the	man with glasses	sh
* saw the man	with glasses	la-det
* saw man	with glasses	ra-dobj
* saw	with glasses	sh
* saw with	glasses	sh
* saw with glasses		


Stack	Buffer	Transition
	* the woman saw the man with glasses	sh
* the	woman saw the man with glasses	sh
* the woman	saw the man with glasses	la-det
* woman	saw the man with glasses	sh
* woman saw	the man with glasses	la-subj
* saw	the man with glasses	sh
* saw the	man with glasses	sh
* saw the man	with glasses	la-det
* saw man	with glasses	ra-dobj
* saw	with glasses	sh
* saw with	glasses	sh
* saw with glasses		ra-pmod

Stack	Buffer	Transition
	* the woman saw the man with glasses	sh
* the	woman saw the man with glasses	sh
* the woman	saw the man with glasses	la-det
* woman	saw the man with glasses	sh
* woman saw	the man with glasses	la-subj
* saw	the man with glasses	sh
* saw the	man with glasses	sh
* saw the man	with glasses	la-det
* saw man	with glasses	ra-dobj
* saw	with glasses	sh
* saw with	glasses	sh
* saw with glasses		ra-pmod
* saw with		

Stack	Buffer	Transition
	* the woman saw the man with glasses	sh
* the	woman saw the man with glasses	sh
* the woman	saw the man with glasses	la-det
* woman	saw the man with glasses	sh
* woman saw	the man with glasses	la-subj
* saw	the man with glasses	sh
* saw the	man with glasses	sh
* saw the man	with glasses	la-det
* saw man	with glasses	ra-dobj
* saw	with glasses	sh
* saw with	glasses	sh
* saw with glasses		ra-pmod
* saw with		ra-madj

Stack	Buffer	Transition
	* the woman saw the man with glasses	sh
* the	woman saw the man with glasses	sh
* the woman	saw the man with glasses	la-det
* woman	saw the man with glasses	sh
* woman saw	the man with glasses	la-subj
* saw	the man with glasses	sh
* saw the	man with glasses	sh
* saw the man	with glasses	la-det
* saw man	with glasses	ra-dobj
* saw	with glasses	sh
* saw with	glasses	sh
* saw with glasses		ra-pmod
* saw with		ra-madj
* saw		

Stack	Buffer	Transition
	* the woman saw the man with glasses	sh
* the	woman saw the man with glasses	sh
* the woman	saw the man with glasses	la-det
* woman	saw the man with glasses	sh
* woman saw	the man with glasses	la-subj
* saw	the man with glasses	sh
* saw the	man with glasses	sh
* saw the man	with glasses	la-det
* saw man	with glasses	ra-dobj
* saw	with glasses	sh
* saw with	glasses	sh
* saw with glasses		ra-pmod
* saw with		ra-madj
* saw		ra-root

Stack

* the woman saw the man with glasses sh * the woman saw the man with glasses la-det * woman saw the man with glasses sh Dependency woman saw the man with glasses la-subi * saw the man with glasses sh * saw the man with glasses sh * saw the man with glasses la-det * saw man with glasses ra-dobi * saw with glasses sh * saw with glasses sh * saw with glasses ra-pmod * saw with ra-madi * saw ra-root root madi dobi

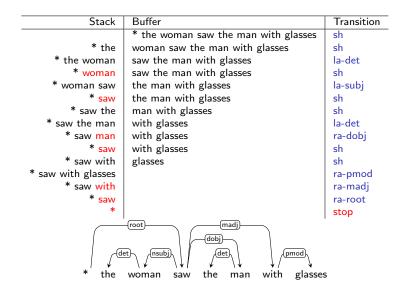
saw

woman

the

man

Buffer


* the woman saw the man with glasses

Transition

sh

pmod glasses

Parsing Transition-Based parsers

Alternative Transition Models

- Stack-stack arcs
 - Arc-standard (shift, left-arc, right-arc)
 - Non-projective (shift, swap, left-arc, right-arc)
- Stack-buffer arcs
 - Arc-eager (shift, reduce, left-arc, right-arc)
 - Arc-standard variant (shift, left-arc, right-arc)

Transition Selection

- Classifier that produces the best transition for the current configuration
- Too many possible configurations: Need to model them as feature vectors and use ML:
- Typical features:
 - lacktriangle word/lemma/PoS for S[0], S[1], B[0], B[1]
 - morphological features (gender, number, mode, tense, etc) in $S[0],\ B[0]$
 - \blacksquare number of children of S[0]
 - lacktriangle dependency labels of S[0] children
 - ..etc
- We can use SVM, perceptron, MBL, DT, ... any feature-based ML classifier

Transition Selection

Dependency Parsing Transition-Based parsers

- Classifier that produces the best transition for the current configuration
- Too many possible configurations: Need to model them as feature vectors and use ML:
- Typical features:
 - lacktriangle word/lemma/PoS for S[0], S[1], B[0], B[1]
 - morphological features (gender, number, mode, tense, etc) in $S[0],\ B[0]$
 - lacksquare number of children of S[0]
 - lacktriangle dependency labels of S[0] children
 - ..etc
- We can use SVM, perceptron, MBL, DT, ... any feature-based ML classifier

... or we can use Deep Learning