Master in Artificial Intelligence

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Advanced Human Language Technologies Sequence prediction

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Facultat d'Informàtica de Barcelona

Outline

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

1 Sequence Prediction

- Examples
- Problem Formulation

Approaches

- Local Classifiers
- HMMs
- Gobal Predictors

- Log-linear Models for Sequence Prediction

 Maximum Entropy Markov Models (MEMMs)
- Conditional Random Fields (CRF)

Outline

Sequence Prediction Examples

Approaches

Log-linear Models for Sequence Prediction

1 Sequence Prediction

- Examples
- Problem Formulation

2 Approaches

- Local Classifiers
- HMMs
- Gobal Predictors

- Log-linear Models for Sequence Prediction
 Maximum Entropy Markov Models (MEMMs)
 - Conditional Random Fields (CRF)

Examples - Named Entity Recognition (NER)

Sequence Prediction Examples	-	y x	PER Jim	- bought	QNT 300	- shares	- of	ORG Acme	ORG Corp.	- in	TIME 2006
Approaches Log-linear Models for Sequence											
Prediction											

Examples - Named Entity Recognition (NER)

Sequence Prediction	у	PER	-	QI		-	OR		-	TIME
Examples	x	Jim	boug	ht 30	JU sha	res of	Acn	ne Corp.	in	2006
Approaches										
Log-linear Models for Sequence Prediction			y x	PER Jack	PER Londo	- n went	- to	LOC Paris		
			y x	PER Paris	PER Hilton	- went	- to	LOC London		

S

LNSF

Examples - Part-of-Speech (PoS) Tagging

Sequence Prediction Examples Approaches Log-linear Models for Sequence Prediction	y x	DT The	NN fox	VBZ jumps	IN over	DT the	JJ lazy	NN dog	

Examples - Part-of-Speech (PoS) Tagging

Sequence Prediction Examples Approaches	y x	DT The	NN fox	VBZ jumps	IN over	DT the	JJ lazy	NN dog	
Log-linear Models for Sequence Prediction	y x	DT The	NN fox	<mark>NN</mark> jumps	VBD scared	DT the	JJ lazy	NN dog	

Outline

Sequence Prediction Problem Formulation

Approaches

Log-linear Models for Sequence Prediction

1 Sequence Prediction

Examples

Problem Formulation

Approaches

- Local Classifiers
- HMMs
- Gobal Predictors

- Log-linear Models for Sequence Prediction

 Maximum Entropy Markov Models (MEMMs)
 - Conditional Random Fields (CRF)

Problem Formulation

Sequence Prediction Problem Formulation Approaches

Log-linear Models for Sequence Prediction • $\mathbf{x} = \mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_n$ are input sequences, $\mathbf{x}_i \in \mathcal{X}$

• $\mathbf{y} = \mathbf{y}_1 \mathbf{y}_2 \dots \mathbf{y}_n$ are output sequences, $\mathbf{y}_i \in \{1, \dots, L\}$

Goal: given training data

 $\left\{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)}) \right\}$

learn a predictor $\mathbf{x} \rightarrow \mathbf{y}$ that works well on unseen inputs \mathbf{x}

What is the form of our prediction model?

Outline

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Sequence Prediction

- Examples
- Problem Formulation

2 Approaches

- Local Classifiers
- HMMs
- Gobal Predictors

- Maximum Entropy Markov Models (MEMMs)
- Conditional Random Fields (CRF)

Outline

Sequence Prediction Approaches

Local Classifiers

Log-linear Models for Sequence Prediction Sequence Prediction

- Examples
- Problem Formulation

2 Approaches

- Local Classifiers
- HMMs
- Gobal Predictors

Log-linear Models for Sequence Prediction
 Maximum Entropy Markov Models (MEMMs)
 Conditional Random Fields (CRF)

Approach 1: Local Classifiers

? Jack London went to Paris

Decompose the sequence into n classification problems:

A classifier predicts individual labels at each position

$$\hat{y}_{\mathfrak{i}} = \underset{y \in \{ \texttt{LOC}, \texttt{ PER, -} \}}{\mathsf{argmax}} \mathbf{w} \cdot \mathbf{f}(x, \mathfrak{i}, y)$$

- $\blacksquare~\mathbf{f}(x,i,y)$ represents an assignment of label y for x_i
- $\hfill\blacksquare$ w is a vector of parameters, has a weight for each feature of f
 - Use standard classification methods to learn w (MEM, SVM, \ldots)

- Sequence Prediction Approaches Local Classifiers
- Log-linear Models for Sequence Prediction

Approach 1: Local Classifiers

? Jack London went to Paris

Decompose the sequence into n classification problems:

A classifier predicts individual labels at each position

$$\hat{y}_{\mathfrak{i}} = \underset{y \in \{ \texttt{LOC}, \texttt{ PER, -} \}}{\mathsf{argmax}} \mathbf{w} \cdot \mathbf{f}(x, \mathfrak{i}, y)$$

- $\blacksquare~\mathbf{f}(x,i,y)$ represents an assignment of label y for x_i
- $\hfill\blacksquare$ w is a vector of parameters, has a weight for each feature of f
 - Use standard classification methods to learn w (MEM, SVM, \ldots)
- At test time, predict the best sequence by a simple concatenation of the best label for each position

Prediction Approaches Local Classifiers

Sequence

Indicator Features

• f(x, i, y) is a vector of d features representing label y for x_i

$$\mathbf{f}(x, \mathfrak{i}, y) = (\ \mathbf{f}_1(x, \mathfrak{i}, y), \dots, \mathbf{f}_j(x, \mathfrak{i}, y), \dots, \mathbf{f}_d(x, \mathfrak{i}, y) \)$$

- What's in a feature $f_j(x, i, y)$?
 - Anything we can compute using x and i and y
 - Anything that indicates whether y is a good (or bad) label for x_i
 - Indicator features: binary-valued features looking at a single simple property

$$\begin{split} \mathbf{f}_{j}(\mathbf{x},i,y) &= \left\{ \begin{array}{ll} 1 & \text{if } \mathbf{x}_{i} = & \text{London and } y = & \text{LOC} \\ 0 & \text{otherwise} \\ \mathbf{f}_{k}(\mathbf{x},i,y) &= \left\{ \begin{array}{ll} 1 & \text{if } \mathbf{x}_{i+1} = & \text{went and } y = & \text{LOC} \\ 0 & \text{otherwise} \end{array} \right. \end{split}$$

Sequence Prediction Approaches

Local Classifiers

More Features for NE Recognition

Sequence Prediction

Approaches Local Classifiers

Log-linear Models for Sequence Prediction In practice, construct $\mathbf{f}(\mathbf{x},i,y)$ by \ldots

 \blacksquare Define a number of simple patterns of x and i

- current word x_i
- is x_i capitalized?
- x_i has digits?
- pref/suff of size 1, 2, 3, ...
- is x_i a known location?
- is x_i a known person?

- next word
- previous word
- current and next words together
- other combinations
- Generate features by combining patterns with possible labels y

More Features for NE Recognition

PER PER -Jack London went to Paris

Sequence Prediction

Approaches Local Classifiers

Log-linear Models for Sequence Prediction In practice, construct $\mathbf{f}(\mathbf{x},i,y)$ by \ldots

 \blacksquare Define a number of simple patterns of x and i

- current word x_i
- is x_i capitalized?
- x_i has digits?
- pref/suff of size 1, 2, 3, ...
- is x_i a known location?
- is x_i a known person?

- next word
- previous word
- current and next words together
- other combinations
- Generate features by combining patterns with possible labels y

Main limitation: features can't capture interactions between labels!

Outline

Sequence Prediction

Approaches HMMs

Log-linear Models for Sequence Prediction

Sequence Prediction

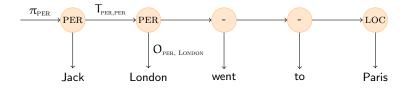
- Examples
- Problem Formulation

2 Approaches

- Local Classifiers
- HMMs
- Gobal Predictors

Log-linear Models for Sequence Prediction
 Maximum Entropy Markov Models (MEMMs)
 Conditional Random Fields (CRF)

Approach 2: HMM for Sequence Prediction



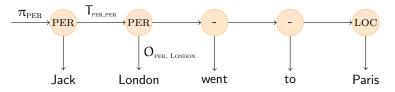
- Define an HMM were each label is a state
- Model parameters:
 - π_y : probability of starting with label y
 - T_{yy'}: probability of transitioning from label y to y'
 - O_{yx} : probability of generating symbol x given label y
- Predictions: $p(\mathbf{x}, \mathbf{y}) = \pi_{\mathbf{y}_1} O_{\mathbf{y}_1 \mathbf{x}_1} \prod_{i>1} T_{\mathbf{y}_{i-1} \mathbf{y}_i} O_{\mathbf{y}_i \mathbf{x}_i}$
- Learning: relative counts + smoothing
- Prediction: Viterbi algorithm

Prediction Approaches HMMs Log-linear Models for Sequence

Prediction

Sequence

Approach 2: Representation in HMM

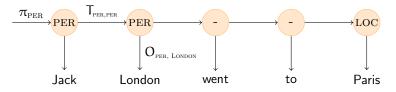


- Label interactions are captured in the transition parameters
- But interactions between symbols and labels are quite limited!
 - Only $O_{\mathbf{y}_i \mathbf{x}_i} = p(\mathbf{x}_i \mid \mathbf{y}_i)$
 - Not clear how to exploit patterns such as:
 - Capitalization, digits
 - Prefixes and suffixes
 - Next word, previous word
 - Combinations of these with label transitions

Prediction Approaches HMMs

Sequence

Approach 2: Representation in HMM



Label interactions are captured in the transition parameters

But interactions between symbols and labels are quite limited!

 $\bullet \text{ Only } O_{y_{\mathfrak{i}}x_{\mathfrak{i}}} = p(x_{\mathfrak{i}} \mid y_{\mathfrak{i}})$

- Not clear how to exploit patterns such as:
 - Capitalization, digits
 - Prefixes and suffixes
 - Next word, previous word
 - Combinations of these with label transitions

 Why? HMM independence assumptions: given label y_i, token x_i is independent of anything else

Sequence Prediction

Approaches HMMs

Local Classifiers vs. HMM

LOCAL CLASSIFIERS

Sequence Prediction

Approaches HMMs

Log-linear Models for Sequence Prediction Form:

 $\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y)$

- Learning: standard classifiers
- Prediction: independent for each x_i
- Advantage: feature-rich
- Drawback: no label interactions

Form:

$$\pi_{y_1}O_{y_1,x_1}\prod_{i>1}\mathsf{T}_{y_{i-1},y_i}O_{y_i,x_i}$$

Learning: relative counts

HMM

- Prediction: Viterbi
- Advantage: label interactions
- Drawback: no fine-grained features

Outline

Sequence Prediction

Approaches Gobal Predictors

Log-linear Models for Sequence Prediction Sequence Prediction

- Examples
- Problem Formulation

2 Approaches

Local Classifiers

HMMs

Gobal Predictors

Log-linear Models for Sequence Prediction

Maximum Entropy Markov Models (MEMMs)
Conditional Random Fields (CRF)

Approach 3: Global Sequence Predictors

Sequence Prediction

Approaches Gobal Predictors

Log-linear Models for Sequence Prediction $\begin{array}{rrrrr} \mathbf{y}: & \operatorname{PER} & \operatorname{PER} & - & - & \operatorname{LOC} \\ \mathbf{x}: & \mathsf{Jack} & \mathsf{London} & \mathsf{went} & \mathsf{to} & \mathsf{Paris} \end{array}$ Learn a single classifier from $\mathbf{x} \to \mathbf{y}$ $\mathsf{predict}(\mathbf{x}_{1:n}) = \mathsf{argmax} \, \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})$

y∈yn

Approach 3: Global Sequence Predictors

Sequence Prediction Approaches

Gobal Predictors Log-linear Models for Sequence Prediction

y: Jack London Paris x: went to

PER.

LOC

Learn a single classifier from $\mathbf{x} \rightarrow \mathbf{y}$

PER.

$$\mathsf{predict}(x_{1:n}) = \operatorname*{argmax}_{y \in \mathcal{Y}^n} w \cdot f(x, y)$$

But ...

- How do we represent entire sequences in f(x, y)?
- There are exponentially-many sequences y for a given x, how do we solve the argmax problem?

y: PER PER - - LOC x: Jack London went to Paris

• How do we represent entire sequences in f(x, y)?

Sequence Prediction

Approaches Gobal Predictors

y: PER PER - - LOC x: Jack London went to Paris

Sequence Prediction Approaches

Gobal Predictors

Log-linear Models for Sequence Prediction How do we represent entire sequences in f(x, y)?
 Look at the full label sequence y (intractable)

y: PER PER - - LOC x: Jack London went to Paris

Sequence Prediction

Approaches Gobal Predictors

Log-linear Models for Sequence Prediction • How do we represent entire sequences in f(x, y)?

- Look at the full label sequence y (intractable)
- Look at n-grams of output labels $\langle y_{i-n+1}, \dots, y_{i-1}, y_i \rangle$ (too expensive)

Sequence Prediction

Approaches Gobal Predictors

Log-linear Models for Sequence Prediction • How do we represent entire sequences in f(x, y)?

- Look at the full label sequence y (intractable)
- Look at n-grams of output labels $\langle y_{i-n+1}, \dots, y_{i-1}, y_i \rangle$ (too expensive)
- \blacksquare Look at trigrams of output labels $\langle y_{i-2}, y_{i-1}, y_i \rangle$ (possible for small $|\mathcal{Y}|)$

Sequence Prediction

Approaches Gobal Predictors

- How do we represent entire sequences in f(x, y)?
 - Look at the full label sequence y (intractable)
 - Look at n-grams of output labels $\langle y_{i-n+1}, \dots, y_{i-1}, y_i \rangle$ (too expensive)
 - \blacksquare Look at trigrams of output labels $\langle y_{i-2}, y_{i-1}, y_i \rangle$ (possible for small $|\mathcal{Y}|)$
 - \blacksquare Look at bigrams of output labels $\langle y_{i-1}, y_i \rangle$ (definitely tractable)

Sequence Prediction

Approaches Gobal Predictors

- How do we represent entire sequences in f(x, y)?
 - Look at the full label sequence y (intractable)
 - Look at n-grams of output labels $\langle y_{i-n+1}, \dots, y_{i-1}, y_i \rangle$ (too expensive)
 - Look at trigrams of output labels $\langle y_{i-2}, y_{i-1}, y_i \rangle$ (possible for small $|\mathcal{Y}|)$
 - \blacksquare Look at bigrams of output labels $\langle y_{i-1}, y_i \rangle$ (definitely tractable)
 - Look at individual assignments y_i (standard classification)

Sequence Prediction

Approaches Gobal Predictors

- How do we represent entire sequences in f(x, y)?
 - Look at the full label sequence y (intractable)
 - Look at n-grams of output labels $\langle y_{i-n+1}, \dots, y_{i-1}, y_i \rangle$ (too expensive)
 - Look at trigrams of output labels $\langle y_{i-2}, y_{i-1}, y_i \rangle$ (possible for small $|\mathcal{Y}|)$
 - \blacksquare Look at bigrams of output labels $\langle y_{i-1}, y_i \rangle$ (definitely tractable)
 - Look at individual assignments y_i (standard classification)
- A factored representation will lead to a tractable model

1

Sequence Prediction

Approaches Gobal Predictors

Log-linear Models for Sequence Prediction

	T	2	5	4	5
у	PER	PER	-	-	LOC
х	Jack	London	went	to	Paris

2

2

Λ

Б

Indicator features:

$$\mathbf{f}_j(\mathbf{x}, \mathbf{i}, \mathbf{y}_{i-1}, \mathbf{y}_i) = \left\{ \begin{array}{ll} 1 & \text{if } \mathbf{x}_i = \text{"London" and} \\ & \mathbf{y}_{i-1} = \text{PER and } \mathbf{y}_i = \text{PER} \\ 0 & \text{otherwise} \end{array} \right.$$

e.g.,
$$f_j(x, 2, \text{per, per}) = 1$$
, $f_j(x, 3, \text{per, -}) = 0$

	1	2	3	4	5
x	Jack	London	went	to	Paris
у	PER	PER	-	-	LOC
\mathbf{y}'	PER	LOC	-	-	LOC
y″	-	PER	-	LOC	-

Gobal Predictors

Log-linear Models for Sequence Prediction

$$\begin{split} &f_1(x,i,y_{i-1},y_i) = 1 \text{ iff } x_i = \text{"London" & } y_{i-1} = \text{PER & } y_i = \text{PER} \\ &f_2(x,i,y_{i-1},y_i) = 1 \text{ iff } x_i = \text{"London" & } y_{i-1} = \text{PER & } y_i = \text{LOC} \\ &f_3(x,i,y_{i-1},y_i) = 1 \text{ iff } x_{i-1} \sim /(\text{in}|\text{to}|\text{at}) / & x_i \sim /^{[\text{A-Z}]} / & y_i = \text{LOC} \\ &f_4(x,i,y_{i-1},y_i) = 1 \text{ iff } y_i = \text{LOC & WORLD-CITIES}(x_i) = 1 \\ &f_5(x,i,y_{i-1},y_i) = 1 \text{ iff } y_i = \text{PER & FIRST-NAMES}(x_i) = 1 \end{split}$$

	1	2	3	4	5
x	Jack	London	went	to	Paris
У	PER	PER	-	-	LOC
\mathbf{y}'	PER	LOC	-	-	LOC
y″	-	PER	-	LOC	-

Sequence Prediction

Approaches Gobal Predictors

Log-linear Models for Sequence Prediction

$$\begin{split} & f_1(x,i,y_{i-1},y_i) = 1 \text{ iff } x_i = \text{"London" & } y_{i-1} = \text{PER & } y_i = \text{PER} \\ & f_2(x,i,y_{i-1},y_i) = 1 \text{ iff } x_i = \text{"London" & } y_{i-1} = \text{PER & } y_i = \text{LOC} \\ & f_3(x,i,y_{i-1},y_i) = 1 \text{ iff } x_{i-1} \sim /(\text{in}|\text{to}|\text{at}) / & x_i \sim /^{\text{[A-Z]}} / & y_i = \text{LOC} \\ & f_4(x,i,y_{i-1},y_i) = 1 \text{ iff } y_i = \text{LOC & WORLD-CITIES}(x_i) = 1 \\ & f_5(x,i,y_{i-1},y_i) = 1 \text{ iff } y_i = \text{PER & FIRST-NAMES}(x_i) = 1 \end{split}$$

	1	2	3	4	5
x	Jack	London	went	to	Paris
У	PER	PER	-	-	LOC
\mathbf{y}'	PER	LOC	-	-	LOC
y″	-	PER	-	LOC	-

Approaches Gobal Predictors

Log-linear Models for Sequence Prediction

$$\begin{split} &f_1(x,i,y_{i-1},y_i) = 1 \text{ iff } x_i = \text{"London" & } y_{i-1} = \text{PER & } y_i = \text{PER} \\ &f_2(x,i,y_{i-1},y_i) = 1 \text{ iff } x_i = \text{"London" & } y_{i-1} = \text{PER & } y_i = \text{LOC} \\ &f_3(x,i,y_{i-1},y_i) = 1 \text{ iff } x_{i-1} \sim /(\text{in}|\text{to}|\text{at}) / & x_i \sim /^{[\text{A-Z}]} / & y_i = \text{LOC} \\ &f_4(x,i,y_{i-1},y_i) = 1 \text{ iff } y_i = \text{LOC & WORLD-CITIES}(x_i) = 1 \\ &f_5(x,i,y_{i-1},y_i) = 1 \text{ iff } y_i = \text{PER & FIRST-NAMES}(x_i) = 1 \end{split}$$

	1	2	3	4	5
х	Jack	London	went	to	Paris
У	PER	PER	-	-	LOC
\mathbf{y}'	PER	LOC	-	-	LOC
$\mathbf{y}^{\prime\prime}$	-	PER	-	LOC	-

Approaches Gobal Predictors

Log-linear Models for Sequence Prediction

$$\begin{split} & f_1(x,i,y_{i-1},y_i) = 1 \text{ iff } x_i = \text{"London" & } y_{i-1} = \text{PER & } y_i = \text{PER} \\ & f_2(x,i,y_{i-1},y_i) = 1 \text{ iff } x_i = \text{"London" & } y_{i-1} = \text{PER & } y_i = \text{LOC} \\ & f_3(x,i,y_{i-1},y_i) = 1 \text{ iff } x_{i-1} \sim /(\text{in}|\text{to}|\text{at}) / & x_i \sim /^{[\text{A-Z}]} / & y_i = \text{LOC} \\ & f_4(x,i,y_{i-1},y_i) = 1 \text{ iff } y_i = \text{LOC & WORLD-CITIES}(x_i) = 1 \\ & f_5(x,i,y_{i-1},y_i) = 1 \text{ iff } y_i = \text{PER & } \text{FIRST-NAMES}(x_i) = 1 \end{split}$$

More Bigram Indicator Features

	1	2	3	4	5
x	Jack	London	went	to	Paris
у	PER	PER	-	-	LOC
\mathbf{y}'	PER	LOC	-	-	LOC
y″	-	PER	-	LOC	-

Sequence Prediction

Approaches Gobal Predictors

Log-linear Models for Sequence Prediction

$$\begin{split} & f_1(x,i,y_{i-1},y_i) = 1 \text{ iff } x_i = \text{"London" & } y_{i-1} = \text{PER & } y_i = \text{PER} \\ & f_2(x,i,y_{i-1},y_i) = 1 \text{ iff } x_i = \text{"London" & } y_{i-1} = \text{PER & } y_i = \text{LOC} \\ & f_3(x,i,y_{i-1},y_i) = 1 \text{ iff } x_{i-1} \sim /(\text{in}|\text{to}|\text{at}) / & x_i \sim /^{[\text{A-Z}]} / & y_i = \text{LOC} \\ & f_4(x,i,y_{i-1},y_i) = 1 \text{ iff } y_i = \text{LOC & WORLD-CITIES}(x_i) = 1 \\ & f_5(x,i,y_{i-1},y_i) = 1 \text{ iff } y_i = \text{PER & } \text{FIRST-NAMES}(x_i) = 1 \end{split}$$

Bigram-Factored Representations

Sequence Prediction

Approaches Gobal Predictors

Log-linear Models for Sequence Prediction y: PER PER - - LOC x: Jack London went to Paris

$$\mathbf{f}(\mathbf{x},\mathfrak{i},\mathbf{y}_{\mathfrak{i}-1},\mathbf{y}_{\mathfrak{i}}) = (\mathbf{f}_1(\mathbf{x},\mathfrak{i},\mathbf{y}_{\mathfrak{i}-1},\mathbf{y}_{\mathfrak{i}}),\ldots,\mathbf{f}_d(\mathbf{x},\mathfrak{i},\mathbf{y}_{\mathfrak{i}-1},\mathbf{y}_{\mathfrak{i}}))$$

- \blacksquare A d-dimensional feature vector of a label bigram at i
- Each dimension is typically a boolean indicator (0 or 1)

• $\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i})$

- A d-dimensional feature vector of the entire y
- Aggregated representation by summing bigram feature vectors
- Each dimension is now a count of a feature pattern

Linear Sequence Prediction

$$\mathsf{best}(\mathbf{x}_{1:n}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \mathbf{w} \cdot \sum_{i=1}^n \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i)$$

~~

Sequence Prediction

Approaches Gobal Predictors

Linear Sequence Prediction

$$\mathsf{best}(\mathbf{x}_{1:n}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \mathbf{w} \cdot \sum_{i=1}^n \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i)$$

Prediction Approaches Gobal Predictors

Sequence

• Note the linearity of the expression:

$$\begin{split} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) &= \mathbf{w} \cdot \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i}) = \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{d} \mathbf{w}_{j} \mathbf{f}_{j}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i}) \end{split}$$

Linear Sequence Prediction

$$\mathsf{best}(\mathbf{x}_{1:n}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \mathbf{w} \cdot \sum_{i=1}^n \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i)$$

Prediction Approaches Gobal Predictors

Sequence

Log-linear Models for Sequence Prediction

Note the linearity of the expression:

$$\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) = \mathbf{w} \cdot \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i}) = \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{d} \mathbf{w}_{j} \mathbf{f}_{j}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i})$$

Next questions:

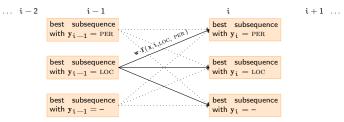
- How do we solve the argmax problem?
- How do we learn w?

Predicting with Factored Sequence Models

• Consider a fixed w. Given $x_{1:n}$ find:

$$\underset{y \in \mathcal{Y}^n}{\operatorname{argmax}} \sum_{i=1}^n \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i)$$

- We can use the Viterbi algorithm, takes $O(n|\mathcal{Y}|^2)$
- Intuition: output sequences that share bigrams will share scores



Sequence Prediction

Approaches Gobal Predictors

Viterbi for Linear Factored Predictors

$$\hat{\mathbf{y}} = \underset{\mathbf{y} \in \mathbb{Y}^n}{\mathsf{argmax}} \sum_{i=1}^n \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i)$$

Sequence Prediction Approaches

Gobal Predictors Log-linear Models for Sequence Prediction

Definition:

 $\delta_i(a) =$ score of optimal sequence for $x_{1:i}$ ending with $a \in \mathcal{Y}$

$$\delta_{i}(a) = \max_{\mathbf{y} \in \mathcal{Y}^{i}: \mathbf{y}_{i} = a} \sum_{j=1}^{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, j, \mathbf{y}_{j-1}, \mathbf{y}_{j})$$

• The optimal score for x is $\max_{a \in \mathcal{Y}} \delta_n(a)$

 \blacksquare The optimal sequence $\hat{\mathbf{y}}$ can be recovered through pointers

Linear Factored Sequence Prediction

Sequence Prediction

Approaches Gobal Predictors

$$\mathsf{predict}(x_{1:n}) = \operatorname*{argmax}_{y \in \mathcal{Y}^n} w \cdot f(x, y)$$

- Factored representation, e.g. based on bigrams
- \blacksquare Flexible, arbitrary features of full ${\bf x}$ and the factors
- Efficient prediction using Viterbi
- Next topic: learning w:
 - Maximum-Entropy Markov Models (local)
 - Conditional Random Fields (global)

Outline

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction Sequence Prediction

- Examples
- Problem Formulation

Approaches

- Local Classifiers
- HMMs

Gobal Predictors

- Maximum Entropy Markov Models (MEMMs)
- Conditional Random Fields (CRF)

Sequence Tagging with Log-Linear Models

- x are input sequences (e.g. sentences of words)
- y are output sequences (e.g. sequences of NE tags)
- Goal: given training data $\left\{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)}) \right\}$ learn a model $\mathbf{x} \to \mathbf{y}$
- Log-linear models: $\underset{\mathbf{y}\in\mathcal{Y}^n}{\operatorname{argmax}} P(\mathbf{y}|\mathbf{x};\mathbf{w}) = \underset{\mathbf{y}\in\mathcal{Y}^n}{\operatorname{argmax}} \frac{\exp(\mathbf{w}\cdot\mathbf{f}(\mathbf{x},\mathbf{y}))}{Z(\mathbf{x};\mathbf{w})}$

Sequence Prediction

Approaches

Sequence Tagging with Log-Linear Models

- x are input sequences (e.g. sentences of words)
- y are output sequences (e.g. sequences of NE tags)
- **Goal:** given training data $\left\{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)}) \right\}$ learn a model $\mathbf{x} \to \mathbf{y}$

 \blacksquare Exponentially many y's for a given input ${\bf x}$

Sequence Prediction

Approaches

Sequence Tagging with Log-Linear Models

- x are input sequences (e.g. sentences of words)
- y are output sequences (e.g. sequences of NE tags)
- **Goal:** given training data $\left\{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)}) \right\}$ learn a model $\mathbf{x} \to \mathbf{y}$
- \blacksquare Exponentially many \mathbf{y} 's for a given input \mathbf{x}
 - Solution 1: decompose $P(\mathbf{y} \mid \mathbf{x})$ (MEMMs)
 - **Solution 2:** decompose f(x, y) (CRFs)

Sequence Prediction

Approaches

Outline

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Maximum Entropy Markov Models (MEMMs) Sequence Prediction

- Examples
- Problem Formulation
- Approaches
 - Local Classifiers
 - HMMs
 - Gobal Predictors

3 Log-linear Models for Sequence Prediction
 Maximum Entropy Markov Models (MEMMs)
 Conditional Random Fields (CRF)

Maximum Entropy Markov Models (MEMMs) (McCallum, Freitag, Pereira 2000)

- Notation: $x_{1:n} = x_1 \dots x_n$
- Similarly to HMMs:

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Maximum Entropy Markov Models (MEMMs)

$$\begin{split} \mathsf{P}(\mathbf{y}_{1:n} \mid \mathbf{x}_{1:n}) &= \mathsf{P}(\mathbf{y}_1 \mid \mathbf{x}_{1:n}) \times \mathsf{P}(\mathbf{y}_{2:n} \mid \mathbf{x}_{1:n}, \mathbf{y}_1) \\ &= \mathsf{P}(\mathbf{y}_1 \mid \mathbf{x}_{1:n}) \times \prod_{i=2}^n \mathsf{P}(\mathbf{y}_i | \mathbf{x}_{1:n}, \mathbf{y}_{1:i-1}) \\ &= \mathsf{P}(\mathbf{y}_1 | \mathbf{x}_{1:n}) \times \prod_{i=2}^n \mathsf{P}(\mathbf{y}_i | \mathbf{x}_{1:n}, \mathbf{y}_{i-1}) \end{split}$$

Assumption under MEMMs:

$$\mathsf{P}(\mathbf{y}_{\mathfrak{i}}|\mathbf{x}_{1:\mathfrak{n}},\mathbf{y}_{1:\mathfrak{i}-1}) = \mathsf{P}(\mathbf{y}_{\mathfrak{i}}|\mathbf{x}_{1:\mathfrak{n}},\mathbf{y}_{\mathfrak{i}-1})$$

Decoding with MEMMs

Decompose tagging problem:

$$P(\mathbf{y}_{1:n} \mid \mathbf{x}_{1:n}) = P(\mathbf{y}_1 | \mathbf{x}_{1:n}) \times \prod_{i=2}^{n} P(\mathbf{y}_i | \mathbf{x}_{1:n}, i, \mathbf{y}_{i-1})$$

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Maximum Entropy Markov Models (MEMMs)

• Given w, given x, find:

$$\begin{aligned} \underset{y \in \mathcal{Y}^n}{\operatorname{argmax}} P(\mathbf{y} \mid \mathbf{x}) &= \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \prod_{i=1}^n P(\mathbf{y}_i \mid \mathbf{x}, i, \mathbf{y}_{i-1}) \\ &= \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \prod_{i=1}^n \frac{\exp(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i))}{Z(\mathbf{x}, i)} \\ &= \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \prod_{i=1}^n \exp(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i)) \\ &= \operatorname{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \sum_{i=1}^n \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i) \end{aligned}$$

We can use the Viterbi algorithm

Parameter Estimation with MEMMs

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Maximum Entropy Markov Models (MEMMs) Learn *local* log-linear distributions (i.e. MaxEnt)

$$P(y_i \mid \mathbf{x}, i, y_{i-1}) = \frac{\exp(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y_{i-1}, y_i))}{Z(\mathbf{x}, i)}$$

where

- x is an input sequence
- y_i and y_{i-1} are tags
- f(x, i, y_{i-1}, y_i) is a feature vector of x, the position to be tagged, the previous tag and the current tag

Outline

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Conditional Random Fields (CRF)

- Examples
- Problem Formulation

- Local Classifiers
- HMMs

Gobal Predictors

3 Log-linear Models for Sequence Prediction Maximum Entropy Markov Models (MEMMs) Conditional Random Fields (CRF)

Conditional Random Fields

(Lafferty, McCallum, Pereira 2001)

Log-linear model of the conditional distribution:

$$\mathsf{P}(\mathbf{y}|\mathbf{x}) = \frac{\mathsf{exp}(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}))}{\mathsf{Z}(\mathbf{x})}$$

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Conditional Random Fields (CRF)

$$\mathbf{x} = \mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_n \in \mathfrak{X}^*$$

•
$$\mathbf{y} = \mathbf{y}_1 \mathbf{y}_2 \dots \mathbf{y}_n \in \mathcal{Y}^*$$
 and $\mathcal{Y} = \{1, \dots, L\}$

f
$$(\mathbf{x}, \mathbf{y})$$
 is a feature vector of \mathbf{x} and \mathbf{y}

• w are model parameters

To predict the best sequence

$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y} \in \mathfrak{Y}^*} \mathsf{P}(\mathbf{y} | \mathbf{x})$$

Conditional Random Fields

(Lafferty, McCallum, Pereira 2001)

Log-linear model of the conditional distribution:

$$\mathsf{P}(\mathbf{y}|\mathbf{x}) = \frac{\mathsf{exp}(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}))}{\mathsf{Z}(\mathbf{x})}$$

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Conditional Random Fields (CRF)

$$\mathbf{x} = \mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_n \in \mathfrak{X}^*$$

•
$$\mathbf{y} = \mathbf{y}_1 \mathbf{y}_2 \dots \mathbf{y}_n \in \mathcal{Y}^*$$
 and $\mathcal{Y} = \{1, \dots, L\}$

- **f**(\mathbf{x}, \mathbf{y}) is a feature vector of \mathbf{x} and \mathbf{y}
- w are model parameters
- To predict the best sequence

$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y} \in \boldsymbol{\mathcal{Y}}^*} \mathsf{P}(\mathbf{y} | \mathbf{x})$$

 \blacksquare Exponentially many y's for a given input $\mathbf x$

Conditional Random Fields

(Lafferty, McCallum, Pereira 2001)

Log-linear model of the conditional distribution:

$$\mathsf{P}(\mathbf{y}|\mathbf{x}) = \frac{\mathsf{exp}(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}))}{\mathsf{Z}(\mathbf{x})}$$

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Conditional Random Fields (CRF)

$$\mathbf{x} = \mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_n \in \mathfrak{X}^*$$

•
$$\mathbf{y} = \mathbf{y}_1 \mathbf{y}_2 \dots \mathbf{y}_n \in \mathcal{Y}^*$$
 and $\mathcal{Y} = \{1, \dots, L\}$

- **f** (\mathbf{x}, \mathbf{y}) is a feature vector of \mathbf{x} and \mathbf{y}
- w are model parameters
- To predict the best sequence

$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^*} \mathsf{P}(\mathbf{y} | \mathbf{x})$$

Exponentially many y's for a given input x

 \blacksquare Choose f(x,y) so that \hat{y} can be computed efficiently

Conditional Random Fields (CRFs)

The model form is:

$$\mathsf{P}(\mathbf{y}|\mathbf{x}) \ = \ \frac{\mathsf{exp}(\sum_{i=1}^n \mathbf{w} \cdot \mathbf{f}(\mathbf{x},i,\mathbf{y}_{i-1},\mathbf{y}_i))}{\mathsf{Z}(\mathbf{x})}$$

where

$$Z(\mathbf{x}) = \sum_{\mathbf{y} \in \mathcal{Y}^n} \exp(\sum_{i=1}^n \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i))$$

- Features f(...) are given (they are problem-dependent)
 w ∈ \mathbb{R}^d are the parameters of the model
- CRFs are log-linear models on the feature functions

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction Conditional Random Fields (CRF)

Decoding with CRFs

Given w, given x, find:

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Conditional Randon Fields (CRF)

$$\begin{aligned} \underset{\mathbf{y} \in \mathfrak{Y}^{n}}{\operatorname{argmax}} \mathsf{P}(\mathbf{y}|\mathbf{x}) &= \operatorname{argmax}_{\mathbf{y} \in \mathfrak{Y}^{n}} \frac{\exp(\sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i}))}{Z(\mathbf{x})} \\ &= \operatorname{argmax}_{\mathbf{y} \in \mathfrak{Y}^{n}} \exp(\sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i})) \\ &= \operatorname{argmax}_{\mathbf{y} \in \mathfrak{Y}^{n}} \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i}) \end{aligned}$$

We can use the Viterbi algorithm

Parameter Estimation in CRFs

How to estimate model parameters w given a training set:

$$\left\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)})\right\}$$

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Conditional Random Fields (CRF) We define the conditional log-likelihood of the data (recall lecture on log-linear models):

$$L(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^m \log \mathsf{P}(\mathbf{y}^{(k)} | \mathbf{x}^{(k)}; \mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||^2$$

- L(w) measures how well w explains the data. A good value for w will give a high value for P(y^(k)|x^(k); w) for all k = 1...m.
- $\frac{\lambda}{2} ||\mathbf{w}||^2$ is a regularization penalizing solutions with large norm.
- λ is a parameter controllig the trade-off between fitting the data and model complexity.
- We want \mathbf{w} that maximizes $L(\mathbf{w})$

Learning the Parameters of a CRF

So we want to find:

 \mathbf{w}^{*}

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Conditional Random Fields (CRF)

$$= \operatorname{argmax}_{\mathbf{w} \in \mathbb{R}^{d}} L(\mathbf{w})$$

=
$$\operatorname{argmax}_{\mathbf{w} \in \mathbb{R}^{d}} \left(\frac{1}{m} \sum_{k=1}^{m} \log P(y^{(k)} | x^{(k)}; \mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||^{2} \right)$$

In general there is no analytical solution to this optimization

- ... but it is a convex function ⇒ We use iterative techniques, i.e. gradient-based optimization
- Very fast algorithms exist (e.g. LBFGS)

Learning the Parameters of a CRF: Gradient step

- Initialize w = 0
- Repeat

• Compute gradient $\boldsymbol{\delta} = (\delta_1, \ldots, \delta_d),$ where:

$$\delta_j = \frac{\partial L'(\mathbf{w})}{\partial \mathbf{w}_j} \quad \forall j = 1 \dots d$$

$$\beta^* = \operatorname*{argmax}_{\beta \in \mathbb{R}} L'(\mathbf{w} + \beta \delta)$$

Move w in the direction of the gradient

$$\mathbf{w} \leftarrow \mathbf{w} + \beta^* \delta$$

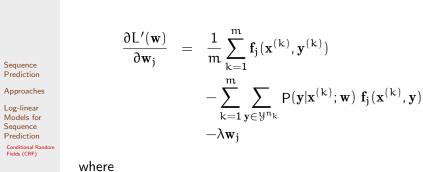
• until convergence $(\|\delta\| < \varepsilon)$

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Computing the gradient



 $\mathbf{f}_j(\mathbf{x},\mathbf{y}) = \sum_{i=1}^n \mathbf{f}_j(\mathbf{x},i,\mathbf{y}_{i-1},\mathbf{y}_i)$

First term: observed mean feature value

Second term: expected feature value under current w

Computing the gradient

The first term is easy to compute, by counting explicitly over all sequence elements:

$$\frac{1}{m} \sum_{k=1}^{m} \sum_{i=1}^{n_k} f_j(x^{(k)}, i, y^{(k)}_{i-1}, y^{(k)}_i)$$

Models for Sequence Prediction

Sequence Prediction Approaches

Log-linear

Fields (CRF)

- The second term is more involved, because it sums over all sequences $y \in \mathbb{Y}^{n_k}$

$$\sum_{k=1}^{m} \sum_{\mathbf{y} \in \mathcal{Y}^{n_k}} \mathsf{P}(\mathbf{y} | \mathbf{x}^{(k)}; \mathbf{w}) \sum_{i=1}^{n_k} \mathbf{f}_j(\mathbf{x}^{(k)}, i, \mathbf{y}_{i-1}, \mathbf{y}_i)$$

Computing the gradient

For a given training example $(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})$:

$$\sum_{\mathbf{y}\in\mathcal{Y}^{n_k}} \mathsf{P}(\mathbf{y}|\mathbf{x}^{(k)};\mathbf{w}) \sum_{i=1}^{n_k} \mathbf{f}_j(\mathbf{x}^{(k)}, i, \mathbf{y}_{i-1}, \mathbf{y}_i) = \sum_{i=1}^{n_k} \sum_{a, b\in\mathcal{Y}} \mu_i^k(a, b) \mathbf{f}_j(\mathbf{x}^{(k)}, i, a, b)$$

where

$$\mu_i^k(\mathfrak{a},\mathfrak{b}) = \sum_{\mathbf{y} \in \mathfrak{Y}^{n_k} \ : \ \mathbf{y}_{i-1} = \mathfrak{a}, \ \mathbf{y}_i = \mathfrak{b}} \mathsf{P}(\mathbf{y} | \mathbf{x}^{(k)}; \mathbf{w})$$

 \blacksquare The quantities μ_i^k can be computed efficiently in $O(n|\mathcal{Y}|^2)$ using the forward-backward algorithm

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Forward-Backward for CRFs

For a given x, we can compute in $O(n|\mathcal{Y}|^2)$:

$$\mu_i(\mathfrak{a},\mathfrak{b}) = \sum_{\mathbf{y} \in \mathcal{Y}^n: \mathbf{y}_{i-1} = \mathfrak{a}, \mathbf{y}_i = \mathfrak{b}} \quad \mathsf{P}(\mathbf{y} | \mathbf{x}; \mathbf{w}), \ 1 \leqslant i \leqslant n; \ \mathfrak{a}, \mathfrak{b} \in \mathcal{Y}$$

decomposing it as:

$$\begin{split} \mu_i(a,b) &= & \alpha_{i-1}(a) \cdot exp(w \cdot f(x,i,a,b)) \cdot \beta_i(b)/Z \\ \alpha_{i-1}(a) &= & \sum_{\substack{y \in \mathcal{Y}^{i-1} \\ y_{i-1}=a}} exp(\sum_{j=1}^{i-1} w \cdot f(x,j,y_{j-1},y_j)) \\ \beta_i(b) &= & \sum_{\substack{y \in \mathcal{Y}^{n-i+1} \\ y_1=b}} exp(\sum_{j=2}^{n-i+1} w \cdot f(x,i+j-1,y_{i+j-1},y_{i+j})) \\ Z &= & P(x) = \sum_{a \in \mathcal{Y}} \alpha_n(a) \end{split}$$

 $\alpha_{i-1}(a)$: Probability that the label sequence for $x_{1:i-1}$ ends with a. $\beta_i(b)$: Probability that the label sequence for $x_{i+1:n}$ starts with b. Z: Probability of the sequence, normalization factor.

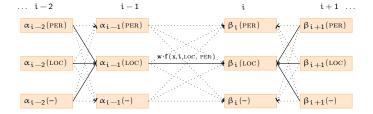
Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Forward-Backward for CRFs

 $\bullet \ \alpha_i(a)$ and $\beta_i(b)$ can be computed recursively, similarly to Viterbi algorithm:



Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

CRF: Compute the probability of a label sequence

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

$$\mathsf{P}(\mathbf{y}|\mathbf{x}, \mathbf{w}) = \frac{\mathsf{exp}(\sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i}))}{\mathsf{Z}(\mathbf{x}; \mathbf{w})}$$

where

$$\mathsf{Z}(\mathbf{x}; \mathbf{w}) = \sum_{\mathbf{z} \in \mathcal{Y}^n} \exp(\sum_{i=1}^n \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{z}_{i-1}, \mathbf{z}_i))$$

Z(x; w) can be efficiently computed using the forward algorithm.

CRFs: summary

- \blacksquare Log-linear models for sequence prediction, $\mathsf{P}(\mathbf{y}|\mathbf{x};\mathbf{w})$
- Computations factorize on label bigrams
- Model form:

$$\underset{y \in \mathcal{Y}^*}{\operatorname{argmax}} \sum_i \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i)$$

- Decoding: uses Viterbi (from HMMs)
 - Parameter estimation:
 - Gradient-based methods, in practice L-BFGS
 - Computation of gradient uses forward-backward (from HMMs)

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

CRFs: summary

- \blacksquare Log-linear models for sequence prediction, $\mathsf{P}(\mathbf{y}|\mathbf{x};\mathbf{w})$
- Computations factorize on label bigrams
- Model form:

$$\underset{y \in \mathcal{Y}^*}{\operatorname{argmax}} \sum_i \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i)$$

- Decoding: uses Viterbi (from HMMs)
 - Parameter estimation:
 - Gradient-based methods, in practice L-BFGS
 - Computation of gradient uses forward-backward (from HMMs)
 - Next Questions: MEMMs or CRFs? HMMs or CRFs?

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

HMMs for sequence prediction

- \mathbf{x} are the observations, \mathbf{y} are the (un)hidden states
- HMMs model the joint distributon $P(\mathbf{x}, \mathbf{y})$
- Parameters: (assume $\mathcal{X} = \{1, \dots, k\}$ and $\mathcal{Y} = \{1, \dots, l\}$)

•
$$\pi \in \mathbb{R}^1$$
, $\pi_a = \mathsf{P}(\mathbf{y}_1 = a)$

T
$$\in \mathbb{R}^{l \times l}$$
, $T_{a,b} = P(\mathbf{y}_i = b | \mathbf{y}_{i-1} = a)$

•
$$O \in \mathbb{R}^{l \times k}$$
, $O_{a,c} = P(\mathbf{x}_i = c | \mathbf{y}_i = a)$

Model form

$$\mathsf{P}(\mathbf{x}, \mathbf{y}) = \pi_{y_1} \mathsf{O}_{y_1, x_1} \prod_{i=2}^n \mathsf{T}_{y_{i-1}, y_i} \mathsf{O}_{y_i, x_i}$$

Parameter Estimation: maximum likelihood by counting events and normalizing

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

In CRFs:
$$\hat{\mathbf{y}} = \mathsf{amax}_{\mathbf{y}} \sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i})$$

In HMMs:

$$\begin{split} \hat{\mathbf{y}} &= \mathsf{amax}_{\mathbf{y}} \, \pi_{\mathbf{y}_1} \mathbf{O}_{\mathbf{y}_1, \mathbf{x}_1} \prod_{i=2}^n \mathsf{T}_{\mathbf{y}_{i-1}, \mathbf{y}_i} \mathbf{O}_{\mathbf{y}_i, \mathbf{x}_i} \\ &= \mathsf{amax}_{\mathbf{y}} \log(\pi_{\mathbf{y}_1} \mathbf{O}_{\mathbf{y}_1, \mathbf{x}_1}) + \sum_{i=2}^n \log(\mathsf{T}_{\mathbf{y}_{i-1}, \mathbf{y}_i} \mathbf{O}_{\mathbf{y}_i, \mathbf{x}_i}) \end{split}$$

An HMM can be modelled with a CRF by setting: $\begin{array}{c|c} & \mathbf{f}_j(\mathbf{x},i,y,y') & \mathbf{w}_j \\ \hline & & \\ \end{array}$

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

In CRFs:
$$\hat{\mathbf{y}} = \mathsf{amax}_{\mathbf{y}} \sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i})$$

In HMMs:

$$\begin{split} \hat{\mathbf{y}} &= \mathsf{amax}_{\mathbf{y}} \, \pi_{\mathbf{y}_1} \mathbf{O}_{\mathbf{y}_1, \mathbf{x}_1} \prod_{i=2}^n \mathsf{T}_{\mathbf{y}_{i-1}, \mathbf{y}_i} \mathbf{O}_{\mathbf{y}_i, \mathbf{x}_i} \\ &= \mathsf{amax}_{\mathbf{y}} \log(\pi_{\mathbf{y}_1} \mathbf{O}_{\mathbf{y}_1, \mathbf{x}_1}) + \sum_{i=2}^n \log(\mathsf{T}_{\mathbf{y}_{i-1}, \mathbf{y}_i} \mathbf{O}_{\mathbf{y}_i, \mathbf{x}_i}) \end{split}$$

An HMM can be modelled with a CRF by setting: $\begin{array}{c|c} \mathbf{f}_j(x,i,y,y') & \mathbf{w}_j \\ \hline & i=1 \ \& \ y'=a & \log(\pi_a) \end{array}$

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

In CRFs:
$$\hat{\mathbf{y}} = \mathsf{amax}_{\mathbf{y}} \sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i})$$

In HMMs:

Sequence

Log-linear Models for Sequence Prediction

Conditional Random Fields (CRF)

$$\begin{split} \hat{y} &= \mathsf{amax}_{y} \, \pi_{y_{1}} O_{y_{1}, x_{1}} \prod_{i=2}^{n} \mathsf{T}_{y_{i-1}, y_{i}} O_{y_{i}, x_{i}} \\ &= \mathsf{amax}_{y} \, \mathsf{log}(\pi_{y_{1}} O_{y_{1}, x_{1}}) + \sum_{i=2}^{n} \mathsf{log}(\mathsf{T}_{y_{i-1}, y_{i}} O_{y_{i}, x_{i}}) \end{split}$$

An HMM can be modelled with a CRF by setting:

$$\label{eq:fj} \begin{array}{c|c} f_{j}(x,i,y,y') & w_{j} \\ \hline i = 1 \ \& \ y' = a \\ i > 1 \ \& \ y = a \ \& \ y' = b \\ \hline \log(T_{a,b}) \end{array} \\ \begin{array}{c|c} \log(\pi_{a}) \\ \log(T_{a,b}) \end{array}$$

In CRFs:
$$\hat{\mathbf{y}} = \mathsf{amax}_{\mathbf{y}} \sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i})$$

In HMMs:

$$\begin{split} \hat{\mathbf{y}} &= \mathsf{amax}_{\mathbf{y}} \, \pi_{\mathbf{y}_1} O_{\mathbf{y}_1, \mathbf{x}_1} \prod_{i=2}^n \mathsf{T}_{\mathbf{y}_{i-1}, \mathbf{y}_i} O_{\mathbf{y}_i, \mathbf{x}_i} \\ &= \mathsf{amax}_{\mathbf{y}} \log(\pi_{\mathbf{y}_1} O_{\mathbf{y}_1, \mathbf{x}_1}) + \sum_{i=2}^n \log(\mathsf{T}_{\mathbf{y}_{i-1}, \mathbf{y}_i} O_{\mathbf{y}_i, \mathbf{x}_i}) \end{split}$$

An HMM can be modelled with a CRF by setting:

$$\label{eq:fj} \begin{array}{c|c} f_j(x,i,y,y') & w_j \\ \hline i = 1 \ \& \ y' = a \\ i > 1 \ \& \ y = a \ \& \ y' = b \\ y' = a \ \& \ x_i = c \end{array} \begin{array}{c|c} \log(\pi_a) \\ \log(T_{a,b}) \\ \log(O_{a,b}) \end{array}$$

 \blacksquare Hence, HMM parameters \subset CRF parameters

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

HMMs and CRFs: main differences

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Conditional Random Fields (CRF)

Representation:

- HMM "features" are tied to the generative process.
- CRF features are very flexible. They can look at the whole input x paired with a label bigram (y, y').
- In practice, for prediction tasks, "good" discriminative features can improve accuracy a lot.
- Parameter estimation:
 - \blacksquare HMMs focus on explaining the data, both x and y.
 - CRFs focus on the mapping from \mathbf{x} to \mathbf{y} .

MEMMs and CRFs

$$\begin{split} \text{MEMMs:} \quad \mathsf{P}(\mathbf{y} \mid \mathbf{x}) &= \prod_{i=1}^{n} \frac{\mathsf{exp}(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i}))}{Z(\mathbf{x}, i, \mathbf{y}_{i-1}; \mathbf{w})} \\ \text{CRFs:} \quad \mathsf{P}(\mathbf{y} \mid \mathbf{x}) &= \frac{\mathsf{exp}(\sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i}))}{Z(\mathbf{x})} \end{split}$$

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

- MEMMs locally normalized; CRFs globally normalized
- MEMM assume that
 - $\mathsf{P}(\mathbf{y}_{\mathfrak{i}} \mid \mathbf{x}_{1:n}, \mathbf{y}_{1:\mathfrak{i}-1}) = \mathsf{P}(\mathbf{y}_{\mathfrak{i}} \mid \mathbf{x}_{1:n}, \mathbf{y}_{\mathfrak{i}-1})$
- Both exploit the same factorization, i.e. same features
- Same computations to compute $\operatorname{argmax}_{\mathbf{y}} \mathsf{P}(\mathbf{y} \mid \mathbf{x})$
- MEMMs are cheaper to train
- CRFs are easier to extend to other structures (e.g. parsing trees)