
Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Goals &
Deliverables

Master in Artificial Intelligence

Advanced Human Language Technologies

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Goals &
Deliverables

Outline

1 Neural Networks NERC

2 General Structure

3 Detailed Structure
Learner
Classifier
Auxiliary classes

4 Core task

5 Goals & Deliverables

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Goals &
Deliverables

Session 5 - NERC using neural networks

Assignment

Write a python program that parses the given XML and
recognizes and classifies drug names. The program must use a
neural network approach.
$ python3 ./nn-NER.py devel.xml result.out

DDI-DrugBank.d278.s0|0-9|Enoxaparin|drug

DDI-DrugBank.d278.s0|93-108|pharmacokinetics|group

DDI-DrugBank.d278.s0|113-124|eptifibatide|drug

DDI-MedLine.d88.s0|15-30|chlordiazepoxide|drug

DDI-MedLine.d88.s0|33-43|amphetamine|drug

DDI-MedLine.d88.s0|49-55|cocaine|drug

DDI-MedLine.d88.s1|82-95|benzodiazepine|drug

...

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Goals &
Deliverables

Outline

1 Neural Networks NERC

2 General Structure

3 Detailed Structure
Learner
Classifier
Auxiliary classes

4 Core task

5 Goals & Deliverables

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Goals &
Deliverables

General Structure

The general structure is basically the same than for the
traditional ML approach:

B-I-O schema

Two programs: one learner and one classifier.

The learner loads the training (Train) and validation
(Devel) data, formats/encodes it appropiately, and feeds it
to the model, toghether with the ground truth.

The classifier loads the test data, formats/encodes it in
the same way that was used in training, and feeds it to the
model to get a prediction.

In the case of NN, we don’t need to extract features (though
we do need proper input encoding)

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Goals &
Deliverables

Input Encoding

The input/output layers of a NN are vectors of neurons, each
set to 0/1.

Modern deep learning libraries handle this in the form of indexes
(i.e. just provided the position of active neurons, ommitting
zeros).

For instance, in a LSTM, each input word in the sequence may
be encoded as the concatenation of different vectors each
containing information about some aspect of the word (form,
lemma, PoS, suffix...)

Each vector will have only one active neuron
(one-hot-encoding), indicated by its index. This input is usually
fed to an embedding layer.

Our learner will need to create and store index dictionaries to be
able to map the index number assigned to each word, label, or
any other used piece of information. See class Codemaps below.

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Goals &
Deliverables

Outline

1 Neural Networks NERC

2 General Structure

3 Detailed Structure
Learner
Classifier
Auxiliary classes

4 Core task

5 Goals & Deliverables

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Learner

Core task

Goals &
Deliverables

Outline

1 Neural Networks NERC

2 General Structure

3 Detailed Structure
Learner
Classifier
Auxiliary classes

4 Core task

5 Goals & Deliverables

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Learner

Core task

Goals &
Deliverables

Learner - Main program

1 def train(trainfile , validationfile , params , modelname) :

2 ’’’

3 learns a NN model using trainfile as training data , and validationfile

4 as validation data. Saves learnt model in a file named modelname

5 ’’’

6 # load train and validation data in a suitable form

7 traindata = Dataset(traindir)

8 valdata = Dataset(validationdir)

9
10 # create indexes from training data

11 codes = Codemaps(traindata , params)

12 # encode datasets

13 train_loader = encode_dataset(traindata , codes , params)

14 val_loader = encode_dataset(valdata , codes , params)

15
16 # build network

17 network = nercLSTM(codes)

18
19 # save indexs

20 os.makedirs(modelname ,exist_ok=True)

21 codes.save(modelname+"/codemaps")

22
23 # train network , keep the best performing model

24 best = 0

25 f o r epoch i n range (params[’epochs ’]):
26 acc = train(network , epoch , train_loader)

27 i f acc >best :

28 best = acc

29 torch.save(network , os.path.join(modelname ,f"network.nn"))

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Classifier

Core task

Goals &
Deliverables

Outline

1 Neural Networks NERC

2 General Structure

3 Detailed Structure
Learner
Classifier
Auxiliary classes

4 Core task

5 Goals & Deliverables

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Classifier

Core task

Goals &
Deliverables

Classifier - Main program

1 def predict(modelname , datafile , params , outfile) :

2 ’’’

3 Loads a NN model from ’modelname ’ and uses it to extract drugs

4 in datafile. Saves results to ’outfile ’ in the appropriate format.

5 ’’’

6 # Load model

7 model = torch.load(os.path.join(modelname ,"network.nn"),

8 map_location=torch.device(used_device))

9 model. e va l ()
10 # load indexes

11 codes = Codemaps(os.path.join(modelname ,"codemaps"), params)

12 # load data to annotate

13 testdata = Dataset(datafile)

14 test_loader = encode_dataset(testdata , codes , params)

15 # run each sentence through the NN, get results

16 Y = []

17 f o r X i n test_loader:

18 y = model.forward (*X)

19 Y.extend ([[codes.idx2label(torch.argmax(w)) f o r w i n s] f o r s i n y])

20
21 # print results

22 output_entities(testdata , Y, codes , outfile)

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Auxiliary classes

Core task

Goals &
Deliverables

Outline

1 Neural Networks NERC

2 General Structure

3 Detailed Structure
Learner
Classifier
Auxiliary classes

4 Core task

5 Goals & Deliverables

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Auxiliary classes

Core task

Goals &
Deliverables

Auxiliary classes - Dataset

1 c l a s s Dataset:

2 ## constructor: parses datafile XML file , tokenizes each sentence , and

3 ## stores a list of sentences , as well as ground truth for each token

4 def __init__(self , datafile)

5
6 ## iterator to get all sentences in the data set.

7 ## for each sentence returns a triplet (text , tokens , labels)

8 def sentences(self)

9
10 ## iterator to get ids for sentence in the data set

11 def sentence_ids(self)

12
13 ## get tokens for one given its id

14 def get_sentence_tokens(self , sid) :

15 ## get text for one sentence given its id

16 def get_sentence_text(self , sid) :

17 ## get labels for one sentence given its id

18 def get_sentence_labels(self , sid) :

19 ’’’

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Auxiliary classes

Core task

Goals &
Deliverables

Auxiliary classes - Codemaps

1 c l a s s Codemaps :

2 # Constructor: create code mapper either from training data , or

3 # loading codemaps from given file.

4 # If ’data’ is a Dataset , and lengths are not None ,

5 # create maps from given data.

6 # If data is a string (file name), load maps from file.

7 def __init__(self , data , params)

8 # Save created codemaps in file named ’name’

9 def save(self , name)

10 # Convert a Dataset into lists of word codes and sufix codes

11 # Adds padding and unknown word codes.

12 def encode_words(self , data)

13 # Convert the gold labels in given Dataset into a list of label codes.

14 # Adds padding

15 def encode_labels(self , data)

16 # get word index size

17 def get_n_words(self)

18 # get suf index size

19 def get_n_sufs(self)

20 # get label index size

21 def get_n_labels(self)

22 # get index for given word

23 def word2idx(self , w)

24 # get index for given suffix

25 def suff2idx(self , s)

26 # get index for given label

27 def label2idx(self , l)

28 # get label name for given index

29 def idx2label(self , i)

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Auxiliary classes

Core task

Goals &
Deliverables

Required functions - network.py

1 c l a s s nercLSTM(nn.Module):

2 def __init__(self , codes):

3 super (nercLSTM , self).__init__ ()

4 # get sizes from index

5 n_words = codes.get_n_words ()

6 n_sufs = codes.get_n_sufs ()

7 n_labels = codes.get_n_labels ()

8 # create embedding layers

9 embW_sz , embS_sz = 100, 50

10 self.embW = nn.Embedding(n_words , embW_sz)

11 self.embS = nn.Embedding(n_sufs , embS_sz)

12 self.dropW = nn.Dropout (0.1)

13 self.dropS = nn.Dropout (0.1)

14 # create LSTM layer + final linear classification layer

15 lstm_in_sz , lstm_out_sz = embW_sz+embS_sz , 200

16 self.lstm = nn.LSTM(lstm_in_sz , lstm_out_sz ,

17 bidirectional=True , batch_first=True)

18 self.out = nn.Linear (2* lstm_out_sz , n_labels)

19
20 def forward(self , w, s):

21 x = self.embW(w) # apply embedding layers to input

22 y = self.embS(s)

23 x = self.dropW(x) # apply dropout to embeddings output

24 y = self.dropS(y)

25 # concatenate embeddigns for word + suffix

26 x = torch.cat((x, y), dim=2)

27 x = self.lstm(x)[0] # feed concatenated vector to LSTM

28 x = self.out(x) # feed LSTM output to classification layer

29 r e t u r n x

30

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Auxiliary classes

Core task

Goals &
Deliverables

Network architecture

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Goals &
Deliverables

Outline

1 Neural Networks NERC

2 General Structure

3 Detailed Structure
Learner
Classifier
Auxiliary classes

4 Core task

5 Goals & Deliverables

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Goals &
Deliverables

Build a good NN-based drug NERC

Strategy: Experiment with different architectures and possibilities.
Some elements you can play with:

Embedding dimension

Initialitzing word embeddings with available pretrained models

Max length and suffix length values

Number of LSTM units

Used optimizer, learning rate, batch size, ...

Number and kind of layers or activation functions

Additional input layers (maybe with embeddings). Attention:
This will require extending class Codemaps to handle the codes
of added input layers.

lowercased words
different length suffixes and/or prefixes
PoS tags
feature layer (with information about capitalization,
dashes, presence in external resources, etc)

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Goals &
Deliverables

Build a good NN-based drug NERC

Warnings:

Neural Network training uses randomization, so different runs of
the same program will produce different results. For repeatable
results, use a random seed (and/or run the training several
times).

During training, accuracy on training and validation sets is
reported. Those values are usually over 98%. However, this is
due to the fact that most of the words have label “O”
(non-drug). Accuracy values around 98% roughly correspond to
F1 values under 25%. To get a reasonable F1, validation set
accuracy should reach about 99.5%.

To precisely evaluate how your model is doing, do not rely on
reported accuracy: run the classifier on the development set and
use the evaluator.

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Goals &
Deliverables

Outline

1 Neural Networks NERC

2 General Structure

3 Detailed Structure
Learner
Classifier
Auxiliary classes

4 Core task

5 Goals & Deliverables

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Goals &
Deliverables

Exercise Goals

What you should do:

Work on your architecture and input vectors. It is the
component of the process where you have most control.

Experiment with different architectures and
hyperparameters.

Experiment with different input information

Keep track of tried variants and parameter combinations.

What you should NOT do:

Alter the suggested code structure (i.e. change only
network.py and Codemaps).

Produce an overfitted model: If performance on the test
dataset is much lower than on devel dataset, you probably
are overfitting your model.

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Goals &
Deliverables

Exercise Goals

Orientative results:

A biLSTM with 2 input layers (word and suffix
embeddings) is enough to get a macroaverage F1 about
50% on devel.

Adding input layers with lowercased words and additional
features (capitalization, dashes, numbers, presence in
external files, ...), and some additional fully-connected
layer at the end, raises the score over 65% on devel.

Results much lower than these orientative scores is an indication
that you are doing something wrong or not elaborated enough.

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Goals &
Deliverables

Deliverables

You’ll be expected to produce a report on neural
approaches to NER and DDI.

By now, just keep track of the information you’ll need
later:

Experimented architectures/hyperparameters
Experimented input information
Performance results on devel corpus using different
configurations
Performance results on test corpus using different
configurations

	Neural Networks NERC
	General Structure
	Detailed Structure
	Learner
	Classifier
	Auxiliary classes

	Core task
	Goals & Deliverables

