Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Goals &
Deliverables

Master in Artificial Intelligence

Advanced Human Language Technologies

UNIVERSITAT POLITECNICA DE CATALUNYA
BARCELONATECH

Facultat d’Informatica de Barcelona

FIB

Outline

Neural Networks NERC

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Goals &
Deliverables

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Goals &
Deliverables

Session 5 - NERC using neural networks

Assignment

Write a python program that parses the given XML and
recognizes and classifies drug names. The program must use a

neural network approach.

$ python3 ./nn-NER.py devel.xml result.out
DDI-DrugBank.d278.s0|0-9|Enoxaparin|drug
DDI-DrugBank.d278.s0|93-108|pharmacokinetics|group
DDI-DrugBank.d278.s0|113-124|eptifibatide|drug
DDI-MedLine.d88.s0|15-30|chlordiazepoxide|drug
DDI-MedLine.d88.s0|33-43|amphetamine |drug
DDI-MedLine.d88.s0|49-55|cocaine|drug
DDI-MedLine.d88.s1|82-95|benzodiazepine|drug

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Goals &
Deliverables

Outline

General Structure

General Structure

The general structure is basically the same than for the
traditional ML approach:

Newrl m B-1-O schema

NERC m Two programs: one learner and one classifier.

Sterare m The learner loads the training (Train) and validation

ol (Devel) data, formats/encodes it appropiately, and feeds it
Core ok to the model, toghether with the ground truth.

Coals & m The classifier loads the test data, formats/encodes it in

the same way that was used in training, and feeds it to the
model to get a prediction.

In the case of NN, we don't need to extract features (though
we do need proper input encoding)

Input Encoding

m The input/output layers of a NN are vectors of neurons, each

set to 0/1.

m Modern deep learning libraries handle this in the form of indexes
newral (i.e. just provided the position of active neurons, ommitting
NERC Zeros).

Euial m For instance, in a LSTM, each input word in the sequence may
Detailed be encoded as the concatenation of different vectors each
SERIEEIE containing information about some aspect of the word (form,
Core task lemma, PoS, suffix...)

Goals &

Deliverables m Each vector will have only one active neuron

(one-hot-encoding), indicated by its index. This input is usually
fed to an embedding layer.

m Our learner will need to create and store index dictionaries to be
able to map the index number assigned to each word, label, or
any other used piece of information. See class Codemaps below.

Outline

Neural
Networks
NERC

General Detailed Structure

Structure

it m Learner
Structure m Classifier
m Auxiliary classes

Core task

Goals &
Deliverables

Neural
Networks
NERC

General
Structure

Detailed
Structure

Learner
Core task

Goals &
Deliverables

Outline

Detailed Structure
m Learner

Learner - Main program

1 def train(trainfile, validationfile, params, modelname)
2 Iy
3 learns a NN model using trainfile as training data, and validationfile
4 as validation data. Saves learnt model in a file named modelname
5 Iy
6 # load train and validation data in a suitable form
N 7 traindata = Dataset (traindir)
Netais 8 valdata = Dataset(validationdir)
NERC 9
10 # create indexes from training data
General 11 codes = Codemaps (traindata, params)
Structure 12 # encode datasets
13 train_loader = encode_dataset(traindata, codes, params)
Detailed 14 val_loader = encode_dataset(valdata, codes, params)
Structure 15
Learner 16 # build network
17 network = nercLSTM(codes)
Core task 18
19 # save indexs
Goa,ls & 20 os.makedirs (modelname ,exist_ok=True)
Deliverables 21 codes.save (modelname+"/codemaps ")
22
23 # train network, keep the best performing model
24 best = 0
25 for epoch in range(params[’epochs’]):
26 acc = train(network, epoch, train_loader)
27 if acc>best
28 best = acc

29 torch.save(network, os.path.join(modelname,f"network.nn"))

Neural
Networks
NERC

General
Structure

Detailed
Structure

Classifier
Core task

Goals &
Deliverables

Outline

Detailed Structure

m Classifier

Classifier - Main program

1 def predict(modelname, datafile, params, outfile)
2 3o
3 Loads a NN model from ’modelname’ and uses it to extract drugs
Neural g in datafile. Saves results to ’outfile’ in the appropriate format.
IR
m?xgrh 6 # Load model
7 model = torch.load(os.path.join(modelname,"network.nn"),
ceneal 8 map_location=torch.device(used_device))
Structure 9 model.eval ()
10 # load indexes
Detailed 11 codes = Codemaps (os.path.join(modelname,"codemaps"), params)
Structure 12 # load data to annotate
@i 13 testdata = Dataset(datafile)
14 test_loader = encode_dataset(testdata, codes, params)
Core task 15 # run each sentence through the NN, get results
16 Y =[]
Goals & 17 for X in test_loader:
Deliverables 18 y = model.forward (*X)
19 Y.extend ([[codes.idx2label(torch.argmax(w)) for w in s] for s in y])
20
21 # print results

22 output_entities(testdata, Y, codes, outfile)

Neural
Networks
NERC

General
Structure

Detailed
Structure

Auxiliary classes
Core task

Goals &
Deliverables

Outline

Detailed Structure

m Auxiliary classes

Neural
Networks
NERC

General
Structure

Detailed
Structure

Auxiliary classes
Core task

Goals &
Deliverables

Auxiliary classes - Dataset

class Dataset:

constructor: parses datafile XML file, tokenizes each sentence, and
stores a list of sentences, as well as ground truth for each token
def __init__(self, datafile)

iterator to get all sentences in the data set.
for each sentence returns a triplet (text, tokens, labels)
def sentences(self)

iterator to get ids for sentence in the data set
def sentence_ids (self)

get tokens for one given its id

def get_sentence_tokens(self, sid)

get text for one sentence given its id
def get_sentence_text (self, sid)

get labels for one sentence given its id
def get_sentence_labels(self, sid)

PR

Neural
Networks
NERC

General
Structure

Detailed
Structure

Auxiliary classes
Core task

Goals &
Deliverables

Auxiliary classes - Codemaps

class Codemaps

Constructor: create code mapper either from training data, or

loading codemaps from given file.

If ’data’ is a Dataset, and lengths are not None,

create maps from given data.

If data is a string (file name), load maps from file.

def __init__(self, data, params)

Save created codemaps in file named ’name’
def save(self, name)

Convert a Dataset into lists of word codes and sufix codes
Adds padding and unknown word codes.

def encode_words(self, data)

Convert the gold labels in given Dataset into a list of label codes.
Adds padding

def encode_labels(self, data)

get word index size

def get_n_words(self)

get suf index size

def get_n_sufs(self)

get label index size

def get_n_labels(self)

get index for given word

def word2idx(self, w)

get index for given suffix

def suff2idx(self, s)

get index for given label

def label2idx(self, 1)

get label name for given index

def idx2label(self, i)

Neural
Networks
NERC

General
Structure

Detailed
Structure

Auxiliary classes
Core task

Goals &
Deliverables

Required functions - network.py

1 class nercLSTM(nn.Module):

2 def __init__(self, codes):

3 super (nercLSTM, self).__init__Q)

4 # get sizes from index

5 n_words = codes.get_n_words ()

6 n_sufs = codes.get_n_sufs()

7 n_labels = codes.get_n_labels ()

8 # create embedding layers

9 embW_sz, embS_sz = 100, 50

10 self.embW = nn.Embedding(n_words, embW_sz)

11 self.embS = nn.Embedding(n_sufs, embS_sz)

12 self.dropW = nn.Dropout (0.1)

13 self.dropS = nn.Dropout (0.1)

14 # create LSTM layer + final linear classification layer
15 lstm_in_sz, lstm_out_sz = embW_sz+embS_sz, 200

16 self.lstm = nn.LSTM(1lstm_in_sz, lstm_out_sz,

17 bidirectional=True, batch_first=True)
18 self.out = nn.Linear (2*lstm_out_sz, n_labels)

19

20 def forward(self, w, s):

21 = self.embW(w) # apply embedding layers to input

22 = self.embS(s)

23 = self.dropW(x) # apply dropout to embeddings output

x
y
x
y = self.dropS(y)
25 # concatenate embeddigns for word + suffix
x = torch.cat((x, y), dim=2)
x = self.lstm(x) [0] # feed concatenated vector to LSTM
x = self.out(x) # feed LSTM output to classification layer
return x

Neural
Networks
NERC

General
Structure

Detailed
Structure

Auxiliary classes
Core task

Goals &
Deliverables

Network architecture

linear+softmax

e

s

| . f |I R T
| sm | 1 | Lstm |_t_’ LSTM
LSTM LsTM | LSTM

word emb.

word emb. suf. emb.

word idx. | I I]

suf. idx.

wl w2

X R S—
| A A
PR
word emb. suf. emb. word emb. suf. emb.
w3 .. wn

Outline

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Goals &
Deliverables

Core task

Build a good NN-based drug NERC

Strategy: Experiment with different architectures and possibilities.
Some elements you can play with:

m Embedding dimension
Newral m Initialitzing word embeddings with available pretrained models
N oworks m Max length and suffix length values
General m Number of LSTM units
Stmclt“re m Used optimizer, learning rate, batch size, ...
?tertuaclltidre m Number and kind of layers or activation functions
Core task m Additional input layers (maybe with embeddings). Attention:

Goals & This will require extending class Codemaps to handle the codes
eliverables .
of added input layers.

m lowercased words

m different length suffixes and/or prefixes

m PoS tags

m feature layer (with information about capitalization,
dashes, presence in external resources, etc)

Build a good NN-based drug NERC

Warnings:

m Neural Network training uses randomization, so different runs of
the same program will produce different results. For repeatable

Neural

Networks results, use a random seed (and/or run the training several
A times).

Structure m During training, accuracy on training and validation sets is
?tertuaciltiie reported. Those values are usually over 98%. However, this is
I due to the fact that most of the words have label “0”

e (non-drug). Accuracy values around 98% roughly correspond to

Pefvasis F1 values under 25%. To get a reasonable Fy, validation set
accuracy should reach about 99.5%.

To precisely evaluate how your model is doing, do not rely on
reported accuracy: run the classifier on the development set and
use the evaluator.

Outline

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Goals &
Deliverables

Goals & Deliverables

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Goals &
Deliverables

Exercise Goals

What you should do:

m Work on your architecture and input vectors. It is the
component of the process where you have most control.

m Experiment with different architectures and
hyperparameters.

m Experiment with different input information
m Keep track of tried variants and parameter combinations.
What you should NOT do:

m Alter the suggested code structure (i.e. change only
network.py and Codemaps).

m Produce an overfitted model: If performance on the test
dataset is much lower than on devel dataset, you probably
are overfitting your model.

Exercise Goals

Orientative results:

Newral m A biLSTM with 2 input layers (word and suffix
NATELE embeddings) is enough to get a macroaverage F1 about

NERC

— 50% on devel.

:::.:: m Adding input layers with lowercased words and additional
- features (capitalization, dashes, numbers, presence in

Core task external files, ...), and some additional fully-connected
Goals & layer at the end, raises the score over 65% on devel.

Results much lower than these orientative scores is an indication
that you are doing something wrong or not elaborated enough.

Deliverables

m You'll be expected to produce a report on neural
Newro approaches to NER and DDI.

Networks
NERC . . . y

. m By now, just keep track of the information you'll need
eneral

Structure Iater:

Detailed m Experimented architectures/hyperparameters
Structure

m Experimented input information
Core task m Performance results on devel corpus using different
Goals & H H
e configurations

m Performance results on test corpus using different
configurations

	Neural Networks NERC
	General Structure
	Detailed Structure
	Learner
	Classifier
	Auxiliary classes

	Core task
	Goals & Deliverables

