
Advanced Human Language Technologies
Exercises on Parsing

Dependency Parsing

Exercise 1.

Given the sentence Mary said that John
saw Bill, with the following parse tree:

S

NP

N

Mary

VP

V

said

SBAR

COMP

that

S

NP

N

John

VP

V

saw

NP

N

Bill

And the following grammar rules (where the
superscript + indicates the head):

S→ NP VP+

NP→ N
VP→ V+ NP
VP→ V+ SBAR
SBAR→ COMP+ S

1. List the headwords of the following non-terminals:

• the SBAR
• the topmost S
• the VP “said that John saw Bill”

2. Draw the dependency tree resulting from the conversion using the given head rules.

SOLUTION

1. Headwords of the requested non-terminals are:

• the SBAR −→ that
• the topmost S −→ said
• the VP “said that John saw Bill” −→ said

2. The dependency tree resulting from the conversion using the given head rules is:

1



N V COMP N V N
Mary said that John saw Bill

2



Exercise 2.

Given the sentence The cat that John saw
chased the mouse, with the following parse
tree:

S

NP

D

the

N

cat

SBAR

REL

that

S

NP

N

John

VP

V

saw

VP

V

chased

NP

D

the

N

mouse

And the following grammar rules (where the
superscript + indicates the head):

S→ NP VP+

NP→ N
NP→ D N+

NP→ D N+ SBAR
VP→ V+ NP
VP→ V
SBAR→ REL+ S

1. List the headwords of the following non-terminals:

• the SBAR
• the NP “The cat that John saw”
• the topmost S
• the VP “chased the mouse”

2. Draw the dependency tree resulting from the conversion using the given head rules.

SOLUTION

1. Headwords of the requested non-terminals are:

• the SBAR −→ that
• the NP “the cat that John saw” −→ cat
• topmost S −→ chased
• the VP “chased the mouse” −→ chased

2. The dependency tree resulting from the conversion using the given head rules is:

D N REL N V V D N
the cat that John saw chased the mouse

3



Exercise 3.

Consider the sentence: John quit his job.
Draw the following dependency parses.

a) (2,1), (0,2), (1,3), (3,4)

b) (2,1), (0,2), (2,3), (3,4)

c) (2,1), (0,2), (2,4), (3,4)

d) (2,1), (0,2), (2,4), (4,3)

e) (0,1), (1,2), (2,3), (3,4)

• Which are invalid parses and why?

• Which are projective parses?

SOLUTION

a) (2,1), (0,2), (1,3), (3,4)

John quit his job

b) (2,1), (0,2), (2,3), (3,4)

John quit his job

c) (2,1), (0,2), (2,4), (3,4)

John quit his job

d) (2,1), (0,2), (2,4), (4,3)

John quit his job

e) (0,1), (1,2), (2,3), (3,4)

John quit his job

• All parses are valid, except (c) which is not a tree since node job has two parents).

• Projective parses are (b), (d), and (e). Tree (a) is not projective since the root (0,2) arc crosses the
(1,3) arc.

4



Exercise 4.

In a global linear model for dependency parsing, the feacture vector f(x, y) for any sentence x paired
with a dependency tree y is defined as:

f(x, y) =
∑

(h,m)∈y

f(x, h,m)

where f(x, h,m) is a function that maps a dependency (h,m) and a sentence x to a local feature vector.
We want the vector f(x, y) to have exactly two dimensions, each dimension having the following

value:

f1(x, y) = num of times a dependency with head car and modifier the is seen in (x, y)

f2(x, y) = num of times a dependency with head part-of-speech NN, modifier part-of-speech DT,

and no adjective (JJ) between the DT and the NN is seen in (x, y)

Assuming that each element in the sentence xi is a pair (word, PoS), and that the functions word(xi)
and pos(xi) return the value for each component of the pair:

1. Give a definition of the function f(x, h,m) = 〈f1(x, h,m), f2(x, h,m)〉 that leads to the above defi-
nition of f(x, y).

2. Compute the value of f(x, y) for the following pair (x, y):

x = The/DT car/NN with/IN the/DT red/JJ hood/NN won/VBD the/DT car/NN race/NN
y = {(2, 1), (7, 2), (2, 3), (3, 6), (6, 4), (6, 5), (0, 7), (7, 10), (10, 8), (10, 9)}

SOLUTION

1. Since f(x, h,m) = 〈f1(x, h,m), f2(x, h,m)〉, to define f we just need to define the indicator feature
functions f1 and f2:

f1(x1:n, h,m) =

{
1 if word(xh) = car and word(xm) = the

0 otherwise

f1(x1:n, h,m) =

 1 if pos(xh) = NN and pos(xm) = DT and
6 ∃ i : m < i < h ∨ h < i < m : pos(xi) = JJ

0 otherwise

2. We need to compute f1(x, h,m) and f1(x, h,m) for each arc in the tree, and then sum them to
obtain the global vector f(x, y).

The given tree y is:

The car with the red hood won the car race
DT NN IN DT JJ NN VBD DT NN NN

The features we get for each arc are:

5



f1(x, 2, 1) = 1 f2(x, 2, 1) = 1
f1(x, 7, 2) = 0 f2(x, 7, 2) = 0
f1(x, 2, 3) = 0 f2(x, 2, 3) = 0
f1(x, 3, 6) = 0 f2(x, 3, 6) = 0
f1(x, 6, 4) = 0(1) f2(x, 6, 4) = 0(2)

f1(x, 6, 5) = 0 f2(x, 6, 5) = 0
f1(x, 0, 7) = 0 f2(x, 0, 7) = 0
f1(x, 7, 10) = 0 f2(x, 7, 10) = 0
f1(x, 10, 8) = 0(1) f2(x, 10, 8) = 1
f1(x, 10, 9) = 0 f2(x, 10, 9) = 0

(1) modifier is the but head is not car
(2) head is NN and modifier is DT but there is a JJ in between.

Finally, f(x, y) is the sum of f = 〈f1, f2〉 over all arcs, thus f(x, y) = (1, 2).

6



Exercise 5.

Recall the factored linear models for labeled dependency parsing. An arc-factored model
computes:

tree(x1:n) = argmax
y∈Y(x)

w · f(x, y)

= argmax
y∈Y(x)

∑
〈h,m,l〉∈y

w · f(x, h,m, l) (1)

In the function, x1:n is an input sentence of n tokens (xi is the i-th token). Y(x) is the set of
all possible dependency trees for x (each y ∈ Y(x) is a dependency tree). The tuple 〈h,m, l〉
is a labeled dependency: h is is the index of the head word (we have 0 ≤ h ≤ n, and h = 0
indicates the root token); m is the index of the modifier word (we have 1 ≤ m ≤ n), and l
is the syntactic label of that dependency (assume L is the set of possible syntactic relations
(e.g. subject, object, modifier, etc.), and that l ∈ L).

In what follows, assume pos(xi) and word(xi) for i ∈ {1 . . . n} return respectively the part-of-speech and
word form in position i in the sentence.

As usual we will define features using feature templates that capture certain syntactic properties. For
example, an important property is to consider the compatibility of head-modifier relations with respect
to part-of-speech tags. As a particular example, a verb will typically have nouns and adverbs as possible
modifiers, but will never have determiners (since these modify nouns).

The following feature template will capture this information:

f1,a,b(x1:n, h,m, l) =

{
1 if pos(xh) = a and pos(xm) = b
0 otherwise

In the template above a and b are possible PoS tags. Note that this template ignores the label. We could
have another template that looks at PoS compatibility in conjunction with a label c ∈ L:

f2,a,b,c(x1:n, h,m, l) =

{
1 if pos(xh) = a and pos(xm) = b and l = c
0 otherwise

1. Write feature templates that capture the following properties:

(a) Lexical compatibility. For example, “boy” and “dog” are possible subject modifiers for the
verb “eat”, but “stone” or “pizza” are not likely subjects; on the other hand, “pizza” is a likely
modifier for an object relation with “eat”. Write two templates, one ignoring and the other
considering the syntactic label:

• f3,a,b(x1:n, h,m, l) : The head word is a and the modifier is b
• f4,a,b,c(x1:n, h,m, l) : The head word is a, the modifier is b, and the relation is c.

(b) Adjectives in English appear before nouns (“small dog”), while for Spanish and Catalan they
appear after nouns (“gos petit”). Write templates that capture the relative position of the
modifier with respect to the head. Specifically, the features need to capture whether the
modifier is to the left or to the right of the head, and whether the two words are adjacent
or not. Write templates that only captures the relative position, and others that capture the
relative position together with the pos tags or the words.

• f5(x1:n, h,m, l) : The modifier is to the left of the head word.
• f6(x1:n, h,m, l) : The modifier is to the right of the head word.
• f7(x1:n, h,m, l) : The modifier is immediately left of the head word.
• f8(x1:n, h,m, l) : The modifier is imediately right of the head word.
• f9,a,b(x1:n, h,m, l) : The head word is a, the modifier is b, and the modifier is to the left of

the head word.
• f10,a,b(x1:n, h,m, l) : The head word is a, the modifier is b, and the modifier is to the right

of the head word.

7



• f11,a,b(x1:n, h,m, l) : The head word is a, the modifier is b, and the modifier is immediately
left of the head word.

• f12,a,b(x1:n, h,m, l) : The head word is a, the modifier is b, and the modifier is immediately
right of the head word.

• f13,a,b(x1:n, h,m, l) : The head word PoS is a, the modifier PoS is b, and the modifier is to
the left of the head word.

• f14,a,b(x1:n, h,m, l) : The head word PoS is a, the modifier PoS is b, and the modifier is to
the right of the head word.

• f15,a,b(x1:n, h,m, l) : The head word PoS is a, the modifier PoS is b, and the modifier is
immediately left of the head word.

• f16,a,b(x1:n, h,m, l) : The head word PoS is a, the modifier PoS is b, and the modifier is
immediately right of the head word.

(c) In a noun phrase such as “many small hungry dogs” we expect to find a sequence of determin-
ers and adjectives before a noun, and don’t expect to find verbs in the middle of this sequence.
Write feature templates that capture the pos tags of words that appear between the head and
the modifier.

• f17,a(x1:n, h,m, l) : The PoS tag a appears between the modifier and the head word.

(d) Write feature templates that capture Subject-Verb-Object phenomena1 and variations (SOV,
SVO, OVS, . . . ). Try to be general: assume a part of speech of a head word (e.g. verb) and
two syntactic relations (e.g. subject and object), and write templates that can capture the
relative position of the relations with respect to the head word. Illustrate the type of features
that your templates can and can not capture.

• f18(x1:n, h,m, l) : The head is a verb, the modifier is to its left, and it is the subject.
• f19(x1:n, h,m, l) : The head is a verb, the modifier is to its right, and it is the subject.
• f20(x1:n, h,m, l) : The head is a verb, the modifier is to its left, and it is the object.
• f21(x1:n, h,m, l) : The head is a verb, the modifier is to its right, and it is the object.

2. Using the previous templates, compute the value of f(x, y) for the following pair (x, y):

x = the/DT big/JJ cat/NN eats/VBZ fresh/JJ fish/NN
y = {(3, 1,det), (3, 2,nmod), (4, 3, subj), (0, 4, root), (6, 5,nmod), (4, 6, obj)}

SOLUTION

1. Feature patterns

(a) Lexical compatibility

• f3,a,b(x1:n, h,m, l) : The head word is a and the modifier is b

f3,a,b,(x1:n, h,m, l) =

{
1 if word(xh) = a and word(xm) = b
0 otherwise

• f4,a,b,c(x1:n, h,m, l) : The head word is a, the modifier is b, and the relation label is c

f3,a,b,c(x1:n, h,m, l) =

{
1 if word(xh) = a and word(xm) = b and l = c
0 otherwise

(b) head-modifier order

• f5(x1:n, h,m, l) : The modifier is to the left of the head word.

f5(x1:n, h,m, l) =

{
1 if m < h
0 otherwise

1See http://en.wikipedia.org/wiki/Subject-verb-object

8

http://en.wikipedia.org/wiki/Subject-verb-object


• f6(x1:n, h,m, l) : The modifier is to the right of the head word.

f6(x1:n, h,m, l) =

{
1 if m > h
0 otherwise

• f7(x1:n, h,m, l) : The modifier is immediately left of the head word.

f7(x1:n, h,m, l) =

{
1 if m = h− 1
0 otherwise

• f8(x1:n, h,m, l) : The modifier is imediately right of the head word.

f8(x1:n, h,m, l) =

{
1 if m = h+ 1
0 otherwise

• f9,a,b(x1:n, h,m, l) : The head word is a, the modifier is b, and the modifier is to the left of
the head word.

f9,a,b(x1:n, h,m, l) =

{
1 if word(xh) = a and word(xm) = b and m < h
0 otherwise

• f10,a,b(x1:n, h,m, l) : The head word is a, the modifier is b, and the modifier is to the right
of the head word.

f10,a,b(x1:n, h,m, l) =

{
1 if word(xh) = a and word(xm) = b and m > h
0 otherwise

• f11,a,b(x1:n, h,m, l) : The head word is a, the modifier is b, and the modifier is immediately
left of the head word.

f11,a,b(x1:n, h,m, l) =

{
1 if word(xh) = a and word(xm) = b and m = h− 1
0 otherwise

• f12,a,b(x1:n, h,m, l) : The head word is a, the modifier is b, and the modifier is immediately
right of the head word.

f12,a,b(x1:n, h,m, l) =

{
1 if word(xh) = a and word(xm) = b and m = h+ 1
0 otherwise

• f13,a,b(x1:n, h,m, l) : The head word PoS is a, the modifier PoS is b, and the modifier is to
the left of the head word.

f13,a,b(x1:n, h,m, l) =

{
1 if pos(xh) = a and pos(xm) = b and m < h
0 otherwise

• f14,a,b(x1:n, h,m, l) : The head word PoS is a, the modifier PoS is b, and the modifier is to
the right of the head word.

f14,a,b(x1:n, h,m, l) =

{
1 if pos(xh) = a and pos(xm) = b and m > h
0 otherwise

• f15,a,b(x1:n, h,m, l) : The head word PoS is a, the modifier PoS is b, and the modifier is
immediately left of the head word.

f15,a,b(x1:n, h,m, l) =

{
1 if pos(xh) = a and pos(xm) = b and m = h− 1
0 otherwise

• f16,a,b(x1:n, h,m, l) : The head word PoS is a, the modifier PoS is b, and the modifier is
immediately right of the head word.

f16,a,b(x1:n, h,m, l) =

{
1 if pos(xh) = a and pos(xm) = b and m = h+ 1
0 otherwise

9



(c) Tags between head and modifier

• f17,a(x1:n, h,m, l) : The PoS tag a appears between the modifier and the head word.

f17,a(x1:n, h,m, l) =

{
1 if ∃i : m < i < h ∨ h < i < m : pos(xi) = a
0 otherwise

(d) S-V-O variations

• f18(x1:n, h,m, l) : The head is a verb, the modifier is to its left, and it is the subject.

f18(x1:n, h,m, l) =

{
1 if pos(xh) = V and m < h and l = subj
0 otherwise

• f19(x1:n, h,m, l) : The head is a verb, the modifier is to its right, and it is the subject.

f19(x1:n, h,m, l) =

{
1 if pos(xh) = V and m > h and l = subj
0 otherwise

• f20(x1:n, h,m, l) : The head is a verb, the modifier is to its left, and it is the object.

f20(x1:n, h,m, l) =

{
1 if pos(xh) = V and m < h and l = obj
0 otherwise

• f21(x1:n, h,m, l) : The head is a verb, the modifier is to its right, and it is the object.

f21(x1:n, h,m, l) =

{
1 if pos(xh) = V and m > h and l = obj
0 otherwise

2. We need to apply the patterns to each arc in the tree, and sum the binary features to get the feature
vector f(x, y) for the given pair.

The given tree y is:

The big cat eats fresh fish
DT JJ NN VBZ JJ NN

det

nmod subj

root

nmod

obj

The features we get for each edge in y are:

edge features
(3, 1,det) f1,NN,DT; f2,NN,DT,det; f3,cat,the; f4,cat,the,det; f5; f9,cat,the; f13,NN,DT; f17,JJ
(3, 2,nmod) f1,NN,JJ; f2,NN,JJ,nmod; f3,cat,big; f4,cat,big,nmod; f5; f7; f9,cat,big; f11,cat,big;

f13,NN,JJ; f15,NN,JJ

(4, 3, subj) f1,VBZ,NN; f2,VBZ,NN,subj; f3,eats,cat; f4,eats,cat,subj; f5; f7; f9,eats,cat; f11,eats,cat;
f13,VBZ,NN; f15,VBZ,NN; f18

(0, 4, root) f1,∗,VBZ; f2,∗,VBZ,root; f3,∗,eats; f4,∗,eats,root
(6, 5,nmod) f1,NN,JJ; f2,NN,JJ,nmod; f3,fish,fresh; f4,fish,fresh,nmod; f5; f7; f9,fish,fresh;

f11,fish,fresh; f13,NN,JJ; f15,NN,JJ

(4, 6, obj) f1,VBZ,NN; f2,VBZ,NN,obj; f3,eats,fish; f4,eats,fish,obj; f6; f10,eats,fish; f17,JJ; f21

Thus, the complete f(x, y) vector is:

10



f1,NN,DT 1
f1,NN,JJ 2
f1,VBZ,NN 2
f1,∗,VBZ 1
f2,NN,DT,det 1
f2,NN,JJ,nmod 2
f2,VBZ,NN,subj 1
f2,∗,VBZ,root 1
f2,VBZ,NN,obj 1
f3,cat,the 1
f3,cat,big 1
f3,eats,cat 1
f3,∗,eats 1
f3,fish,fresh 1
f3,eats,fish 1

f4,cat,the,det 1
f4,cat,big,nmod 1
f4,eats,cat,subj 1
f4,∗,eats,root 1
f4,fish,fresh,nmod 1
f4,eats,fish,obj 1
f5 4
f6 1
f7 3
f9,cat,the 1
f9,cat,big 1
f9,eats,cat 1
f9,fish,fresh 1
f10,eats,fish 1

f11,cat,big 1
f11,eats,cat 1
f11,fish,fresh 1
f13,NN,DT 1
f13,NN,JJ 2
f13,VBZ,NN 1
f14,VBZ,NN 1
f15,NN,JJ 2
f15,VBZ,NN 1
f17,JJ 2
f18 1
f21 1

11



Exercise 6.

Given the sentence natural language technology courses are fun,

1. Draw unlabeled dependency trees for the following interpretations

(a) technology courses about natural language are fun

(b) courses about technology on natural language are fun

(c) natural courses about language technology are fun

(d) courses about natural technology for language are fun

2. Emulate the behaviour of a transition dependency parser using an arc-standard model (i.e. with
operations shift, left-arc, and right-arc between the two topmost stack elements). List the interme-
diate stack/buffer contents and the selected action at each step needed to obtain the tree for each
of the interpretations above.

SOLUTION

1. (a) technology courses about natural language are fun

natural language technology courses are fun

(b) courses about technology on natural language are fun

natural language technology courses are fun

(c) natural courses about language technology are fun

natural language technology courses are fun

(d) courses about natural technology for language are fun

natural language technology courses are fun

12



2. Transition sequences to build each tree

(a) technology courses about natural language are fun

Stack Buffer Transition Edges
* natural language technology courses are fun sh {}

* natural language technology courses are fun sh {}
* natural language technology courses are fun l-arc {}

* language technology courses are fun sh {(2,1)}
* language technology courses are fun sh {(2,1)}

* language technology courses are fun l-arc {(2,1)}
* language courses are fun l-arc {(2,1),(4,3)}

* courses are fun sh {(2,1),(4,3),(4,2)}
* courses are fun l-arc {(2,1),(4,3),(4,2)}

* are fun sh {(2,1),(4,3),(4,2),(5,4)}
* are fun r-arc {(2,1),(4,3),(4,2),(5,4)}

* are r-arc {(2,1),(4,3),(4,2),(5,4),(5,6)}
* stop {(2,1),(4,3),(4,2),(5,4),(5,6),(0,5)}

(b) courses about technology on natural language are fun

Stack Buffer Transition Edges
* natural language technology courses are fun sh {}

* natural language technology courses are fun sh {}
* natural language technology courses are fun l-arc {}

* language technology courses are fun sh {(2,1)}
* language technology courses are fun l-arc {(2,1)}

* technology courses are fun sh {(2,1),(3,2)}
* technology courses are fun l-arc {(2,1),(3,2)}

* courses are fun sh {(2,1),(3,2),(4,3)}
* courses are fun l-arc {(2,1),(3,2),(4,3)}

* are fun sh {(2,1),(3,2),(4,3),(5,4)}
* are fun r-arc {(2,1),(3,2),(4,3),(5,4)}

* are r-arc {(2,1),(3,2),(4,3),(5,4),(5,6)}
* stop {(2,1),(3,2),(4,3),(5,4),(5,6),(0,5)}

(c) natural courses about language technology are fun

Stack Buffer Transition Edges
* natural language technology courses are fun sh {}

* natural language technology courses are fun sh {}
* natural language technology courses are fun sh {}

* natural language technology courses are fun l-arc {}
* natural technology courses are fun sh {(3,2)}

* natural technology courses are fun l-arc {(3,2)}
* natural courses are fun l-arc {(3,2),(4,3)}

* courses are fun sh {(3,2),(4,3),(4,1)}
* courses are fun l-arc {(3,2),(4,3),(4,1),(5,4)}

* are fun sh {(3,2),(4,3),(4,1),(5,4)}
* are fun r-arc {(3,2),(4,3),(4,1),(5,4)}

* are r-arc {(3,2),(4,3),(4,1),(5,4),(5,6)}
* stop {(3,2),(4,3),(4,1),(5,4),(5,6),(0,5)}

(d) courses about natural technology for language are fun

Stack Buffer Transition Edges
* natural language technology courses are fun sh {}

* natural language technology courses are fun sh {}
* natural language technology courses are fun sh {}

* natural language technology courses are fun l-arc {}
* natural technology courses are fun l-arc {(3,2)}

* technology courses are fun sh {(3,2),(3,1)}
* technology courses are fun l-arc {(3,2),(3,1)}

* courses are fun sh {(3,2),(3,1),(4,3)}
* courses are fun l-arc {(3,2),(3,1),(4,3),(5,4)}

* are fun sh {(3,2),(3,1),(4,3),(5,4)}
* are fun r-arc {(3,2),(3,1),(4,3),(5,4)}

* are r-arc {(3,2),(3,1),(4,3),(5,4),(5,6)}
* stop {(3,2),(3,1),(4,3),(5,4),(5,6),(0,5)}

13



Exercise 7. Parsing

Given the sentence John ate a delicious vanilla flavour cookie,

1. Draw unlabeled dependency trees for the following interpretations

(a) John ate a cookie with flavour of delicious vanilla

(b) John ate a delicious cookie with vanilla flavour

(c) John ate a delicious and flavoured cookie made of vanilla

(d) John ate a cookie with a delicious flavour of vanilla

2. Given the tree

John ate a delicious vanilla flavour cookie

(a) Explain the interpretation encoded by this tree avoiding any ambiguities.

(b) Emulate the behaviour that would result in this tree for a transition dependency parser using
an arc-standard model (i.e. with operations shift, left-arc, and right-arc between the two
topmost stack elements). List the intermediate stack/buffer contents and the required action
at each step to obtain the final tree.

SOLUTION

1.

(a)

John ate a delicious vanilla flavour cookie

(b)

John ate a delicious vanilla flavour cookie

(c)

John ate a delicious vanilla flavour cookie

(d)

John ate a delicious vanilla flavour cookie

2.

(a) The tree represents the interpretation where John ate a flavoured cookie made of delicious
vanilla.

(b) The behaviour of an arc-based transition parser to obtain this interpretation would be the
following:

14



Stack Buffer Transition Edges
* John ate a delicious vanilla flavour cookie sh {}

* John ate a delicious vanilla flavour cookie sh {}
* John ate a delicious vanilla flavour cookie l-arc {(2,1)}

* ate a delicious vanilla flavour cookie sh {(2,1)}
* ate a delicious vanilla flavour cookie sh {(2,1)}

*ate a delicious vanilla flavour cookie sh {(2,1)}
* ate a delicious vanilla flavour cookie l-arc {(2,1),(5,4)}

* ate a vanilla flavour cookie sh {(2,1),(5,4)}
* ate a vanilla flavour cookie sh {(2,1),(5,4)}

* ate a vanilla flavour cookie l-arc {(2,1),(5,4),(7,6)}
* ate a vanilla cookie l-arc {(2,1),(5,4),(7,6),(7,5)}

* ate a cookie l-arc {(2,1),(5,4),(7,6),(7,5),(7,3)}
* ate cookie r-arc {(2,1),(5,4),(7,6),(7,5),(7,3),(2,7)}

* ate r-arc {(2,1),(5,4),(7,6),(7,5),(7,3),(2,7),(0,2)}
* stop {(2,1),(5,4),(7,6),(7,5),(7,3),(2,7),(0,2)}

15



Exercise 8.

Given the sentence I had oysters with champagne from France.

1. Draw unlabeled dependency trees for the following interpretations:

(a) I had oysters which had champagne on them. The champagne was from France.
(b) I had oysters which had champagne on them. The oysters were from France.
(c) I had oysters while having also champagne. The champagne was from France.
(d) I had oysters while having also champagne. The oysters were from France.

2. Is any of the obtained trees non-projective? Justify your answer.

SOLUTION

1. Draw unlabeled dependency trees for the following interpretations:

(a) I had oysters which had champagne on them. The champagne was from France.

I had oysters with champagne fom France

(b) I had oysters which had champagne on them. The oysters were from France.

I had oysters with champagne fom France

(c) I had oysters while having also champagne. The champagne was from France.

I had oysters with champagne fom France

(d) I had oysters while having also champagne. The oysters were from France.

I had oysters with champagne fom France

2. Structure (d) is non-projective, since there are crossing arcs.

Exercise 9.

A Papazom.com user wrote the sentence:

I want the smartphone with 64Gb and the AMOLED display

We used the following PCFG grammar (where the + superscript indicates the head of each rule), and
obtained the two possible parse trees below.

16



r1 S→ NP VP+ 1.0 r7 NP→ PRP 0.1 r12 PRP→ I 1.0
r2 VP→ V+ NP 0.7 r8 NP→ NN 0.2 r13 V→ want 1.0
r3 VP→ V+ CJNP 0.3 r9 NP→ NP+ PP 0.2 r14 CONJ→ and 1.0
r4 CJNP→ NP CONJ+ NP 1.0 r10 NP→ DT NN+ 0.3 r15 DT→ the 1.0
r5 PP→ IN+ NP 0.6 r11 NP→ DT NN NN+ 0.2 r16 IN→ with 1.0
r6 PP→ IN+ CJNP 0.4 r17 NN→ display 0.3

r18 NN→ smartphone 0.4
r19 NN→ 64Gb 0.2
r20 NN→ AMOLED 0.1

S

NP

PRP

I

VP+

V+

want

NP

NP+

DT

the

NN+

smartphone

PP

IN+

with

CJNP

NP

NN

64Gb

CONJ+

and

NP

DT

the

NN

AMOLED

NN+

display

S

NP

PRP

I

VP+

V+

want

CJNP

NP

NP+

DT

the

NN+

smartphone

PP

IN+

with

NP

NN

64Gb

CONJ+

and

NP

DT

the

NN

AMOLED

NN+

display

1. Which parse tree has higher probability according to the PCFG? Reason your answer.

2. Convert both parse trees to dependency trees.

3. Describe in an unambiguous form what is the meaning of the interpretation represented by each
tree.

SOLUTION

1. The probability of a parse tree is computed as P (t) =
∏

r∈t q(r), that is, the product of the proba-
bilities of the rules used to build it.

Both trees use each rule in the grammar exactly once, with only two exceptions:

• The first tree does not use r3 nor r5.

• The second tree does not use r2 nor r6.

Let Q be the product of the probabilities of the rules common to both trees,
i.e. Q =

∏
r∈R−{r2,r3,r5,r6} P (r).

Then, the first tree will have probability P1 = Q×P (r2)×P (r6) = Q× 0.7× 0.4 = Q× 0.28, while
the second tree will have probability P2 = Q× P (r3)× P (r5) = Q× 0.3× 0.6 = Q× 0.18.

Since Q× 0.28 > Q× 0.18, the first tree has higher probability according to this PCFG.

2. Convert both parse trees to dependency trees.

First tree:

* PRP VBN DT NN IN NN CONJ DT NN NN
I want the smartphone with 64Gb and the AMOLED display

Second tree:

17



* PRP VBN DT NN IN NN CONJ DT NN NN
I want the smartphone with 64Gb and the AMOLED display

3. Describe in an unambiguous form what is the meaning of the interpretation represented by each
tree.

First tree has the interpretation that the user wants a smartphone that has two features: 64Gb and
an AMOLED display

The second tree interpretation is that the user wants two products: One smartphone with 64Gb,
and also one AMOLED display.

Exercise 10.

One user in out platform wrote the review:

It was a huge bomb explosion movie

1. Draw dependency trees for the following interpretations:

(a) The movie was huge and it was about explosions. The movie was also about bombs.
(b) The movie was huge and contained the explosion of a bomb.
(c) A huge bomb exploded in the movie.
(d) The movie was about explosions, and also about a huge bomb.

2. Given the following emulation of the behaviour of a transition dependency parser with an arc-
standard model (i.e. with operations shift, left-arc, and right-arc between the two topmost stack
elements), answer the questions below:

Stack Buffer Edges Transition
* It was a huge bomb explosion movie {} shift

* It was a huge bomb explosion movie {} shift
* It was a huge bomb explosion movie {} left-arc

* was a huge bomb explosion movie {(2,1)} shift
* was a huge bomb explosion movie {(2,1)} shift

* was a huge bomb explosion movie {(2,1)} shift
* was a huge bomb explosion movie {(2,1)} left-arc

* was a bomb explosion movie {(2,1), (5,4)} shift
* was a bomb explosion movie {(2,1), (5,4)} ???

(a) If we apply left-arc as the next transition

• Which arc would be added to the tree?
• How many of the four interpretations above are still possible, and which ones? Justify

your answer.

(b) If we apply shift as the next transition instead

• How many of the four interpretations above are still possible, and which ones? Justify
your answer.

• Which should be the following transitions to complete the tree and which arcs would each
transition add?

18



SOLUTION

1.

(a) The movie was huge and it was about explosions. The movie was also about bombs.

* It was a huge bomb explosion movie

(b) The movie was huge and contained the explosion of a bomb.

* It was a huge bomb explosion movie

(c) A huge bomb exploded in the movie.

* It was a huge bomb explosion movie

(d) The movie was about explosions, and also about a huge bomb.

* It was a huge bomb explosion movie

(a) If we apply left-arc as the next transition

• A left-arc transition will add an arc between the top two words in the stack, putting the
leftmost under the rightmost, since the top two words in the stack are bomb and explosion,
this will put bomb under explosion, i.e. adding arc (6, 5)

• After adding this arc, only interpretations that contain all the arcs created so far can be
reached. Only one interpretation (c) remains, since it is the only containing arcs (5, 4)
and (6, 5)

(b) If we apply shift as the next transition instead

• A shift transition will move movie to the stack, skipping the addition of arc (6, 5) (if
we want to add (6, 5) later, we will need to add (6, 7) first, which would discard all 4
interpretations). Thus, the only remaining possibilities will be those containing arc (5, 4)
and not containing (6, 5). The only interpretation satisfying these constraints is (d) .

• Next steps will be: left-arc will add edge (7, 6), left-arc will add edge (7, 5), left-arc will
add edge (7, 3), right-arc will add edge (2, 7), right-arc will add edge (0, 2), stop.

19


	
	
	
	
	
	
	Parsing
	
	

