

ConvNets for NLP

Noé Casas

noe.casas@upc.edu

Discrete Convolutions. Intuition

0	0	0	0	0	0	0
0	60	113	56	139	85	0
0	73	121	54	84	128	0
0	131	99	70	129	127	0
0	80	57	115	69	134	0
0	104	126	123	95	130	0
0	0	0	0	0	0	0

Kernel								
0	-1	0						
-1	5	-1						
0	-1	0						

114		

- How it works:
 - 1. Slide a small filter matrix (kernel) over the input matrix.
 - 2. At each position, compute the product of kernel and input values, and add them together.
 - 3. The output matrix is the concatenation of the application of the filter over the input matrix.
- The "trainable" weights are the filters (kernels).

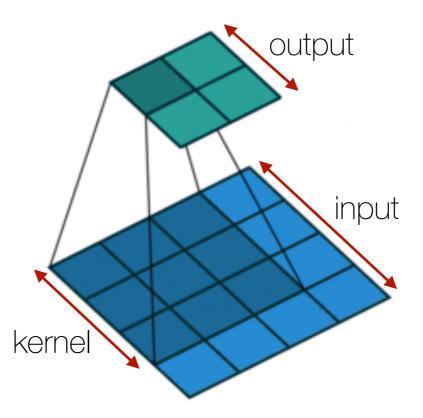
Discrete Convolutions. Purpose

- Used to detect local features.
- Invariant to feature position.
- Stacked convolutional layers detect hierarchical features.

Discrete Convolutions. Domains

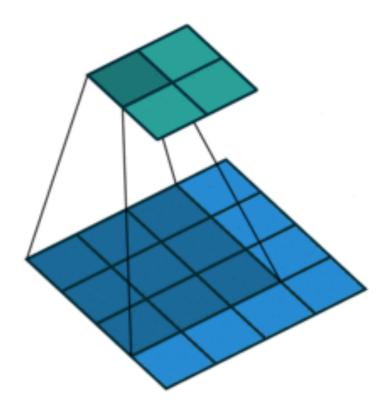
- Images (a matrix of pixels 2D convolution)
- Text (a sequence of tokens 1D convolution)
- Video (a sequence of images 3D convolution)

(Notation in images)

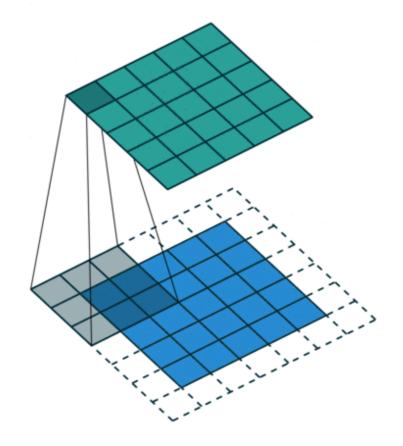


Discrete 2D Convolutions. Hyperparams (1/4)

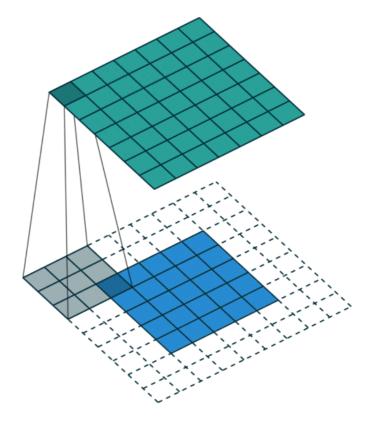
- Input size: 4 x 4
- Kernel size: 3
- Output size: 2 x 2



Discrete 2D Convolutions. Hyperparams (2/4)

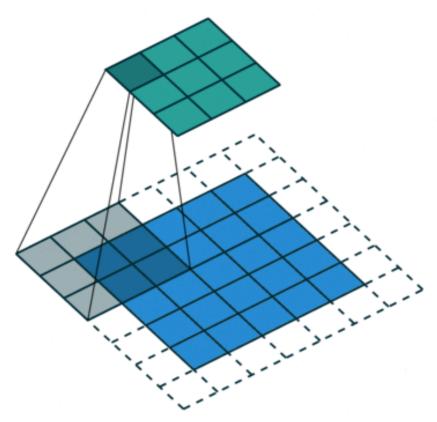


- Input size: 5 x 5
- Kernel size: 3
- Padding: 1
- Output size: 5 x 5

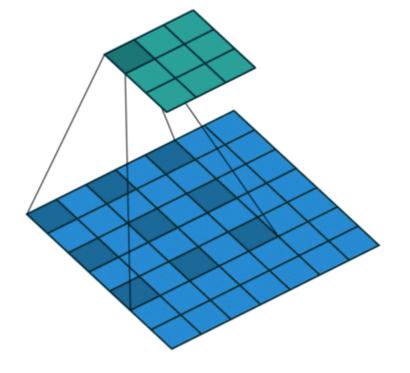


- Input size: 5 x 5
- Kernel size: 3
- Padding: 2
- Output size: 7 x 7

Discrete 2D Convolutions. Hyperparams (3/4)



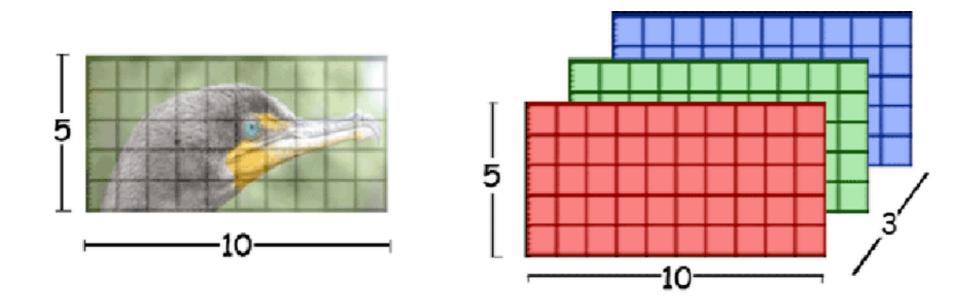
- Input size: 5 x 5
- Kernel size: 3
- Padding: 1
- Stride: 2
- Output size: 3 x 3



- Input size: 7 x 7
- Kernel size: 3
- Padding: 0
- Stride: 1
- Dilation: 2
- Output size: 3 x 3

https://github.com/vdumoulin/conv_arithmetic

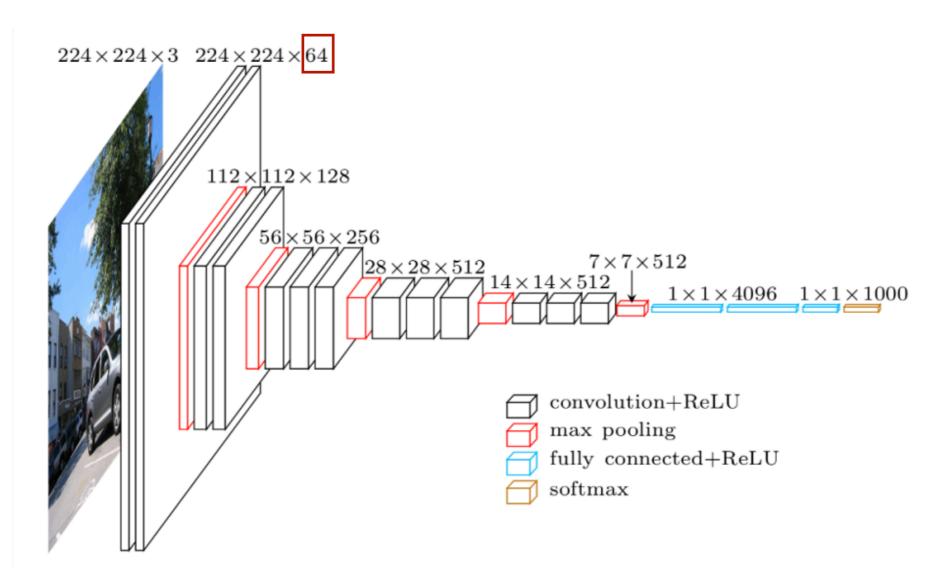
(Multichannel inputs)



- Input size: 5 x 10 x 3
- Kernel size: 3
- Padding:
- Output size: 5 x 10 x 1

Discrete 2D Convolutions. Hyperparams (4/4)

• Number of filters (= number of output channels)

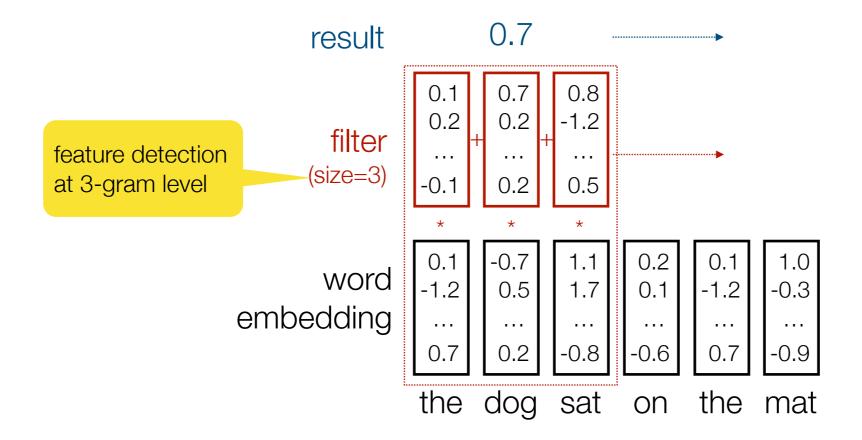


Discrete 1D Convolutions

Same as in 2D, but with 1D input and kernel:

$$(I * k)[n] = \sum_{-M}^{M} I[n - m]k[m]$$

Applied over a continuous representation, e.g.:



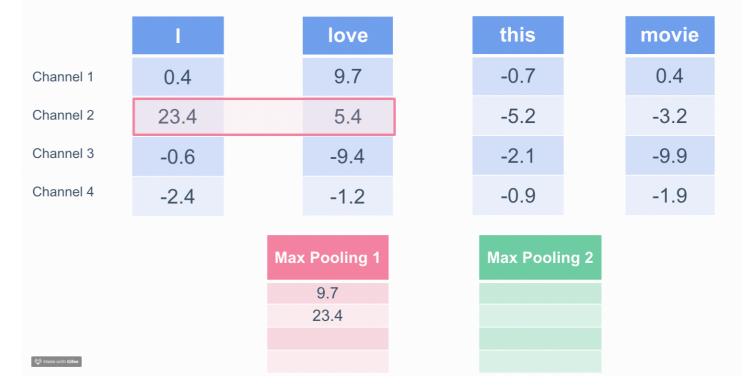
Example

- Sequence length: 6
- Embedding dimensionality: 3
- Kernel size: 3
- Padding: 1
- Output length: 6



Sliding Window operations: Max pooling over time

- <u>Sliding window</u> over input along time dimension.
- Output is maximum value in window.
- Usually has stride of the same size of the window size.
- Used after convolution.
- Purpose: reduce complexity while capturing most important activation from previous layer.

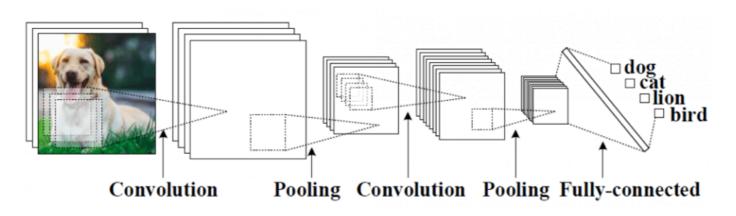


Sliding Window operations: Average pooling over time

- <u>Sliding window</u> over input along time dimension.
- Output is average value in window.
- Usually has stride of the same size of the window size.
- Used after convolution.
- Purpose: reduce complexity while retaining info.

1D Convnets Architectural Fit

 2D convnets are normally used as a group with pooling and ReLU, over fixed-sized inputs:



- In NLP, convnet inputs are variable-length sequences
- Depending on the task, a "collapsing" operation (e.g. max) may be needed to obtain a fixed-size representation.

Collapsing pooling approaches

- Max pooling: computes the maximum values per channel in the input sequence.
- Average pooling: computes the average values per channel in the input sequence.
- k-max pooling: computes the subsequence of k maximum values in the input sequence. Keeps order of appearance.

Conv. with Kernel size = 1

- Position-wise linear transformation.
- Increases or decreases channel dimensionality (depending on number of filters / num. output channels).
- In 2D convolutions they are known as 1x1 convolutions or "network-in-network".

Depthwise Separable Conv.

- Operation divided in two steps:
 - Per-channel normal convolution
 → output has same number of channels as input
 - 2. Position-wise convolution (kernel width=1)
- Less parameters and less computational cost.

Dynamic convolutions

- Normal convolutions have fixed (trainable) kernels.
- Idea: compute kernels dynamically in the neural network.

Batch processing

- Most neural networks are fed mini-batches of data.
- In-batch padding is needed (apart from the CNN padding).

Comparison with RNNs

• Speed:

- Convnets are computed in parallel.
- RNNs must be computed sequentially.
- Dependency range / receptive field:
 - RNNs tend to capture too much of previous vector (bad if output is taken from the last position). Attention mitigates this.
 - Convnets only handle dependencies within the filter size. Dilation and stacked convolutions mitigate this.

E1: vanilla convolution, no padding

tentative	0.2	0.1	-0.3	0.4
deal	0.5	0.2	-0.3	-0.1
reached	-0.1	-0.3	-0.2	0.4
to	0.3	-0.3	0.1	0.1
keep	0.2	-0.3	0.4	0.2
government	0.1	0.2	-0.1	-0.1
open	-0.4	-0.4	0.2	0.3

t,d,r	-1.0
d,r,t	-0.5
r,t,k	-3.6
t,k,g	-0.2
k,g,o	0.3

Apply a filter (or kernel) of size 3

3	1	2	-3
-1	2	1	-3
1	1	-1	1

E2: padding = 1

Ø	0.0	0.0	0.0	0.0
tentative	0.2	0.1	-0.3	0.4
deal	0.5	0.2	-0.3	-0.1
reached	-0.1	-0.3	-0.2	0.4
to	0.3	-0.3	0.1	0.1
keep	0.2	-0.3	0.4	0.2
government	0.1	0.2	-0.1	-0.1
open	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Ø,t,d	-0.6
t,d,r	-1.0
d,r,t	-0.5
r,t,k	-3.6
t,k,g	-0.2
k,g,o	0.3
g,o,Ø	-0.5

Apply a filter (or kernel) of size 3

3	1	2	-3
-1	2	1	-3
1	1	-1	1

http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture11-convnets.pdf

E3: channels=3, padding = 1

Ø	0.0	0.0	0.0	0.0
tentative	0.2	0.1	-0.3	0.4
deal	0.5	0.2	-0.3	-0.1
reached	-0.1	-0.3	-0.2	0.4
to	0.3	-0.3	0.1	0.1
keep	0.2	-0.3	0.4	0.2
government	0.1	0.2	-0.1	-0.1
open	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Ø,t,d	-0.6	0.2	1.4
t,d,r	-1.0	1.6	-1.0
d,r,t	-0.5	-0.1	0.8
r,t,k	-3.6	0.3	0.3
t,k,g	-0.2	0.1	1.2
k,g,o	0.3	0.6	0.9
g,o,Ø	-0.5	-0.9	0.1

Apply 3 filters of size 3

3	1	2	-3	1	0	0	1	1	-1	2	-1
-1	2	1	-3	1	0	-1	-1	1	0	-1	3
1	1	-1	1	0	1	0	1	0	2	2	1

http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture11-convnets.pdf

E4: padding, max pooling

Ø	0.0	0.0	0.0	0.0
tentative	0.2	0.1	-0.3	0.4
deal	0.5	0.2	-0.3	-0.1
reached	-0.1	-0.3	-0.2	0.4
to	0.3	-0.3	0.1	0.1
keep	0.2	-0.3	0.4	0.2
government	0.1	0.2	-0.1	-0.1
open	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Ø,t,d	-0.6	0.2	1.4
t,d,r	-1.0	1.6	-1.0
d,r,t	-0.5	-0.1	0.8
r,t,k	-3.6	0.3	0.3
t,k,g	-0.2	0.1	1.2
k,g,o	0.3	0.6	0.9
g,o,Ø	-0.5	-0.9	0.1

max p 0.3 1.6 1.4

Apply 3 filters of size 3

3	1	2	-3	1	0	0	1	1	-1	2	-1
-1	2	1	-3	1	0	-1	-1	1	0	-1	3
1	1	-1	1	0	1	0	1	0	2	2	1

E5: padding, avg. pooling

Ø	0.0	0.0	0.0	0.0
tentative	0.2	0.1	-0.3	0.4
deal	0.5	0.2	-0.3	-0.1
reached	-0.1	-0.3	-0.2	0.4
to	0.3	-0.3	0.1	0.1
keep	0.2	-0.3	0.4	0.2
government	0.1	0.2	-0.1	-0.1
open	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Ø,t,d	-0.6	0.2	1.4
t,d,r	-1.0	1.6	-1.0
d,r,t	-0.5	-0.1	0.8
r,t,k	-3.6	0.3	0.3
t,k,g	-0.2	0.1	1.2
k,g,o	0.3	0.6	0.9
g,o,Ø	-0.5	-0.9	0.1

ave p0.87 0.26 0.53

Apply 3 filters of size 3

3	1	2	-3	1	0	0	1	1	-1	2	-1
-1	2	1	-3	1	0	-1	-1	1	0	-1	3
1	1	-1	1	0	1	0	1	0	2	2	1

http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture11-convnets.pdf

E6: stride=2

Ø	0.0	0.0	0.0	0.0
tentative	0.2	0.1	-0.3	0.4
deal	0.5	0.2	-0.3	-0.1
reached	-0.1	-0.3	-0.2	0.4
to	0.3	-0.3	0.1	0.1
keep	0.2	-0.3	0.4	0.2
government	0.1	0.2	-0.1	-0.1
open	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0

Ø,t,d	-0.6	0.2	1.4
d,r,t	-0.5	-0.1	0.8
t,k,g	-0.2	0.1	1.2
g,o,Ø	-0.5	-0.9	0.1

Apply 3 filters of size 3

3	1	2	-3	1	0	0	1	1	-1	2	-1
-1	2	1	-3	1	0	-1	-1	1	0	-1	3
1	1	-1	1	0	1	0	1	0	2	2	1

http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture11-convnets.pdf

E7: max.pooling over time, stride=2

2

-1

2

0

2

0

-1

3

1

Ø	0.0	0.0	0.0	0.0
tentative	0.2	0.1	-0.3	0.4
deal	0.5	0.2	-0.3	-0.1
reached	-0.1	-0.3	-0.2	0.4
to	0.3	-0.3	0.1	0.1
keep	0.2	-0.3	0.4	0.2
government	0.1	0.2	-0.1	-0.1
open	-0.4	-0.4	0.2	0.3
Ø	0.0	0.0	0.0	0.0
Apply 3 filt	ers o	f size	3	
3 1 2 -3	3 1	0	0 1	1 -

0

1 -3

1

-1

-1

1

2

1

Ø,t,d	-0.6	0.2	1.4
t,d,r	-1.0	1.6	-1.0
d,r,t	-0.5	-0.1	0.8
r,t,k	-3.6	0.3	0.3
t,k,g	-0.2	0.1	1.2
k,g,o	0.3	0.6	0.9
g,o,Ø	-0.5	-0.9	0.1
Ø	–Inf	–Inf	–Inf

Ø,t,d,r	-0.6	1.6	1.4
d,r,t,k	-0.5	0.3	0.8
t,k,g,o	0.3	0.6	1.2
g,o,Ø,Ø	-0.5	-0.9	0.1

NLP NLP

http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture11-convnets.pdf

1

1 0 -1 -1 1

0

E8: *k*-max.pooling, *k*=2

Ø			0.0	0.0	0.0	0.0			Ø,t,d	_	0.6	0.2	1.4
te	ntativ	e	0.2	0.1	-0.3	0.4			t,d,r	_	1.0	1.6	-1.0
de	eal		0.5	0.2	-0.3	-0.1			d,r,t	_	0.5	-0.1	0.8
re	ached		-0.1	-0.3	-0.2	0.4			r,t,k	_	3.6	0.3	0.3
to)		0.3	-0.3	0.1	0.1			t,k,g	_	0.2	0.1	1.2
ke	ep		0.2	-0.3	0.4	0.2			k,g,o		0.3	0.6	0.9
go	overnn	nent	0.1	0.2	-0.1	-0.1			g,o,Ø	-	0.5	-0.9	0.1
oķ	ben		-0.4	-0.4	0.2	0.3							
Ø			0.0	0.0	0.0	0.0			2-max	р	-0.2	1.6	1.4
Apply 3 filters of size 3									1.2				
	3	1	2	-3		1 C	0	1		1	-1	2	-1
	-1	2	1	-3		1 C) -1	-1		1	0	-1	3
	1	1	-1	1		0 1	. 0	1		0	2	2	1

http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture11-convnets.pdf

E9: dilation=2

0 -1

-1

Ø	0.0	0.0	0.0	0.0				
tentative	0.2	0.1	-0.3	0.4				
deal	0.5	0.2	-0.3	-0.1				
reached	-0.1	-0.3	-0.2	0.4				
to	0.3	-0.3	0.1	0.1				
keep	0.2	-0.3	0.4	0.2				
government	0.1	0.2	-0.1	-0.1				
open	-0.4	-0.4	0.2	0.3				
Ø	0.0	0.0	0.0	0.0				
Apply 3 filters of size 3								
3 1 2 -3	3 1	0	0 1	1 -				

1 -3

-1

-1

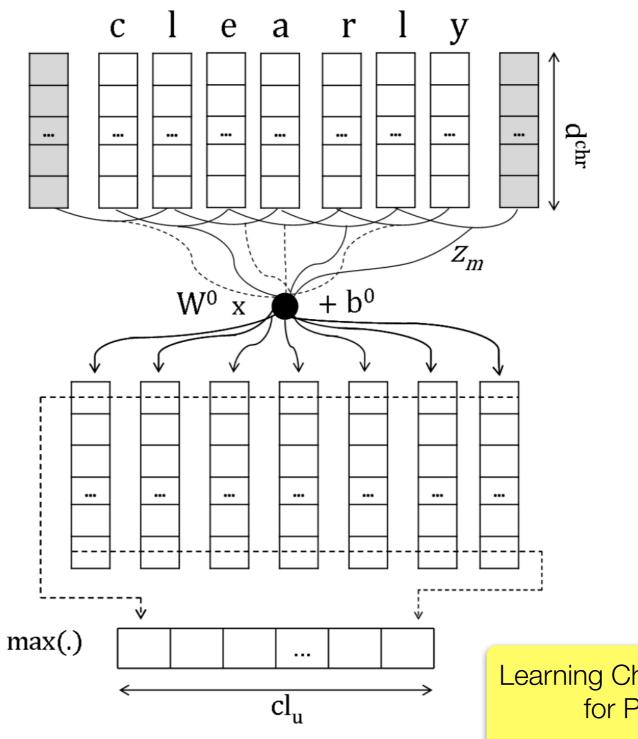
Ø,t,d	-0.6	0.2	1.4
t,d,r	-1.0	1.6	-1.0
d,r,t	-0.5	-0.1	0.8
r,t,k	-3.6	0.3	0.3
t,k,g	-0.2	0.1	1.2
k,g,o	0.3	0.6	0.9
g,o,Ø	-0.5	-0.9	0.1

1,3,5		0.3		(0.0		
2,4,6	5						
3,5,7	7						
	2	3	1		1	3	1
	1	-1	-1		1	-1	-1
	3	1	0		3	1	-1

0 -1 -1

Application Examples

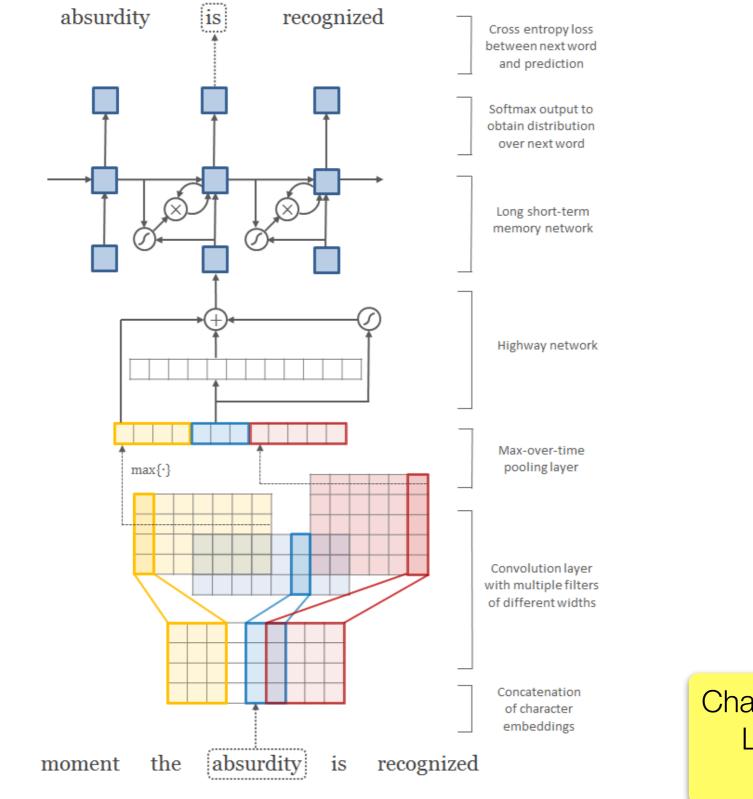
Word Representation Learning (1/4)



Learning Character-level Representations for Part-of-Speech Tagging

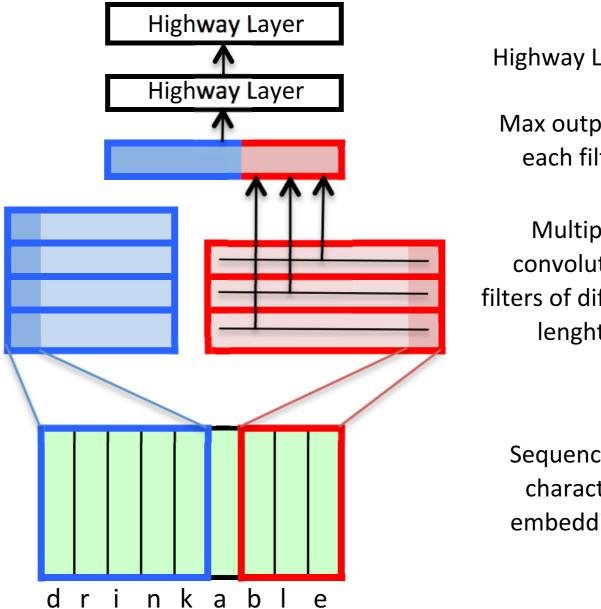
Dos Santos and Zadrozny, 2015

Word Representation Learning (2/4)



Character-Aware Neural Language Models Kim et al., 2015

Word Representation Learning (3/4)



Highway Layers

Max output of each filter

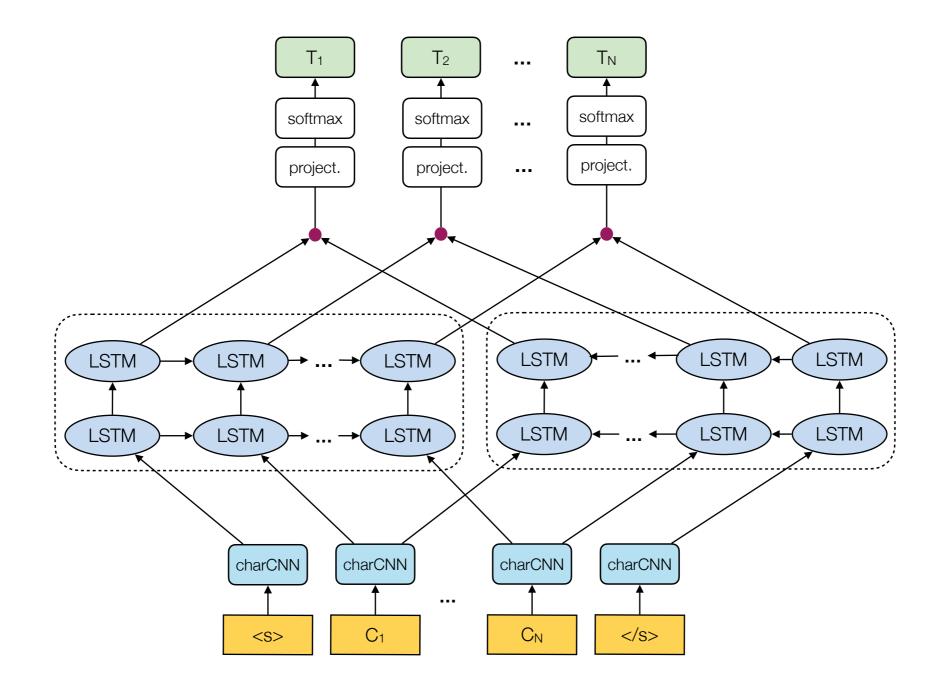
Multiple convolution filters of different lenghts

> Sequence of character embeddings

> > **Character-based Neural** Machine Translation

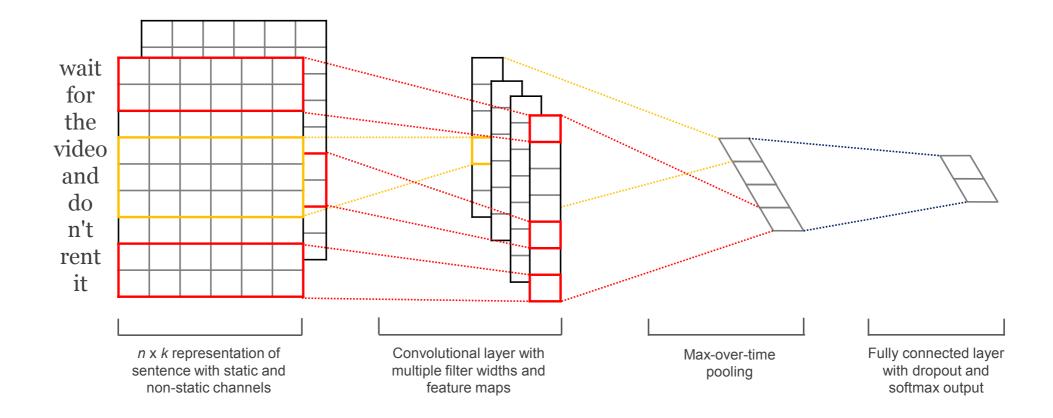
Costa-jussà and Fonollosa, 2016

Word Representation Learning (4/4)



Deep contextualized word representations Peters et al., 2018

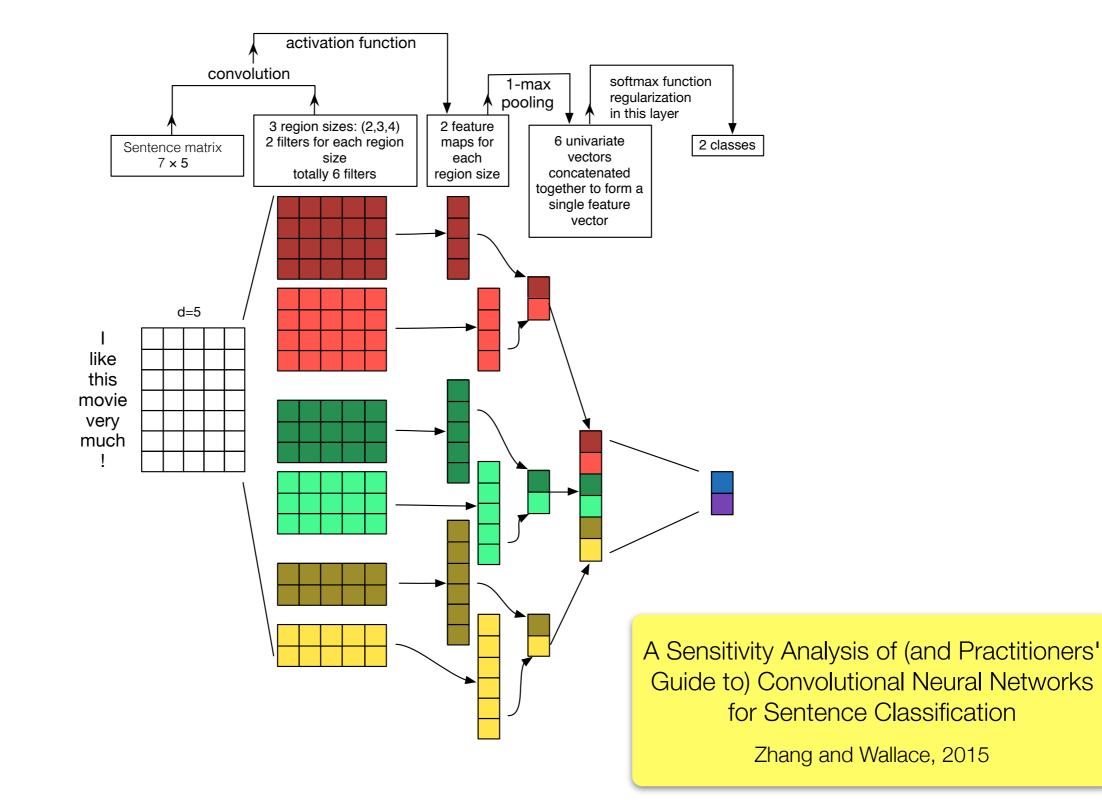
Classification (1/2)



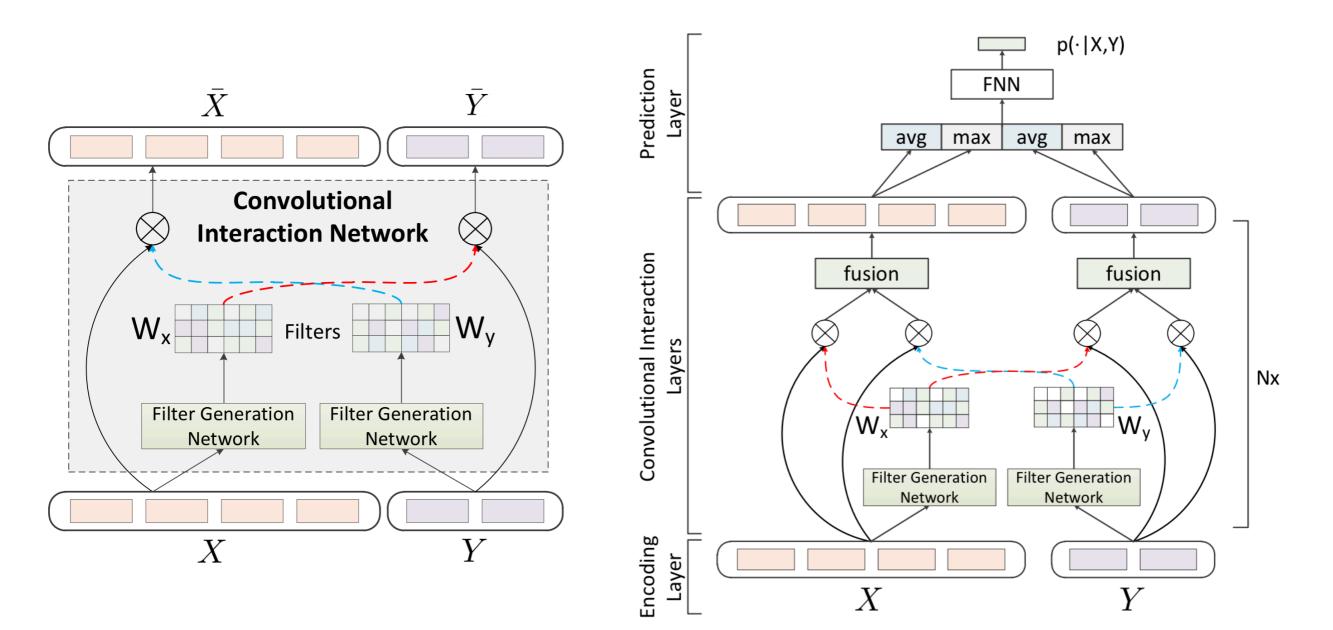
Convolutional Neural Networks for Sentence Classification

Kim, 2014

Classification (2/2)



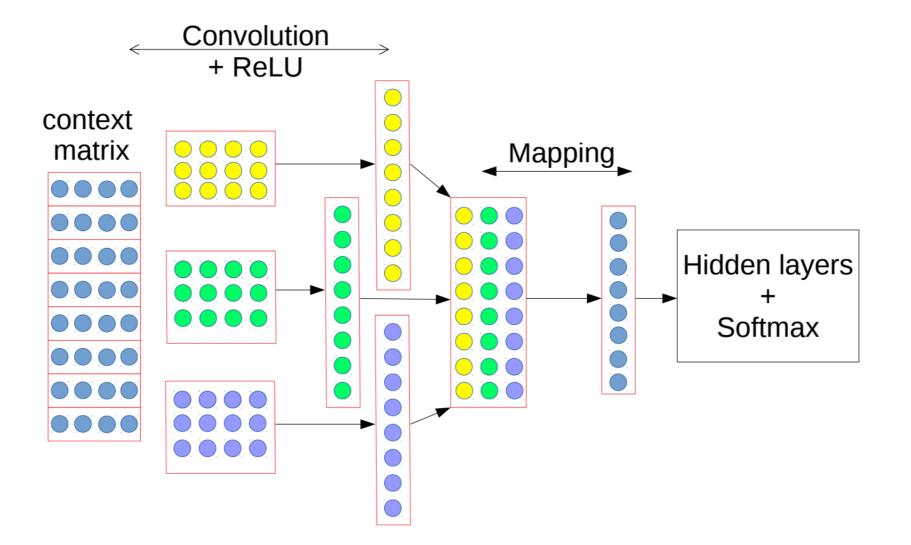
Natural Language Inference



Convolutional Interaction Network for Natural Language Inference

Gong et al., 2018

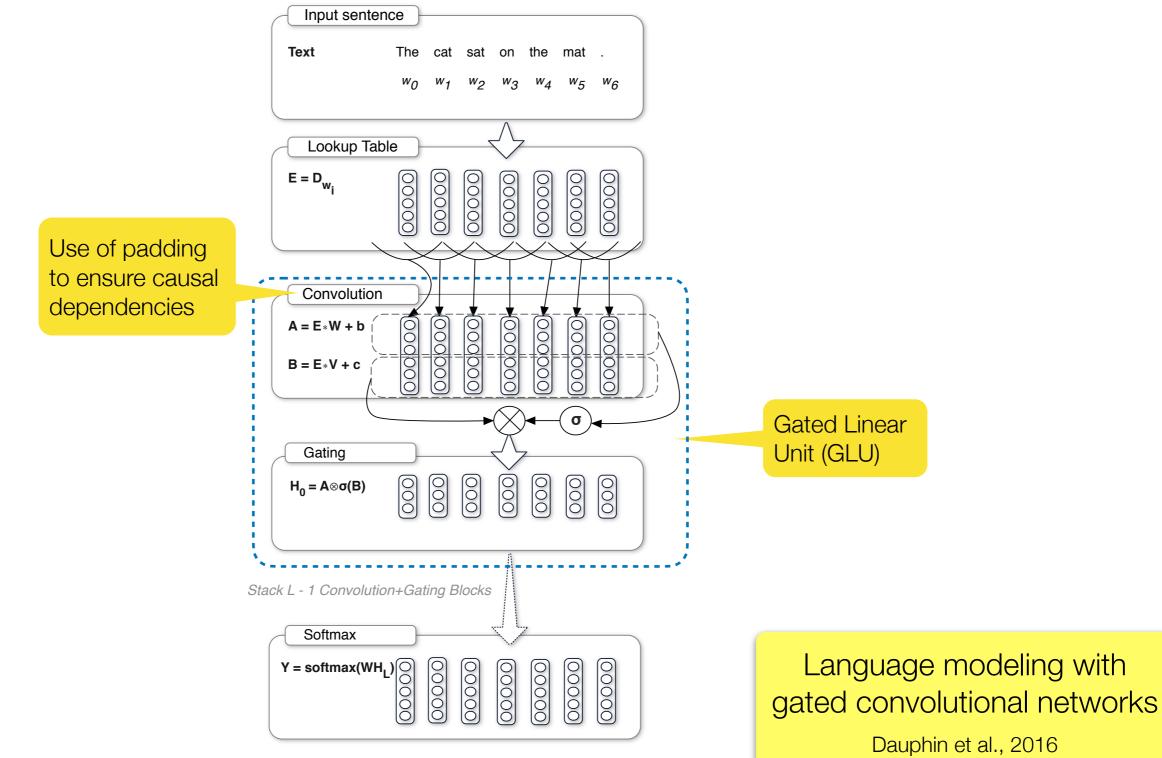
Language modeling (1/2)



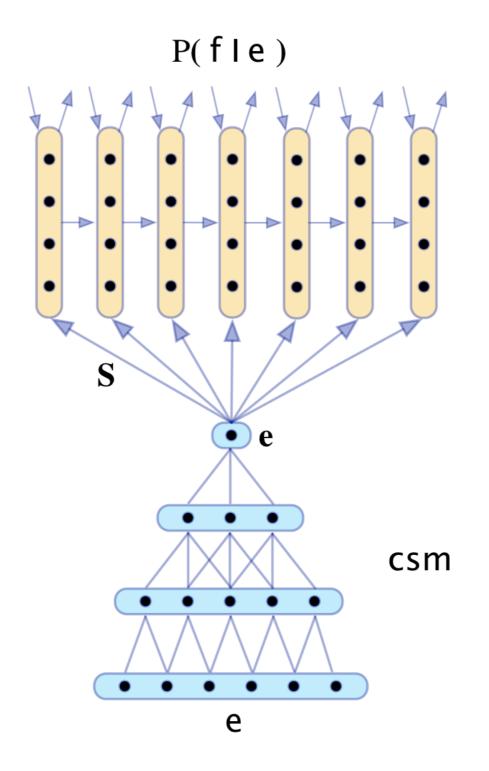
Convolutional Neural Network Language Models

Pham et al., 2016

Language modeling (2/2)



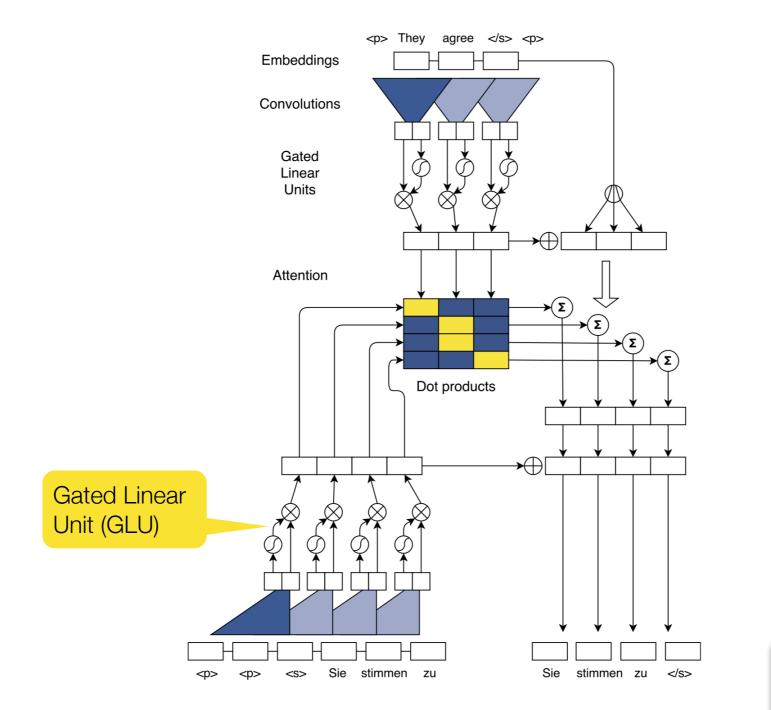
Machine Translation (1/4)



Recurrent Continuous Translation Models

Kalchbrenner and Blunsomet, 2013

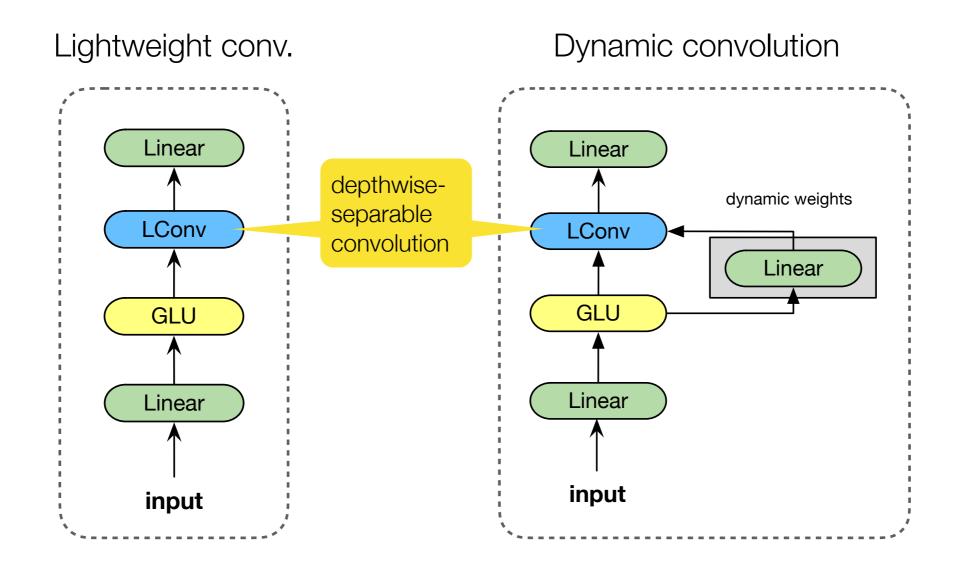
Machine Translation (3/4)



Convolutional Sequence to Sequence Learning

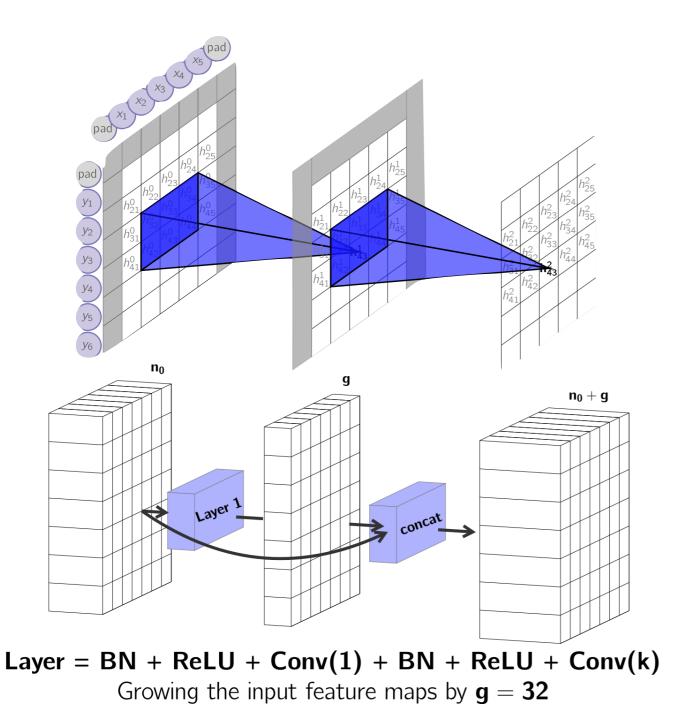
Gehring et al., 2017

Machine Translation (3/4)



Pay Less Attention with Lightweight and Dynamic Convolutions Wu et al., 2019

Machine Translation (4/4)



- 2D convolutions: source x target
- Causality: with masked filters in the target direction.
- Context: grown with stacked convolutions.
- Padding: throughout the network to maintain source/target resolution.
- Each layer grows its input channels by g.

Pervasive Attention - 2D Convolutional Neural Networks for Sequence-to-Sequence Prediction Elbayad et al., 2018

Summary

- Convolutions are local feature detectors.
- Convolutions are invariant to position.
- Stacked convolutions detect hierarchical features.
- Convolutions are fast.
- Convolutions have been applied to multiple NLP tasks.

References

- (book) Neural Network Methods for Natural Language Processing Synthesis Lectures on Human Language Technologies. Yoav Goldberg.
- (online course) Stanford's CS224n: Natural Language Processing with Deep Learning

http://web.stanford.edu/class/cs224n/slides/cs224n-2019-lecture11-convnets.pdf