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Background

1. Recurrent Neural Networks/ Recurrent Language Models

2. SMT concepts



Recurrent Language Models



A fixed-window neural Language Model

books

Improvements over n-gram LM: laptops

* No sparsity problem

» Don’t need to store all
observed
n-grams . =

Remaining problems:

» Fixed window is too small U

« Enlarging window enlargéw

* Window can never be large [000000000000]
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Recurrent Neural Networks (RNN]
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9™ = P(x®|the students opened their)

A RNN Language Model

RNN Advantages:

» Can process any length
input

» Computation for step ¢
can (in theory) use

information from many h(0) A h2_
steps back
* Model size doesn’t W, Wi,

Wy

books
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increase for longer input

+ Same weights applied on
every timestep, so there is
symmetry in how inputs

are processed.
e 2)

RNN Disadvantages:

* Recurrent computation | More on
is slow these later

« In practice, difficult to the students
access information xV) z?
from many steps
back
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Training a RNN Language Model

» Get a big corpus of text which is a sequence of words z(%) ... &™)
e Feed into RNN-LM; compute output distribution :,;(t) for every step t.
* i.e. predict probability dist of every word, given words so far

e Loss function on step tis cross-entropy between predicted probability
distribution 4(*) , and the true next word y(® (one-hot for z(t+1)):

JD0) = CE@YY,9Y) ==Y yPlog g = —loggy),,
weV

» Average this to get overall loss for entire training

set: L Lz
= T Z J(t)(e) = T Z —log ygt)+1
t=1 t=1



Training a RNN Language Model
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Training a RNN Language Model
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Training a RNN Language Model
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Training a RNN Language Model
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Training a RNN Language Model
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Statistical Machine Translation



1990s-2010s: Statistical Machine Translation

e Coreideg: Leam aprobabilistic model from data

* Suppose we're translating French — English.

* Wewant to find bestEnglish sentence y, given French sentence x
argmax, P(y|z)

* Use Bayes Rule to break this down into two components to be
learnt separately:

= argmax, P(z|y) P(y)
Irapsiation Model Lanauage Model|
Models how words and phrases Models how to write
should be translated (fidelity). good English (fluency).
Learnt from parallel data. Learnt from monolingual data.




1990s-2010s: Statistical Machine Translation

* Question: How to learntranslation model P(x|y) ?
* First, need large amount of paralleldata
(e.g. pairs of human-translated French/Englishsentences)

=

The Rosetta Stone L Ancient Egyptian

J\

> Demotic

J\

" Ancient Greek




Leaming alignment for SMT

* Question: How to learn translationmodel P(z|y) from the
parallel corpus?

* Breakit down further: we actually want to consider
P(z,aly)

where ais the alignment, i.e. word-level correspondence
between French sentence x and English sentence y



What is alignment?

Alignment is the correspondence between particular words inthe
translated sentence pair.

* Note: Somewords have no counterpart

z 3
S$3 & x ¢ €
o 2 8 & a g K]
Le - g 3 O T C© X 3
Japan e Japon Japan
Shaken emm= Secoué shaken
DY cmmm par
tWO e deux by
”keW — NOUVEAUX two
uakes 5
q -— SEISMES new
quakes

Examples from:; “The Mathematics of Statistical Machine Translation: Parameter Estimation”, Brown et al, 1993. http://www.aclweb.ora/antholoav/J93-20048



http://www.aclweb.org/anthology/J93-2003

Leaming alignment for SMT

* Welearn P(z,aly) asacombination of many factors, including:

* Probability of particular wordsaligning (also depends on
position in sent)

* Probability of particular words having particularfertility
(number of corresponding words)

 etc.



Decoding for SMT
argmax, P(x|y)P(y)

e e
_ / \ \ Language Model
Question;
How to compute Translation Model
this argmax?

* We could enumerate every possible y and calculate the
probability? — Too expensive!

*  Answer; Use a heuristic search algorithm to search for the best
translation, discarding hypotheses that are toolow-probability

» This process is called decoding

20



MT Evaluation: BLEU Evaluation Metric

(Papineni etal, ACL-2002)

Reference (human) translation:
The U.S.island of Guam s
maintaining a high state of alert
after the Guam airport and its
ofﬁ(:es both received an e-mail from
sorrieone calling h|mse|fthe Saudi
Arabjan Osama bin l:aden and
threatenlng a biological/chemical
attack against pub_hc places such as

the awgort

Machirie tzanslztion:
TheAmerlcdn [?] international
a|r20rt anu’|t the office all receives
one galls self the sand Arab rich
busmess'{”] and so on electronic
mailz, whlch sends out ; The threat
will Be able after public place and so
on the airport to start the
biochemistry attack , [?] highly
alerts after the maintenance.

N-gram precision (score is between 0 &
1)
— What percentage of machine n-grams can
be found in the reference translation?
— An n-gram is an sequence of n words

— Not allowed to match same portion of
reference translation twice at a certain n-
gram level (two MT words airport are only
correct if two reference words airport; can’t
cheat by typing out “the the the the the”)

— Do count unigrams also in a bigram for
unigram precision, etc.

Brevity Penalty

- Can t just ty1pe out single word “the”
(precision

It was thought quite hard to “game” the system
(i-e., to find a way to change machine output so
that’ BLEU goes up, but quality doesn’t)



Today

1. Sequence-to-sequence

2. Attention

in the context of Neural Machine Translation

22



B3 Microsoft

Translator ~ Home  Solutions Products Languages  Blog  Support More

Neural Machine Translation reaches historic milestone: human parity for
Chinese to English translations

23



Achieving Human Parity on Automatic
Chinese to English News Translation

Hany Hassan, Anthony Aue, Chang Chen, Vishal Chowdhary, Jonathan Clark,

Christian Federmann, Xuedong Huang, Marcin Junczys-Dowmunt, William Lewis,

1

Mu Li, Shujie Liu, Tie-Yan Liu, Renqgian Luo, Arul Menezes, Tao Qin,
Frank Seide, Xu Tan, Fei Tian, Lijun Wu, Shuangzhi Wu, Yingce Xia,
Dongdong Zhang, Zhirui Zhang, and Ming Zhou

Microsoft Al & Research

Abstract

Machine translation has made rapid advances in recent years. Millions of people are using
it today in online translation systems and mobile applications in order to communicate across
language barriers. The question naturally arises whether such systems can approach or achieve
parity with human translations. In this paper, we first address the problem of how to define
and accurately measure human parity in translation. We then describe Microsoft’s machine
translation system and measure the quality of its translations on the widely used WMT 2017
news translation task from Chinese to English. We find that our latest neural machine trans-
lation system has reached a new state-of-the-art, and that the translation quality is at human
parity when compared to professional human translations. We also find that it significantly
exceeds the quality of crowd-sourced non-pr

Introduction

Recent years have seen human performance levels reached or surpassed in tasks ranging from games
such as Go [32] to classification of images in ImageNet [20] to conversational speech recognition on
the Switchboard task [49].

In the area of machine translation, we have seen dramatic improvements in quality with the

advent of attentional encoder-decoder neural networks [34, 3, 38]. However, translation quality
continues to vary a great deal across language pairs. domains. and genres. more or less in direct

24



Sequence-to-sequence
RNN, BiRNN

25



Neural Machine Translation: Basic Model

The Encoder-Decoder Model

encodes a sequence of word vectors into a
fixed-sized context vector

decodes the fixed-sized vector back into a
variable-length sequence

26



Neural Machine Translation

Encoder RNN

The sequence-to-sequence model

Decoder RNN
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[\

J

L4
Source sentence (input)

Encoder RNN produces
an of the

source sentence.
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<SIART> he  hit me with a pie

NNy Jepooeq

Decoder RNNis a Language Model that generates

target sentence, conditioned on




Encoder RNN

Sequence-to-Sequence is versatile

The sequence-to-sequence model

Output: Short Text
A

~
7

Decoder RNN
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|
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Sequence-to-Sequence is versatile

Encoder RNN

The sequence-to-sequence model
g g Output: Answer
A

~

Decoder RNN
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Sequence-to-Sequence is versatile

e Sequence-to-sequence is useful for more than just MT

* Many more NLPtasks:
« Parsing (input text — output parse assequence)
* Code generation (natural language — Python code)

Other Speech or Image tasks:
* Speech recognition (speech utterance - transcription)
¢ Image captioning (image — caption)

30



Sequence-to-Sequence is a conditional LM

The sequence-to-sequence model is an example of a
Conditional Language Model.
 Language Model because the decoder is predicting the
next word ofthe target sentence y

» Conditional because its predictions are also conditioned on the source
sentence x

NMT directly calculates P(y|z)

P(ylz) = P(y1|z) P(y2ly1, z) P(y3ly1,y2, %) ... P(yrlys1s- - -, yr—1,%)
u J
Y
Probability of next target word, given
target words so far and source sentence x

* Question: How to train aNMT system?
Answer: Get a big parallel corpus. ..

31



Parallel corpus

* Need large amount of paralleldata P(x|y)
(e.g. pairs of human-translated French/Englishsentences)

The Rosetta Stone L Ancient Egyptian

J\

> Demotic

J\

Ancient Greek

32



Encoder RNN

S TLITT

P

1 V> V3 Ia Is Vs V7

B —Er i

’

il a m’  entarté <START> he hit me  with a
1N J N

pie

Training a Neural Machine Translation System

= negative log = negative log = negative log
prob of “he” prob of “with” prob of <END>

T
]:szt = + L. + 3 ++ Is + Js +

Y Y
Source sentence (from corpus) Target sentence (from corpus)

Seqg2seq is optimized as a single system.
Backpropagation operates “end-to-end”.

34
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RNN Cells

m RNN cells can be any kind
tanh

35



RNN Cells

m RNN cells can be any kind
GRU, Gated Recurrent Unit

hy
hy 1/ N\ r\\I»

36



RNN Cells

m RNN cells can be anykind
LSTM, Long Short Term Memory Networks

®

A
~
—»>—X O, >
anh>
& &
=l
-»> o

@ 37



H This contextual representation of “terribly”
BI RN N has both left and right context!

_—
(0] ) (o) ) ) (o)
O (@] O (@] (@] @]
(@] (@] (@] (@] o @]
Concatenated (@) (@) (@) (@) (@) (@)
hidden states % (0] (0] (6] (6) [6)
(0] (0] (0] (0] (0] (0]
(0] (0] (0] (0] (0] Q@
(0] (0] (0] (0] (0] (0]
3 I
o o m o
Backward RNN 9 9 ° 9
O (@] (@] (@]
o|/ [/ [/ [e
(0] (0}
Forward RNN ® ® P ®
(0] (0} (0} (0]

the movie was terribly  exciting



Limitations in performance

m Performance drops with long sentences

20 T . T . . .
T . | — Source text

; ; | o Reference text ||

I+ \]-- Both

—

t
T

P

BLEU score
=

Al

&
%)

L 1 | | |
10 20 30 40 50 60 70 &80
Sentence length

[Cho et al., 2014]



Attention

40



RNN architecture

Encoder RNN

{ @H*@%

\

m’

entarté

J

Y
Source sentence (input)

Target sentence (output)
A
g \
he hit me with a pie <END>

AU AU

<SIART> he hit me with a pie

Q00
Q00
o0

0000
0000

(o]

000
o

Q000

o
o
o

| Problems with this architecture? I

41
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Encoder RNN

RNN architecture

Target sentence (output)
A
g \
he hit me with a pie <END>

{ &H*@%H} -1

entarté <SIART> he hit me with a pie
u J

o0
Q00
o0

0000
0000
0000

o0
o
o0

0000
L_Y_J
NNY 18p02ag

Y
Source sentence (input)
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RNN architecture with attention

= Intuition: Not all the words contribute equally for a
translation

m Let's weight! (weights, softmaxs, nns...)

accord u a zone économique européenne a été signé en ot 1992 d
[ I I I i
the  agreement  on the  European Economic  Area was signed in August 1992 <end

https://distill.pub/2016/augmented-rnns
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RNN architecture with attention

y1 y2 V< eos>

N N
Decoder

(o

Attention Network
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RNN architecture with attention

» Attention provides a solution to the bottleneck problem.

e Coreideg: on each step of the decoder, use direct connection to
the encoderto focus on a particular part of the source sequence

* First we will show via diagram (no equations), then we will show
with equations

45



RNN architecture with attention

Encoder Attention

RNN
—

dot product

{ A

scores

o

EEE

il a m’  entarté <START>
[\ J

Y
Source sentence (input)

H_J

NNY 18p02ag
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RNN architecture with attention

Encoder Attention

dot product

T i

il a m’  entarté
[\

J

Y
Source sentence (input)

oo

<START>

H_J

NNY 18p02ag
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RNN architecture with attention

dot product

Encoder Attention

——
NN 18pode(g

a m’  entarté <START>

Y
Source sentence (input) 48



RNN architecture with attention

dot product

Encoder Attention

——
NN 18pode(g

a m’  entarté <START>

Y
Source sentence (input) 49



RNN architecture with attention

Attention
distribution

Attention

Encoder

scores

RNN

Onthis decoder timestep, we're

mostly focusing on the first
/ encoder hidden state (*he’

Take softmax to turn the scores
into a probability distribution

| a m’  entarté <START>
J

Y
Source sentence (input)

NN Jepooeq



RNN architecture with attention

Attention

Attention

Encoder

distribution

scores

Attention

output

3

entarté

il a m

J

Y
Source sentence (input)

Use the attention distribution to takea
weighted sum of the encoder hidden
states.

The attention output mostly contains
information from the hidden statesthat
received high attention.

<START>

——

NN Jepooeq
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RNN architecture with attention

Attention

Attention

Encoder

distribution

scores

RNN

Attention

3

il a m’  entarté

J

Y
Source sentence (input)

<START>

Concatenate attention output
with decoder hidden state, then
use to compute P, as before

52
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RNN architecture with attention

Attention hit
output /]\
5 S : . V2
<
C
g
8
= 0
<
@)
0] o 8
° Z ) C81
3 g ° 3
b ° T
, 2
’\ prd

il a m’  entarté <START> he
[\ J

Y
Source sentence (input) 53



RNN architecture with attention

Attention pie
output 4

Attention
distribution

Attention
scores

Encoder
RNN

H_J
NNY 18p02ag

il a m’  entarté <START> he hit me  with a
[\ J

Y
Source sentence (input) 54



Attention in Equations

» We have encoder hidden states h1,...,hy € R"
« Ontimestep t, we have decoder hiddenstate s, € R"
» We get the attention scores ¢! for this step:

et =[slhy,...,sThy] € RY

* We take softmax to get the attention distribution a! for this step (thisis a
probability distribution and sumsto 1)

ol = softmax(e’) € RN

« Weuse o' to take aweighted sum of the encoder hidden states to get the
attention output a;

N
a; = Za';hi e R
i=1

» Finally we concatenate the attention output a; with the decoderhidden
state s; and proceed asin the non-attention seq2seqmodel

lat; s¢) € R2h 55



Attention is great

Attention significantly improves NMT performance

* It's very useful to allow decoder to focus on certain parts of the source
Attention solves the bottleneck problem

 Attention allows decoder to look directly at source; bypass bottleneck
Attention helps with vanishing gradientproblem

* Provides shortcut to faraway states

Attention provides some interpretability

* Byinspecting attention distribution, we cansee
what the decoder was focusingon i

he
hit
m
€,
wi
th
a

* We get (soft) alignment for free! a
* Thisis cool because we never explicitly trained m
an alignment system o

» The network just learned alignment byitself



Attention versatility

* We've seenthat attention is a great way toimprove the
sequence-to-sequence model for Machine Translation.

e However: You can use attention in many architectures
(not just seg2seq) and many tasks (not justMT)

* More general definition of attention:
 Given a set of vector values, and a vector query, attention isa
technique to compute aweighted sum of the values,
dependent on the query.

* We sometimes say that the query aftends to the values.

* Forexample, in the seq2seq + attention model, each decoder
hidden state (query) attends to all the encoder hidden states
(values). 57



Attention versatility

More general definition of attention:

Given a set of vector values, and avector query, attention is a
technique to compute aweighted sum of the values, dependent on
the query.

Intuition:

* The weighted sum is a selective summary of the information
contained in the values, where the query determines which
values to focuson.

* Attention is away to obtain afixed-size representation of an
arbitrary set of representations (the values), dependent on
some other representation (the query).



Attention variants

» Wehave some values hq,...,hy € R* andaquery s € R®

* Attention alwaysinvolves: Thore oo
1. Computing the aftention scores e € RN «—— mgltigletgyays
2. Taking softmax to get attentiondistribution a: S

a = softmax(e) € RV
3. Using attention distribution to take weighted sum of values:

N
a—= Z a;h; € Rdl
=1
thus obtaining the aftention ouiput a (sometimes called the
context vector)

59



Attention variants

There are several ways you can compute e € RY from by, ..., hy € R%

and s € R%:

You'll think about the relative

advantages/disadvantages of these in Assignment4!

« Basicdot-product attention: e; = s”h; € R

* Note: this assumes d; = d»
« Thisis the version we saw earlier

« Multiplicative attention: e; = sTWh; € R

* Where W ¢ R%*4 is aweight matrix

« Additive attention: e; = vTtanh(W1h; + Was) € R

* Where w, ¢ Résxd1 W, e Rés*d> are weight matricesand v € R

is a weight vector.

* ds(the attention dimensionality) is ahyperparameter

“Deep Leaming for NLP Best Practices”, Ruder, 2017.

More information;

“Massive Exploration of Neural Machine Translation Architectures”, Britz et al, 2017,
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http://ruder.io/deep-learning-nlp-best-practices/index.html
https://arxiv.org/pdf/1703.03906.pdf

e Sequence-to-sequence uses 2 RNNs

» Attention isaway to focuson particular
parts of theinput

¢ Improves sequence-to-sequence alot!

*  We learnt this in the context of Neural MT, but they are
really versatile
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