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Overview

These are two of the most important ideas for the rest of the class!

Today we will:

• Introduce a new NLP task
• Language Modeling

motivates

• Introduce a new family of neural networks
• Recurrent Neural Networks (RNNs)
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• Language Modeling is the task of predicting what word comes
next.

• More formally: given a sequence of words
compute the probability distribution of the next word

,

where can be any word in the vocabulary

• A system that does this is called a Language Model.

Language Modeling

laptops
the students openedtheir

exams
minds

books
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Language Modeling

• You can also think of a Language Model as a system 
that assigns probability to a piece of text.

• For example, if we have some text , then the  
probability of this text (according to the Language Model) 
is:

This is what our LM 
provides
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You use Language Models every day!
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You use Language Models every day!
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n-gram Language Models

the students opened their

• Question: How to learn a Language Model?
• Answer (pre- Deep Learning): learn a n-gram Language 

Model!

• Definition: A n-gram is a chunk of n consecutive words.
• unigrams: “the”, “students”, “opened”, ”their”
• bigrams: “the students”, “students opened”, “opened their”
• trigrams: “the students opened”, “students opened their”
• 4-grams: “the students opened their”

• Idea: Collect statistics about how frequent different n-
grams  are, and use these to predict next word. 7



n-gram Language Models

depends only on the

(definition of  
conditional prob)

(assumption)

• First we make a simplifying assumption:
preceding n-1words.

n-1words

prob of an-gram

prob of a(n-1)-gram

• Question: How do we get these n-gram and (n-1)-gram probabilities?
• Answer:By counting them in some large corpus of text!

(statistical  
approximation)
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n-gram Language Models: Example

as the proctor started the clock,the

Suppose we are learning a 4-gram Language Model.

students openedtheir
discard

condition on this

For example, suppose that in thecorpus:

• “students opened their” occurred 1000times

• “students opened their books”occurred 400 times

• → P(books | students opened their) = 0.4

• “students opened their exams” occurred 100times

• → P(exams | students opened their) = 0.1

Should we have  
discarded the  
“proctor” context?
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Sparsity Problems with n-gram Language Models

Note: Increasing n makes sparsity problems worse.
Typically we can’t have n bigger than 5.

Problem:What if “students  
opened their” never occurred in  
data? Then we can’t calculate  
probability for any !

Sparsity Problem 2

Problem:What if “students  
opened their ” never  
occurred in data?Then
has probability 0!

Sparsity Problem 1

(Partial) Solution: Add small !
to the count for every .
This is called smoothing.

(Partial) Solution: Justcondition
on “opened their” instead.
This is called backoff.
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Storage Problems with n-gram Language Models

Storage: Need to store count for  
all n-grams you saw in thecorpus.

Increasing n or increasingcorpus  
increases model size!
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Sparsity Problems with n-gram Language Models

Note: Increasing n makes sparsity problems worse.
Typically we can’t have n bigger than 5.

Problem:What if “students  
opened their” never occurred in  
data? Then we can’t calculate  
probability for any !

Sparsity Problem 2

(Partial) Solution: Justcondition
on “opened their” instead.
This is called backoff.
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n-gram Language Models in practice

• You can build a simple trigram Language Model over a
1.7 million word corpus (Reuters) in a few seconds on your laptop*

today the

* Try for yourself: https://nlpforhackers.io/language-models/Otherwise, seemsreasonable!

get probability  
distribution

Sparsity problem:  
not muchgranularity  

in the probability  
distribution

company 0.153
bank 0.153
price 0.077
italian 0.039
emirate

…
0.039

Business and financial news
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Generating text with a n-gram Language Model

company  
bank  
price  
italian  
emirate

…

• You can also use a Language Model to generate text.

today the

condition on this
get probability  

distribution

0.153
0.153
0.077 sample
0.039
0.039
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Generating text with a n-gram Language Model

of  
for  
it  
to  
is

…

• You can also use a Language Model to generate text.

today theprice

condition on this
get probability  

distribution

0.308 sample
0.050
0.046
0.046
0.031
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Generating text with a n-gram Language Model

the  
18
oil
its
gold

0.072
0.043
0.043
0.036
0.018

…

• You can also use a Language Model to generate text.

today the priceof

condition on this
get probability  

distribution

sample
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Generating text with a n-gram Language Model

• You can also use a Language Model to 
generate text.

today the price of gold 
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Generating text with a n-gram Language Model

today the price of gold per ton , while production of 
shoe  lasts and shoe industry , the bank intervened 
just after it  considered and rejected an imf demand to 
rebuild depleted  european stocks , sept 30 end 
primary 76 cts a share .

Surprisingly grammatical!

…but incoherent. We need to consider more 
than  three words at a time if we want to model 
language well.

But increasing n worsens sparsity problem,
and increases model size… 18



How to build a neural Language Model?

in Paris are amazingmuseums

• Recall the Language Modeling task:
• Input: sequence of words
• Output: prob dist of the next word

• How about a window-based neural model?
• We saw this applied to Named Entity Recognition :

LOCATION

19



A fixed-window neural Language Model

theas the proctor started the clock their
discard

students opened

fixedwindow
20



A fixed-window neural Language Model

the students opened their

books
laptops

a zoo

Improvements over n-gram LM:
• No sparsity problem
• Don’t need to store all 

observed
n-grams

Remaining problems:

•

• Fixed window is too small
• Enlarging window enlarges
• Window can never be large  

enough!
and are multiplied by  

completely different weights in .
No symmetry in how the inputs 
are  processed.

We need a neural  
architecture that can  

process any length input
21



hidden states

input sequence  
(any length)

…

…

…

Core idea: Apply the  
same weights  
repeatedly

Recurrent Neural Networks (RNN)
A family of neural architectures

outputs  
(optional)
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A RNN Language Model

opened theirwords / one-hot vectors the students

books
laptops

word embeddings

a zoo

output distribution

Note: this input sequence could bemuch
longer, but this slide doesn’t havespace!

hidden states

is the initial hiddenstate
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A RNN Language Model

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can process any length

input
• Computation for step t  

can (in theory) use  
information from many  
steps back

• Model size doesn’t
increase for longer input

• Same weights applied on  
every timestep, so there is 
symmetry in how inputs  
are processed.

RNN Disadvantages:
More on  
these later  

• Recurrent computation 
is slow

• In practice, difficult to  
access information 
from many steps 
back
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Training a RNN Language Model
• Get a big corpus of text which is a sequence of words
• Feed into RNN-LM; compute output distribution for every step t.

• i.e. predict probability dist of every word, given words so far

• Loss function on step t is cross-entropy between predicted probability
distribution , and the true next word (one-hot for ):

• Average this to get overall loss for entire training 
set:
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Training a RNN Language Model

…

= negative log prob
of “students”

Loss

Predicted  
prob dists

Corpus the students opened their exams …
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Training a RNN Language Model
= negative log prob

of “opened”

…

Loss

Predicted  
prob dists

Corpus the students opened their exams …
27



Training a RNN Language Model
= negative log prob

of “their”

…

Loss

Predicted  
prob dists

Corpus the students opened their exams …
28



Training a RNN Language Model
= negative log prob

of “exams”

…

Loss

Predicted  
prob dists

Corpus the students opened their exams …
29



Training a RNN Language Model

+ + + +… =

…

Loss

Predicted  
prob dists

Corpus the students opened their exams …
30



Training a RNN Language Model
• However: Computing loss and gradients across entire corpus is too 

expensive!

• In practice, consider as a sentence (or a document)

• Recall: Stochastic Gradient Descent allows us to compute loss  and 
gradients for small chunk of data, and update.

• Compute loss for a sentence (actually a batch of  
sentences), compute gradients and update weights. Repeat.

31



Backpropagation for RNNs

……

Question:What’s the derivativeof w.r.t. the repeated weightmatrix ?

Answer:
“The gradient w.r.t. a repeatedweight  

is the sum of thegradient
w.r.t. each time it appears”

Why?

32



Multivariable Chain Rule

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
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Backpropagation for RNNs: Proof sketch

…

In our example: Apply the multivariable chainrule:
=1

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version
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Backpropagation for RNNs

……

Question:How do we  
calculate this?

Answer:Backpropagate over  
timesteps i=t,…,0, summing  
gradients as you go.
This algorithm is called
“backpropagation through time”
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Generating text with a RNN Language Model
Just like a n-gram Language Model, you can use a RNN Language Model to
generate text by repeated sampling. Sampled output is next step’s input.

my favorite season is

…

favorite season is

sample sample sample

spring

sample

spring 36



Generating text with a RNN Language Model

• Let’s have some fun!
• You can train a RNN-LM on any kind of text, then 

generate text  in that style.
• RNN-LM trained on recipes:

Source:
https://gist.github.com/nylki/1efbaa36635956d35bcc
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RNNs can be used for tagging
e.g. part-of-speech tagging, named entity recognition

knocked over the vasethe startled cat

VBN IN DT NNDT JJ NN
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RNNs can be used for tagging
e.g. part-of-speech tagging, named entity recognition

Kim Jong-il said noNorth Korean leader

B-per I-per O OB-geo I-geo 0
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Evaluating Language Models

• This is equal to the exponential of the cross-entropy loss

• The standard evaluation metric for Language Models is 
perplexity.

Normalized by  
number of 
words

Inverse probability of corpus, according to Language Model

Lower perplexity is better!
40



RNNs have greatly improved perplexity

n-gram model

Increasingly
complexRNNs

Perplexity improves
(lower isbetter)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/
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Why should we care about Language Modeling?

• Language Modeling is a benchmark task that helps us 
measure our progress on understanding language

• Language Modeling is a subcomponent of many NLP tasks,  
especially those involving generating text or
estimating the probability of text:

• Predictive typing
• Speech recognition
• Handwriting recognition
• Spelling/grammar correction
• Authorship identification
• Machine translation
• Summarization
• Dialogue
• etc.

42



Recap

• Language Model: A system that predicts the next word

• Recurrent Neural Network: A family of neural networks 
that:
• Take sequential input of any length
• Apply the same weights on each step
• Can optionally produce output on each step

• Recurrent Neural Network ≠ Language Model

• We’ve shown that RNNs are a great way to build a LM.

• But RNNs are useful for much more! 43



Next topics

• Vanishing gradient problem

• Two new types of RNN: LSTM and 
GRU

• Other fixes for vanishing (or exploding) 
gradient:
• Gradient clipping
• Skip connections

• More fancy RNN 
variants:
• Bidirectional RNNs
• Multi-layer RNNs

motivates

Lots of important  
definitions!
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Vanishing gradient intuition

45



Vanishing gradient intuition

?
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Vanishing gradient intuition

chain rule!
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Vanishing gradient intuition

chain rule!
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Vanishing gradient intuition

chain rule!
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Vanishing gradient intuition

What happens if these aresmall?

Vanishing gradient problem: 
When these are small, the  
gradient signal gets smaller  

and smaller as it  
backpropagates further 50



Why is vanishing gradient a problem?

Gradient signal from faraway is lost because it’s much
smaller than gradient signal from close-by.

So model weights are only updated only with respect to  
near effects, not long-termeffects.
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Why is vanishing gradient a problem?

• Another explanation: Gradient can be viewed as a 
measure ofthe effect of the past on the future

• If the gradient becomes vanishingly small over longer 
distances  (step t to step t+n), then we can’t tell whether:
1. There’s no dependency between step t and t+n in the 

data
2. We have wrong parameters to capture the 

true  dependency between t and t+n
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Effect of vanishing gradient on RNN-LM

• LM task: When she tried to print her tickets, she found that 
the  printer was out of toner. She went to the stationery 
store to buy  more toner. It was very overpriced. After 
installing the toner into  the printer, she finally printed her 

• To learn from this training example, the RNN-LM needs 
to model the dependency between “tickets” on the 7th 

step and  the target word “tickets” at the end.

• But if gradient is small, the model can’t learn this 
dependency
• So the model is unable to predict similar long-

distance  dependencies at test time



• LM task: The writer of the books 

• Correct answer: The writer of the books is planning a 
sequel

• Syntactic recency: The writer of the books is (correct)

• Sequential recency: The writer of the books are (incorrect)

• Due to vanishing gradient, RNN-LMs are better at learning 
from sequential recency than syntactic recency, so they 
make this type of error more often than we’d like [Linzen et 
al 2016]

Effect of vanishing gradient on RNN-LM

are

“Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies”, Linzen et al, 2016.
https://arxiv.org/pdf/1611.01368.pdf
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Why is exploding gradient a problem?

• If the gradient becomes too big, then the SGD 
update step  becomes too big:

learning rate

gradient

• This can cause bad updates: we take too large a step 
and reach  a bad parameter configuration (with large 
loss)

• In the worst case, this will result in Inf or NaN in your 
network  (then you have to restart training from an 
earlier checkpoint)
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Gradient clipping: solution for exploding gradient

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013. 
http://proceedings.mlr.press/v28/pascanu13.pdf

• Gradient clipping: if the norm of the gradient is greater 
than  some threshold, scale it down before applying 
SGD update

• Intuition: take a step in the same direction, but a smaller 
step
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How to fix vanishing gradient problem?

• The main problem is that it’s too difficult for the RNN to 
learn to
preserve information over many timesteps.

• In a vanilla RNN, the hidden state is constantly being 
rewritten

• How about a RNN with separate 
memory?
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Long Short-Term Memory (LSTM)
• A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a

solution to the vanishing gradients problem.

• On step t, there is a hidden state and a cell state
• Both are vectors length n
• The cell stores long-term information
• The LSTM can erase, write and read information from the cell

• The selection of which information is erased/written/read is 
controlled by  three corresponding gates
• The gates are also vectors length n
• On each timestep, each element of the gates can be open (1), 

closed (0),  or somewhere in-between.
• The gates are dynamic: their value is computed based on the 

current  context
“Long short-term memory”, Hochreiter and Schmidhuber, 1997. https://www.bioinf.jku.at/publications/older/2604.pdf 61
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We have a sequence of inputs , and we will compute a sequence of hiddenstates  
and cell states . On timestep t:

Long Short-Term Memory (LSTM)

Al
l t

he
se
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 v
ec
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rs
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Forget gate: controls what is kept vs  
forgotten, from previous cell state

Input gate: controls what parts of the  
new cell content are written to cell

Output gate: controls what parts of  
cell are output to hiddenstate

New cell content: this is the new  
content to be written to the cell

Cell state: erase (“forget”) some  
content from last cell state, andwrite  
(“input”) some new cell content

Hidden state: read (“output”) some  
content from the cell

Sigmoid function: all gate  
values are between 0 and 1

Gates are applied using  
element-wise product 62



Long Short-Term Memory (LSTM)
You can think of the LSTM equations visually likethis:

Source:http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Long Short-Term Memory (LSTM)
You can think of the LSTM equations visually likethis:

Compute the  

forget gate

Forget some

cell content

Compute the  

input gate

Compute the  

new cell content

Compute the  

output gate

Write some new cell content

Output some cell content  

to the hiddenstate

64Source:http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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How does LSTM solve vanishing gradients?

• The LSTM architecture makes it easier for the 
RNN to preserve information over many 
timesteps
• e.g. if the forget gate is set to remember everything on 

every  timestep, then the info in the cell is preserved 
indefinitely

• By contrast, it’s harder for vanilla RNN to learn a 
recurrent
weight matrix Wh that preserves info in hidden state

• LSTM doesn’t guarantee that there is no 
vanishing/exploding  gradient, but it does provide an 
easier way for the model to  learn long-distance 
dependencies



LSTMs: real-world success

• In 2013-2015, LSTMs started achieving state-of-the-art results

• Successful tasks include: handwriting recognition, speech  

recognition, machine translation, parsing, image captioning

• LSTM became the dominant approach

• Now (2019), other approaches (e.g. Transformers) have 

become  more dominant for certain tasks.

• For example in WMT (a MT conference + competition):

• In WMT 2016, the summary report contains ”RNN” 44 times

• In WMT 2018, the report contains “RNN” 9 times and

“Transformer” 63 times

Source:"Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, http://www.statmt.org/wmt16/pdf/W16-2301.pdf

Source:"Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, http://www.statmt.org/wmt18/pdf/WMT028.pdf 66
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Gated Recurrent Units (GRU)
• Proposed by Cho et al. in 2014 as a simpler alternative to the LSTM.

• On each timestep t we have input and hidden state (no cell state).

"Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation", Cho et al. 2014, https://arxiv.org/pdf/1406.1078v3.pdf

Update gate: controls what parts of  
hidden state are updated vspreserved

Reset gate: controls what parts of
previous hidden state are used to
compute new content

Hidden state: update gate  
simultaneously controls what is kept  
from previous hidden state, and what  
is updated to new hidden statecontent

New hidden state content: reset gate  
selects useful parts of prev hidden  
state. Use this and current input to  
compute new hidden content.

How does this solve vanishing gradient? 
Like LSTM, GRU makes it easier to retain info  
long-term (e.g. by setting update gate to0)

67
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LSTM vs GRU

• Researchers have proposed many gated RNN variants, 
but LSTM  and GRU are the most widely-used

• The biggest difference is that GRU is quicker to compute 
and has  fewer parameters

• There is no conclusive evidence that one consistently 
performs  better than the other

• LSTM is a good default choice (especially if your data has  
particularly long dependencies, or you have lots of training 
data)

• Rule of thumb: start with LSTM, but switch to GRU if you 
want  something more efficient
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Is vanishing/exploding gradient just a RNN problem?

• No! It can be a problem for all neural architectures 
(including feed-forward and convolutional), especially 
deep ones.
• Due to chain rule / choice of nonlinearity function, gradient can 

become  vanishingly small as it backpropagates
• Thus lower layers are learnt very slowly (hard to train)
• Solution: lots of new deep feedforward/convolutional architectures 

that
add more direct connections (thus allowing the gradient to flow)

• Conclusion: Though vanishing/exploding gradients are a 
general  problem, RNNs are particularly unstable due to 
the repeated  multiplication by the same weight matrix 
[Bengio et al, 1994]

”Learning Long-Term Dependencies with Gradient Descent is Difficult", Bengio et al. 1994, http://ai.dinfo.unifi.it/paolo//ps/tnn-94-gradient.pdf 69
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Recap

• Today we’ve learnt:
• Vanishing gradient problem: what it is, why it happens, and

why it’s bad for RNNs
• LSTMs and GRUs: more complicated RNNs that use gates 

to  control information flow; they are more resilient to 
vanishing  gradients

• Remainder of this lecture:

• Bidirectional RNNs
• Multi-layer RNNs

Both of theseare
pretty simple
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terribly exciting !the movie was

positive

Sentence encoding

We can regard this hidden state as a
representation of the word “terribly” in the  
context of this sentence. We call this a  
contextual representation.

These contextual  
representations only  
contain information  
about the leftcontext  
(e.g. “the movie
was”).

What about right
context?

In this example,  
“exciting” is in the  
right context and this  
modifies the meaning  
of “terribly” (from  
negative to positive)

71
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Task: Sentiment Classification



Bidirectional RNNs

terribly exciting !the movie was

Forward RNN

BackwardRNN

Concatenated  
hidden states

This contextual representation of “terribly”
has both left and rightcontext!
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Bidirectional RNNs

Forward RNN

BackwardRNN

Concatenated hidden states

This is a general notation to mean “compute
one forward step of the RNN” – it could be a
vanilla, LSTMor GRUcomputation.

We regard this as “the hidden
state” of a bidirectional RNN.
This is what we pass on to the
next parts of thenetwork.

Generally, these  
two RNNs have  
separate weights

73

On timestep t:



Bidirectional RNNs: simplified diagram

terribly exciting !

74

the movie was

The two-way arrows indicate bidirectionality and  
the depicted hidden states are assumed to be  
the concatenated forwards+backwards states.
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Bidirectional RNNs

• Note: bidirectional RNNs are only applicable if you have 
access  to the entire input sequence.
• They are not applicable to Language Modeling, because 

in LM  you only have left context available.

• If you do have entire input sequence (e.g. any kind of 
encoding), bidirectionality is powerful (you should use it by 
default).

• For example, BERT (Bidirectional Encoder 
Representations from  Transformers) is a powerful 
pretrained contextual  representation system built on 
bidirectionality.
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Multi-layer RNNs
• RNNs are already “deep” on one dimension (they unroll 

over many timesteps)

• We can also make them “deep” in another dimension by
applying multiple RNNs – this is a multi-layer RNN.

• This allows the network to compute more 
complex  representations
• The lower RNNs should compute lower-level features 

and the
higher RNNs should compute higher-level features.

• Multi-layer RNNs are also called stacked RNNs.



Multi-layer RNNs

terribly exciting !the movie was

RNN layer 1

RNN layer 2

77

RNN layer 3

The hidden states from RNN layeri
are the inputs to RNN layer i+1



Multi-layer RNNs in practice

• High-performing RNNs are often multi-layer (but aren’t as 
deep
as convolutional or feed-forward networks)

• For example: In a 2017 paper, Britz et al find that for 
Neural  Machine Translation, 2 to 4 layers is best for the 
encoder RNN,  and 4 layers is best for the decoder RNN
• However, skip-connections/dense-connections are needed to 

train  deeper RNNs (e.g. 8 layers)

• Transformer-based networks (e.g. BERT) can be up to 24 
layers

“Massive Exploration of Neural Machine Translation Architecutres”, Britz et al, 2017.https://arxiv.org/pdf/1703.03906.pdf 78
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In summary
Lots of new information today! What are the practical takeaways?

1. LSTMs are powerful but GRUs arefaster 2. Clip your gradients

3. Use bidirectionality when possible 4. Multi-layer RNNs are powerful, but you  
might need skip/dense-connections if it’sdeep
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