
Deep Learning Lessons

Recurrent Neural Networks/Gated Units Language Model

Marta R. Costa-jussà
based on the slides by Abigail See, CS224n slides, Stanford University

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture06-rnnlm.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture07-fancy-rnn.pdf

https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture06-rnnlm.pdf
https://web.stanford.edu/class/archive/cs/cs224n/cs224n.1194/slides/cs224n-2019-lecture06-rnnlm.pdf

Overview

These are two of the most important ideas for the rest of the class!

Today we will:

• Introduce a new NLP task
• Language Modeling

motivates

• Introduce a new family of neural networks
• Recurrent Neural Networks (RNNs)

2

• Language Modeling is the task of predicting what word comes
next.

• More formally: given a sequence of words
compute the probability distribution of the next word

,

where can be any word in the vocabulary

• A system that does this is called a Language Model.

Language Modeling

laptops
the students openedtheir

exams
minds

books

3

Language Modeling

• You can also think of a Language Model as a system
that assigns probability to a piece of text.

• For example, if we have some text , then the
probability of this text (according to the Language Model)
is:

This is what our LM
provides

4

You use Language Models every day!

5

You use Language Models every day!

6

n-gram Language Models

the students opened their

• Question: How to learn a Language Model?
• Answer (pre- Deep Learning): learn a n-gram Language

Model!

• Definition: A n-gram is a chunk of n consecutive words.
• unigrams: “the”, “students”, “opened”, ”their”
• bigrams: “the students”, “students opened”, “opened their”
• trigrams: “the students opened”, “students opened their”
• 4-grams: “the students opened their”

• Idea: Collect statistics about how frequent different n-
grams are, and use these to predict next word. 7

n-gram Language Models

depends only on the

(definition of
conditional prob)

(assumption)

• First we make a simplifying assumption:
preceding n-1words.

n-1words

prob of an-gram

prob of a(n-1)-gram

• Question: How do we get these n-gram and (n-1)-gram probabilities?
• Answer:By counting them in some large corpus of text!

(statistical
approximation)

8

n-gram Language Models: Example

as the proctor started the clock,the

Suppose we are learning a 4-gram Language Model.

students openedtheir
discard

condition on this

For example, suppose that in thecorpus:

• “students opened their” occurred 1000times

• “students opened their books”occurred 400 times

• → P(books | students opened their) = 0.4

• “students opened their exams” occurred 100times

• → P(exams | students opened their) = 0.1

Should we have
discarded the
“proctor” context?

9

Sparsity Problems with n-gram Language Models

Note: Increasing n makes sparsity problems worse.
Typically we can’t have n bigger than 5.

Problem:What if “students
opened their” never occurred in
data? Then we can’t calculate
probability for any !

Sparsity Problem 2

Problem:What if “students
opened their ” never
occurred in data?Then
has probability 0!

Sparsity Problem 1

(Partial) Solution: Add small !
to the count for every .
This is called smoothing.

(Partial) Solution: Justcondition
on “opened their” instead.
This is called backoff.

10

Storage Problems with n-gram Language Models

Storage: Need to store count for
all n-grams you saw in thecorpus.

Increasing n or increasingcorpus
increases model size!

11

Sparsity Problems with n-gram Language Models

Note: Increasing n makes sparsity problems worse.
Typically we can’t have n bigger than 5.

Problem:What if “students
opened their” never occurred in
data? Then we can’t calculate
probability for any !

Sparsity Problem 2

(Partial) Solution: Justcondition
on “opened their” instead.
This is called backoff.

12

n-gram Language Models in practice

• You can build a simple trigram Language Model over a
1.7 million word corpus (Reuters) in a few seconds on your laptop*

today the

* Try for yourself: https://nlpforhackers.io/language-models/Otherwise, seemsreasonable!

get probability
distribution

Sparsity problem:
not muchgranularity

in the probability
distribution

company 0.153
bank 0.153
price 0.077
italian 0.039
emirate

…
0.039

Business and financial news

13

https://nlpforhackers.io/language-models/

Generating text with a n-gram Language Model

company
bank
price
italian
emirate

…

• You can also use a Language Model to generate text.

today the

condition on this
get probability

distribution

0.153
0.153
0.077 sample
0.039
0.039

14

Generating text with a n-gram Language Model

of
for
it
to
is

…

• You can also use a Language Model to generate text.

today theprice

condition on this
get probability

distribution

0.308 sample
0.050
0.046
0.046
0.031

15

Generating text with a n-gram Language Model

the
18
oil
its
gold

0.072
0.043
0.043
0.036
0.018

…

• You can also use a Language Model to generate text.

today the priceof

condition on this
get probability

distribution

sample

16

Generating text with a n-gram Language Model

• You can also use a Language Model to
generate text.

today the price of gold

17

Generating text with a n-gram Language Model

today the price of gold per ton , while production of
shoe lasts and shoe industry , the bank intervened
just after it considered and rejected an imf demand to
rebuild depleted european stocks , sept 30 end
primary 76 cts a share .

Surprisingly grammatical!

…but incoherent. We need to consider more
than three words at a time if we want to model
language well.

But increasing n worsens sparsity problem,
and increases model size… 18

How to build a neural Language Model?

in Paris are amazingmuseums

• Recall the Language Modeling task:
• Input: sequence of words
• Output: prob dist of the next word

• How about a window-based neural model?
• We saw this applied to Named Entity Recognition :

LOCATION

19

A fixed-window neural Language Model

theas the proctor started the clock their
discard

students opened

fixedwindow
20

A fixed-window neural Language Model

the students opened their

books
laptops

a zoo

Improvements over n-gram LM:
• No sparsity problem
• Don’t need to store all

observed
n-grams

Remaining problems:

•

• Fixed window is too small
• Enlarging window enlarges
• Window can never be large

enough!
and are multiplied by

completely different weights in .
No symmetry in how the inputs
are processed.

We need a neural
architecture that can

process any length input
21

hidden states

input sequence
(any length)

…

…

…

Core idea: Apply the
same weights
repeatedly

Recurrent Neural Networks (RNN)
A family of neural architectures

outputs
(optional)

22

A RNN Language Model

opened theirwords / one-hot vectors the students

books
laptops

word embeddings

a zoo

output distribution

Note: this input sequence could bemuch
longer, but this slide doesn’t havespace!

hidden states

is the initial hiddenstate

23

A RNN Language Model

the students opened their

books
laptops

a zoo

RNN Advantages:
• Can process any length

input
• Computation for step t

can (in theory) use
information from many
steps back

• Model size doesn’t
increase for longer input

• Same weights applied on
every timestep, so there is
symmetry in how inputs
are processed.

RNN Disadvantages:
More on
these later

• Recurrent computation
is slow

• In practice, difficult to
access information
from many steps
back

24

Training a RNN Language Model
• Get a big corpus of text which is a sequence of words
• Feed into RNN-LM; compute output distribution for every step t.

• i.e. predict probability dist of every word, given words so far

• Loss function on step t is cross-entropy between predicted probability
distribution , and the true next word (one-hot for):

• Average this to get overall loss for entire training
set:

25

Training a RNN Language Model

…

= negative log prob
of “students”

Loss

Predicted
prob dists

Corpus the students opened their exams …
26

Training a RNN Language Model
= negative log prob

of “opened”

…

Loss

Predicted
prob dists

Corpus the students opened their exams …
27

Training a RNN Language Model
= negative log prob

of “their”

…

Loss

Predicted
prob dists

Corpus the students opened their exams …
28

Training a RNN Language Model
= negative log prob

of “exams”

…

Loss

Predicted
prob dists

Corpus the students opened their exams …
29

Training a RNN Language Model

+ + + +… =

…

Loss

Predicted
prob dists

Corpus the students opened their exams …
30

Training a RNN Language Model
• However: Computing loss and gradients across entire corpus is too

expensive!

• In practice, consider as a sentence (or a document)

• Recall: Stochastic Gradient Descent allows us to compute loss and
gradients for small chunk of data, and update.

• Compute loss for a sentence (actually a batch of
sentences), compute gradients and update weights. Repeat.

31

Backpropagation for RNNs

……

Question:What’s the derivativeof w.r.t. the repeated weightmatrix ?

Answer:
“The gradient w.r.t. a repeatedweight

is the sum of thegradient
w.r.t. each time it appears”

Why?

32

Multivariable Chain Rule

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

33

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Backpropagation for RNNs: Proof sketch

…

In our example: Apply the multivariable chainrule:
=1

Source:
https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

34

https://www.khanacademy.org/math/multivariable-calculus/multivariable-derivatives/differentiating-vector-valued-functions/a/multivariable-chain-rule-simple-version

Backpropagation for RNNs

……

Question:How do we
calculate this?

Answer:Backpropagate over
timesteps i=t,…,0, summing
gradients as you go.
This algorithm is called
“backpropagation through time”

35

Generating text with a RNN Language Model
Just like a n-gram Language Model, you can use a RNN Language Model to
generate text by repeated sampling. Sampled output is next step’s input.

my favorite season is

…

favorite season is

sample sample sample

spring

sample

spring 36

Generating text with a RNN Language Model

• Let’s have some fun!
• You can train a RNN-LM on any kind of text, then

generate text in that style.
• RNN-LM trained on recipes:

Source:
https://gist.github.com/nylki/1efbaa36635956d35bcc

37

https://gist.github.com/nylki/1efbaa36635956d35bcc

RNNs can be used for tagging
e.g. part-of-speech tagging, named entity recognition

knocked over the vasethe startled cat

VBN IN DT NNDT JJ NN

38

RNNs can be used for tagging
e.g. part-of-speech tagging, named entity recognition

Kim Jong-il said noNorth Korean leader

B-per I-per O OB-geo I-geo 0

39

Evaluating Language Models

• This is equal to the exponential of the cross-entropy loss

• The standard evaluation metric for Language Models is
perplexity.

Normalized by
number of
words

Inverse probability of corpus, according to Language Model

Lower perplexity is better!
40

RNNs have greatly improved perplexity

n-gram model

Increasingly
complexRNNs

Perplexity improves
(lower isbetter)

Source: https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

41

https://research.fb.com/building-an-efficient-neural-language-model-over-a-billion-words/

Why should we care about Language Modeling?

• Language Modeling is a benchmark task that helps us
measure our progress on understanding language

• Language Modeling is a subcomponent of many NLP tasks,
especially those involving generating text or
estimating the probability of text:

• Predictive typing
• Speech recognition
• Handwriting recognition
• Spelling/grammar correction
• Authorship identification
• Machine translation
• Summarization
• Dialogue
• etc.

42

Recap

• Language Model: A system that predicts the next word

• Recurrent Neural Network: A family of neural networks
that:
• Take sequential input of any length
• Apply the same weights on each step
• Can optionally produce output on each step

• Recurrent Neural Network ≠ Language Model

• We’ve shown that RNNs are a great way to build a LM.

• But RNNs are useful for much more! 43

Next topics

• Vanishing gradient problem

• Two new types of RNN: LSTM and
GRU

• Other fixes for vanishing (or exploding)
gradient:
• Gradient clipping
• Skip connections

• More fancy RNN
variants:
• Bidirectional RNNs
• Multi-layer RNNs

motivates

Lots of important
definitions!

44

Vanishing gradient intuition

45

Vanishing gradient intuition

?

46

Vanishing gradient intuition

chain rule!

47

Vanishing gradient intuition

chain rule!

48

Vanishing gradient intuition

chain rule!

49

Vanishing gradient intuition

What happens if these aresmall?

Vanishing gradient problem:
When these are small, the
gradient signal gets smaller

and smaller as it
backpropagates further 50

Why is vanishing gradient a problem?

Gradient signal from faraway is lost because it’s much
smaller than gradient signal from close-by.

So model weights are only updated only with respect to
near effects, not long-termeffects.

53

54

Why is vanishing gradient a problem?

• Another explanation: Gradient can be viewed as a
measure ofthe effect of the past on the future

• If the gradient becomes vanishingly small over longer
distances (step t to step t+n), then we can’t tell whether:
1. There’s no dependency between step t and t+n in the

data
2. We have wrong parameters to capture the

true dependency between t and t+n

55

Effect of vanishing gradient on RNN-LM

• LM task: When she tried to print her tickets, she found that
the printer was out of toner. She went to the stationery
store to buy more toner. It was very overpriced. After
installing the toner into the printer, she finally printed her

• To learn from this training example, the RNN-LM needs
to model the dependency between “tickets” on the 7th

step and the target word “tickets” at the end.

• But if gradient is small, the model can’t learn this
dependency
• So the model is unable to predict similar long-

distance dependencies at test time

• LM task: The writer of the books

• Correct answer: The writer of the books is planning a
sequel

• Syntactic recency: The writer of the books is (correct)

• Sequential recency: The writer of the books are (incorrect)

• Due to vanishing gradient, RNN-LMs are better at learning
from sequential recency than syntactic recency, so they
make this type of error more often than we’d like [Linzen et
al 2016]

Effect of vanishing gradient on RNN-LM

are

“Assessing the Ability of LSTMs to Learn Syntax-Sensitive Dependencies”, Linzen et al, 2016.
https://arxiv.org/pdf/1611.01368.pdf

56

is

https://arxiv.org/pdf/1611.01368.pdf

Why is exploding gradient a problem?

• If the gradient becomes too big, then the SGD
update step becomes too big:

learning rate

gradient

• This can cause bad updates: we take too large a step
and reach a bad parameter configuration (with large
loss)

• In the worst case, this will result in Inf or NaN in your
network (then you have to restart training from an
earlier checkpoint)

57

Gradient clipping: solution for exploding gradient

Source: “On the difficulty of training recurrent neural networks”, Pascanu et al, 2013.
http://proceedings.mlr.press/v28/pascanu13.pdf

• Gradient clipping: if the norm of the gradient is greater
than some threshold, scale it down before applying
SGD update

• Intuition: take a step in the same direction, but a smaller
step

58

http://proceedings.mlr.press/v28/pascanu13.pdf

How to fix vanishing gradient problem?

• The main problem is that it’s too difficult for the RNN to
learn to
preserve information over many timesteps.

• In a vanilla RNN, the hidden state is constantly being
rewritten

• How about a RNN with separate
memory?

60

Long Short-Term Memory (LSTM)
• A type of RNN proposed by Hochreiter and Schmidhuber in 1997 as a

solution to the vanishing gradients problem.

• On step t, there is a hidden state and a cell state
• Both are vectors length n
• The cell stores long-term information
• The LSTM can erase, write and read information from the cell

• The selection of which information is erased/written/read is
controlled by three corresponding gates
• The gates are also vectors length n
• On each timestep, each element of the gates can be open (1),

closed (0), or somewhere in-between.
• The gates are dynamic: their value is computed based on the

current context
“Long short-term memory”, Hochreiter and Schmidhuber, 1997. https://www.bioinf.jku.at/publications/older/2604.pdf 61

https://www.bioinf.jku.at/publications/older/2604.pdf

We have a sequence of inputs , and we will compute a sequence of hiddenstates
and cell states . On timestep t:

Long Short-Term Memory (LSTM)

Al
l t

he
se

 a
re

 v
ec

to
rs

 o
f s

am
e

le
ng

th
n

Forget gate: controls what is kept vs
forgotten, from previous cell state

Input gate: controls what parts of the
new cell content are written to cell

Output gate: controls what parts of
cell are output to hiddenstate

New cell content: this is the new
content to be written to the cell

Cell state: erase (“forget”) some
content from last cell state, andwrite
(“input”) some new cell content

Hidden state: read (“output”) some
content from the cell

Sigmoid function: all gate
values are between 0 and 1

Gates are applied using
element-wise product 62

Long Short-Term Memory (LSTM)
You can think of the LSTM equations visually likethis:

Source:http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

ct-1

ht-1

ct

ht

f
t

it ot

ct

t
~c

Long Short-Term Memory (LSTM)
You can think of the LSTM equations visually likethis:

Compute the

forget gate

Forget some

cell content

Compute the

input gate

Compute the

new cell content

Compute the

output gate

Write some new cell content

Output some cell content

to the hiddenstate

64Source:http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

65

How does LSTM solve vanishing gradients?

• The LSTM architecture makes it easier for the
RNN to preserve information over many
timesteps
• e.g. if the forget gate is set to remember everything on

every timestep, then the info in the cell is preserved
indefinitely

• By contrast, it’s harder for vanilla RNN to learn a
recurrent
weight matrix Wh that preserves info in hidden state

• LSTM doesn’t guarantee that there is no
vanishing/exploding gradient, but it does provide an
easier way for the model to learn long-distance
dependencies

LSTMs: real-world success

• In 2013-2015, LSTMs started achieving state-of-the-art results

• Successful tasks include: handwriting recognition, speech

recognition, machine translation, parsing, image captioning

• LSTM became the dominant approach

• Now (2019), other approaches (e.g. Transformers) have

become more dominant for certain tasks.

• For example in WMT (a MT conference + competition):

• In WMT 2016, the summary report contains ”RNN” 44 times

• In WMT 2018, the report contains “RNN” 9 times and

“Transformer” 63 times

Source:"Findings of the 2016 Conference on Machine Translation (WMT16)", Bojar et al. 2016, http://www.statmt.org/wmt16/pdf/W16-2301.pdf

Source:"Findings of the 2018 Conference on Machine Translation (WMT18)", Bojar et al. 2018, http://www.statmt.org/wmt18/pdf/WMT028.pdf 66

http://www.statmt.org/wmt16/pdf/W16-2301.pdf
http://www.statmt.org/wmt18/pdf/WMT028.pdf

Gated Recurrent Units (GRU)
• Proposed by Cho et al. in 2014 as a simpler alternative to the LSTM.

• On each timestep t we have input and hidden state (no cell state).

"Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation", Cho et al. 2014, https://arxiv.org/pdf/1406.1078v3.pdf

Update gate: controls what parts of
hidden state are updated vspreserved

Reset gate: controls what parts of
previous hidden state are used to
compute new content

Hidden state: update gate
simultaneously controls what is kept
from previous hidden state, and what
is updated to new hidden statecontent

New hidden state content: reset gate
selects useful parts of prev hidden
state. Use this and current input to
compute new hidden content.

How does this solve vanishing gradient?
Like LSTM, GRU makes it easier to retain info
long-term (e.g. by setting update gate to0)

67

https://arxiv.org/pdf/1406.1078v3.pdf

LSTM vs GRU

• Researchers have proposed many gated RNN variants,
but LSTM and GRU are the most widely-used

• The biggest difference is that GRU is quicker to compute
and has fewer parameters

• There is no conclusive evidence that one consistently
performs better than the other

• LSTM is a good default choice (especially if your data has
particularly long dependencies, or you have lots of training
data)

• Rule of thumb: start with LSTM, but switch to GRU if you
want something more efficient

68

Is vanishing/exploding gradient just a RNN problem?

• No! It can be a problem for all neural architectures
(including feed-forward and convolutional), especially
deep ones.
• Due to chain rule / choice of nonlinearity function, gradient can

become vanishingly small as it backpropagates
• Thus lower layers are learnt very slowly (hard to train)
• Solution: lots of new deep feedforward/convolutional architectures

that
add more direct connections (thus allowing the gradient to flow)

• Conclusion: Though vanishing/exploding gradients are a
general problem, RNNs are particularly unstable due to
the repeated multiplication by the same weight matrix
[Bengio et al, 1994]

”Learning Long-Term Dependencies with Gradient Descent is Difficult", Bengio et al. 1994, http://ai.dinfo.unifi.it/paolo//ps/tnn-94-gradient.pdf 69

http://ai.dinfo.unifi.it/paolo/ps/tnn-94-gradient.pdf

Recap

• Today we’ve learnt:
• Vanishing gradient problem: what it is, why it happens, and

why it’s bad for RNNs
• LSTMs and GRUs: more complicated RNNs that use gates

to control information flow; they are more resilient to
vanishing gradients

• Remainder of this lecture:

• Bidirectional RNNs
• Multi-layer RNNs

Both of theseare
pretty simple

70

terribly exciting !the movie was

positive

Sentence encoding

We can regard this hidden state as a
representation of the word “terribly” in the
context of this sentence. We call this a
contextual representation.

These contextual
representations only
contain information
about the leftcontext
(e.g. “the movie
was”).

What about right
context?

In this example,
“exciting” is in the
right context and this
modifies the meaning
of “terribly” (from
negative to positive)

71

Bidirectional RNNs: motivation
Task: Sentiment Classification

Bidirectional RNNs

terribly exciting !the movie was

Forward RNN

BackwardRNN

Concatenated
hidden states

This contextual representation of “terribly”
has both left and rightcontext!

72

Bidirectional RNNs

Forward RNN

BackwardRNN

Concatenated hidden states

This is a general notation to mean “compute
one forward step of the RNN” – it could be a
vanilla, LSTMor GRUcomputation.

We regard this as “the hidden
state” of a bidirectional RNN.
This is what we pass on to the
next parts of thenetwork.

Generally, these
two RNNs have
separate weights

73

On timestep t:

Bidirectional RNNs: simplified diagram

terribly exciting !

74

the movie was

The two-way arrows indicate bidirectionality and
the depicted hidden states are assumed to be
the concatenated forwards+backwards states.

75

Bidirectional RNNs

• Note: bidirectional RNNs are only applicable if you have
access to the entire input sequence.
• They are not applicable to Language Modeling, because

in LM you only have left context available.

• If you do have entire input sequence (e.g. any kind of
encoding), bidirectionality is powerful (you should use it by
default).

• For example, BERT (Bidirectional Encoder
Representations from Transformers) is a powerful
pretrained contextual representation system built on
bidirectionality.

76

Multi-layer RNNs
• RNNs are already “deep” on one dimension (they unroll

over many timesteps)

• We can also make them “deep” in another dimension by
applying multiple RNNs – this is a multi-layer RNN.

• This allows the network to compute more
complex representations
• The lower RNNs should compute lower-level features

and the
higher RNNs should compute higher-level features.

• Multi-layer RNNs are also called stacked RNNs.

Multi-layer RNNs

terribly exciting !the movie was

RNN layer 1

RNN layer 2

77

RNN layer 3

The hidden states from RNN layeri
are the inputs to RNN layer i+1

Multi-layer RNNs in practice

• High-performing RNNs are often multi-layer (but aren’t as
deep
as convolutional or feed-forward networks)

• For example: In a 2017 paper, Britz et al find that for
Neural Machine Translation, 2 to 4 layers is best for the
encoder RNN, and 4 layers is best for the decoder RNN
• However, skip-connections/dense-connections are needed to

train deeper RNNs (e.g. 8 layers)

• Transformer-based networks (e.g. BERT) can be up to 24
layers

“Massive Exploration of Neural Machine Translation Architecutres”, Britz et al, 2017.https://arxiv.org/pdf/1703.03906.pdf 78

https://arxiv.org/pdf/1703.03906.pdf

In summary
Lots of new information today! What are the practical takeaways?

1. LSTMs are powerful but GRUs arefaster 2. Clip your gradients

3. Use bidirectionality when possible 4. Multi-layer RNNs are powerful, but you
might need skip/dense-connections if it’sdeep

79

