
1

Deep Learning Lessons

NN Preliminaries

Word Classification, NER, Key Concepts in Deep Learning

Marta R. Costa-jussà

with slides from Christopher Manning, Stanford University

2

Outline

Classification Task with Neural Networks

Named Entity Recognition as an example of Classification Task

Deep Learning Computation Key Concepts

3

What to read

The Deep Learning book, Ian Goodfellow and Yoshua Bengio and Aaron
Courville, MIT Press

CS224n: Natural Language Processing with Deep Learning
Stanford / Winter 2020

4

Next: Classification Task with Neural Networks

5

Classification setup and notation
• Generally we have a training dataset consisting of samples

{xi,yi}N
i=1

• xi are inputs, e.g. words (indices or vectors!), sentences,
documents, etc.

• Dimension d

• yi are labels (one of C classes) we try to predict, for
example:

• classes: sentiment, named entities, buy/sell decision
• other words
• later: multi-word sequences

6

Classification intuition

Visualizations with ConvNetJS
by Karpathy! http://cs.stanford.edu/people/karpathy/convnetjs/demo/

classify2d.html

http://cs.stanford.edu/people/karpathy/convnetjs/demo/

7

Details of the softmax classifier

8

Training with softmax and cross-entropy loss

• For each training example (x,y), our objective is to
maximize the probability of the correct class y

• This is equivalent to minimizing the negative log
probability of that class:

• Using log probability converts our objective function to
sums, which is easier to work with on paper and in
implementation.

9

Background: What is “cross entropy” loss/error?

• Concept of “cross entropy” is from information theory
• Let the true probability distribution be p
• Let our computed model probability be q
• The cross entropy is:

• Assuming a ground truth (or true or gold or target)
probability distribution that is 1 at the right class and 0
everywhere else:
p = [0,…,0,1,0,…0] then:

• Because of one-hot p, the only term left is the negative
log probability of the true class

10

Classification over a full dataset

• Cross entropy loss function over
full dataset {xi,yi}Ni=1

• Instead of

We will write f in matrix notation:

11

Traditional ML optimization

•

Visualizations with ConvNetJS
by Karpathy

12

Neural Network Classifiers

•

• Softmax (≈ logistic regression) alone not very
powerful

• Softmax gives only linear decision boundaries

This can be quite limiting

Unhelpful when a
problem is complex

wouldn’t it be cool to get
these correct?

13

Neural Nets for the Win!

13

• Neural networks can learn much more complex
functions and nonlinear decision boundaries!

14

Classification difference with word vectors

layer x = Le

• Commonly in NLP deep learning:
• We learn both W and word vectors x
• We learn both conventional parameters and

representations

• The word vectors re-represent one-hot vectors—move
them around in an intermediate layer vector space—for
easy classification with a (linear) softmax classifier

Very large number
of parameters!

15

Neural
computation

15

16

A neuron can be a binary logistic regression unit

w, b are the parameters of this
neuron

i.e., this logistic regression model

f = nonlinear activation fct. (e.g. sigmoid), w = weights, b = bias, h = hidden, x
= inputs

b: We can have an “always on”
feature, which gives a class
prior, or separate it out, as a
bias term

17

A neural network
= running several logistic regressions at the same time
If we feed a vector of inputs through a bunch of logistic
regression functions, then we get a vector of outputs …

But we don’t have to decide
ahead of time what
variables these logistic
regressions are trying to
predict!

18

18

… which we can feed into another logistic regression function

It is the loss function
that will direct what
the intermediate
hidden variables
should be, so as to do
a good job at
predicting the
targets for the next
layer, etc.

A neural network
= running several logistic regressions at the same time

19

19

Before we know it, we have a multilayer neural network….

A neural network
= running several logistic regressions at the same time

20

Matrix notation for a layer

We have

In matrix notation

Activation f is applied element-wise
:

a2

a3

W12

a1

b3

21

Non-linearities (aka “f ”): Why they’re needed

• Example: function approximation,
e.g., regression or classification
• Without non-linearities, deep neural

networks can’t do anything more than a
linear transform

• Extra layers could just be compiled
down into a single linear transform: W1

W2 x = Wx

• With more layers, they can
approximate more complex functions!

22

Next: Named Entity Recognition
(as an example of Classification Task)

23

Named Entity Recognition (NER)

• The task: find and classify names in text, for example:
The European Commission [ORG] said on Thursday it
disagreed with German [MISC] advice.

Only France [LOC] and Britain [LOC] backed Fischler
[PER] 's proposal .

“What we have to be extremely careful of is how other
countries are going to take Germany 's lead”, Welsh
National Farmers ' Union [ORG] (NFU [ORG]) chairman
John Lloyd Jones [PER] said on BBC [ORG] radio .

• Possible purposes:
• Tracking mentions of particular entities in documents
• For question answering, answers are usually named entities
• A lot of wanted information is really associations between named entities
• The same techniques can be extended to other slot-filling classifications

• Often followed by Named Entity Linking/Canonicalization into Knowledge Base

24

Named Entity Recognition on word sequences

We predict entities by classifying words in context and then
extracting entities as word subsequences

25

Why might NER be hard?

• Hard to work out boundaries of entity

Is the first entity “First National Bank” or “National Bank”
• Hard to know if something is an entity

Is there a school called “Future School” or is it a future
school?

• Hard to know class of unknown/novel entity:

What class is “Zig Ziglar”? (A person.)
• Entity class is ambiguous and depends on context

“Charles Schwab” is PER not ORG here!

26

Word-Window classification

• Idea: classify a word in its context window of neighboring
words.

"Museums in Paris are amazing"
to classify whether or not the center word "Paris" is a named-entity

• For example, Named Entity Classification of a word in
context:
• Person, Location, Organization, None

• A simple way to classify a word in context might be to
average the word vectors in a window and to classify the
average vector
• Problem: that would lose position information

27

Window classificaiton: softmax

28

Simplest window classifier: Softmax

• With x = xwindow we can use the softmax classifier

• How do you update the word vectors?
• Short answer: Just take derivatives and optimize

• With cross entropy error:
same

predicted model
output
probability

29

Slightly more complex: Multilayer Perceptron

• Introduce an additional layer in our softmax classifier with
a non-linearity.

• MLPs are fundamental building blocks of more complex
neural systems!

30

Binary classification with unnormalized scores

Method used by Collobert & Weston (2008, 2011)

• For our previous example:

• Assume we want to classify whether the center word is
a Location

• Similar to word2vec, we will go over all positions in a
corpus. But this time, it will be supervised and only
some positions should get a high score.

• E.g., the positions that have an actual NER Location in
their center are “true” positions and get a high score

31

Binary classification for NER Location

Example: Not all museums in Paris are amazing .

• Here: one true window, the one with Paris in its center and all other
windows are “corrupt” in terms of not having a named entity location in
their center.

museums in Paris are amazing

• “Corrupt“ windows are easy to find and there are many: Any window
whose center word isn’t specifically labeled as NER location in our corpus

Not all museums in Paris

32

Neural Network Feed-forward Computation

We compute a window’s score with a 3-layer neural net:

• s = score("museums in Paris are amazing”)

xwindow = [xmuseums xin xParis xare xamazing]

33

Main intuition for extra layer

The middle layer learns non-linear interactions
between the input word vectors.

Xwindow = [xmuseums xin xParis xare xamazing]

Example: only if “museums” is first vector should it matter
that “in” is in the second position

34

Main model

x =[xmuseums xin xParis xare xamazing]

35

Next: Deep Learning Computation – Key Concepts

36

Backpropagation

Regularization

Vectorization

Non-linearities

Initialization

Optimizers

Learning Rates

...

Deep Learning Computation: Some Key Concepts

x =[xmuseums xin xParis xare xamazing]

37

Computation Graphs and Backpropagation

+

• We represent our neuralnet
equations as a graph
• Source nodes: inputs

• Interior nodes:operations

• Edges pass along result of the
operation

● ●

38

Computation Graphs and Backpropagation

+

• We represent our neuralnet
equations as a graph
• Source nodes: inputs

• Interior nodes:operations

• Edges pass along result of the
operation

● ●

“Forward Propagation”

39

Backpropagation

+

• Go backwards along edges
• Pass alonggradients

● ●

40

Backprop key concepts

• Backpropagation: recursively (and hence efficiently)
apply the chain rule along computationgraph
• [downstream gradient] = [upstream gradient] x [local gradient]

• Forward pass: compute results of operations andsave
intermediate values

• Backward pass: apply chain rule to computegradients

41

We have models with many params: Regularization

• Really a full loss function in practice includesregularization over
all parameters ! , e.g., L2 regularization:

• Regularization (largely) prevents overfitting when we havea lot
of features (or later a very powerful/deep model, ++)

model power

Trainingerror

Testerror

overfitting

42

“Vectorization”

• E.g., looping over word vectors versusconcatenating
them all into one large matrix and then multiplying
the softmax weights with thatmatrix

• 1000 loops, best of 3: 639 µs per loop
10000 loops, best of 3: 53.8 µs per loop

43

“Vectorization”

• The (10x) faster method is using a C x Nmatrix

• Always try to use vectors and matrices rather than for loops!

• You should speed-test your code a lot too!!

• tl;dr: Matrices areawesome!!!

44

Non-linearities: The starting points

logistic (“sigmoid”) tanh hard tanh

tanh is just a rescaled and shifted sigmoid (2 x assteep, [−1,1]):
tanh(z) = 2logistic(2z)−1

Both logistic and tanh are still used in particular uses, but are no
longer the defaults formaking deep networks

1

0

1

−1

45

Non-linearities: The new world order

Leaky ReLU Parametric ReLU

• For building a feed-forward deep network, the first thing you should try is
ReLU —it trains quickly and performs well due to good gradient backflow

ReLU(rectified
linear unit)
rect(z) =max(z, 0)

46

Parameter Initialization

• You normally must initialize weights tosmall random values
• To avoid symmetries that prevent learning/specialization

• Initialize hidden layer biases to 0 and output (or reconstruction)
biases to optimal value if weights were 0 (e.g., mean target or
inverse sigmoid of meantarget)

• Initialize all other weights ~ Uniform(–r, r), with rchosen so
numbers get neither too big or too small

• Xavier initialization has variance inversely proportional to fan-in
nin (previous layer size) and fan-out nout (next layersize):

47

Optimizers

• Usually, plain SGD will work just fine

• However, getting good results willoften require hand-tuning

the learning rate (nextslide)

• For more complex nets and situations, or just to avoid worry,

you often do better with one of a family of more sophisticated

“adaptive” optimizers that scale the parameter adjustment by

an accumulated gradient.

• These models give per-parameter learning rates

• Adagrad

• RMSprop

• Adam A fairly good, safe place to begin in many cases

• SparseAdam

• …

48

LearningRates

• You can just use a constant learning rate. Start around lr= 0.001?

• It must be order of magnitude right – try powers of 10

• Too big: model may diverge or not converge

• Too small: your model may not have trained by thedeadline

• Better results can generally be obtained by allowing

learning rates to decrease as youtrain

• By hand: halve the learning rate every kepochs

• An epoch = a pass through the data (shuffled or sampled)

• By a formula: !" = !"$%&'(, for epocht
• There are fancier methods like cyclic learning rates(q.v.)

• Fancier optimizers still use a learning rate but it may be an initial

rate that the optimizer shrinks – so may be able to start high

49

Summary

Classification Tasks can successfully be addressed with Neural Networks
because they are able to capture non-linearities

Named Entity Recognition can be addressed as a Classification Task

Deep Learning Computation is complex and full of tricks and details

