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Deep Learning Lessons

NN Preliminaries

Word Classification, NER, Key Concepts in Deep Learning

Marta R. Costa-jussà

with slides from Christopher Manning, Stanford University
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Outline

Classification Task with Neural Networks

Named Entity Recognition as an example of Classification Task

Deep Learning Computation Key Concepts
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What to read

The Deep Learning book, Ian Goodfellow and Yoshua Bengio and Aaron
Courville, MIT Press

CS224n: Natural Language Processing with Deep Learning
Stanford / Winter 2020
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Next: Classification Task with Neural Networks
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Classification setup and notation
• Generally we have a training dataset consisting of samples

{xi,yi}N
i=1

• xi are inputs, e.g. words (indices or vectors!), sentences,  
documents, etc.

• Dimension d

• yi are labels (one of C classes) we try to predict, for  
example:

• classes: sentiment, named entities, buy/sell decision
• other words
• later: multi-word sequences
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Classification intuition

Visualizations with ConvNetJS
by Karpathy! http://cs.stanford.edu/people/karpathy/convnetjs/demo/

classify2d.html

http://cs.stanford.edu/people/karpathy/convnetjs/demo/
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Details of the softmax classifier
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Training with softmax and cross-entropy loss

• For each training example (x,y), our objective is to 
maximize the probability of the correct class y

• This is equivalent to minimizing the negative log  
probability of that class:

• Using log probability converts our objective function to  
sums, which is easier to work with on paper and in  
implementation.
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Background: What is “cross entropy” loss/error?

• Concept of “cross entropy” is from information theory
• Let the true probability distribution be p
• Let our computed model probability be q
• The cross entropy is:

• Assuming a ground truth (or true or gold or target)  
probability distribution that is 1 at the right class and 0  
everywhere else:
p = [0,…,0,1,0,…0] then:

• Because of one-hot p, the only term left is the negative  
log probability of the true class
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Classification over a full dataset

• Cross entropy loss function over  
full dataset {xi,yi}Ni=1

• Instead of

We will write f in matrix notation:
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Traditional ML optimization

•

Visualizations with ConvNetJS  
by Karpathy
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Neural Network Classifiers

•

• Softmax (≈ logistic regression) alone not very  
powerful

• Softmax gives only linear decision boundaries

This can be quite limiting

Unhelpful when a  
problem is complex

wouldn’t it be cool to get  
these correct?
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Neural Nets for the Win!

13

• Neural networks can learn much more complex  
functions and nonlinear decision boundaries!
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Classification difference with word vectors

layer x = Le

• Commonly in NLP deep learning:
• We learn both W and word vectors x
• We learn both conventional parameters and

representations

• The word vectors re-represent one-hot vectors—move  
them around in an intermediate layer vector space—for  
easy classification with a (linear) softmax classifier

Very large number  
of parameters!
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Neural
computation

15
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A neuron can be a binary logistic regression unit

w, b are the parameters of this  
neuron

i.e., this logistic regression model

f = nonlinear activation fct. (e.g. sigmoid), w = weights, b = bias, h = hidden, x
= inputs

b: We can have an “always on”  
feature, which gives a class  
prior, or separate it out, as a  
bias term
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A neural network
= running several logistic regressions at the same time
If we feed a vector of inputs through a bunch of logistic  
regression functions, then we get a vector of outputs …

But we don’t have to decide  
ahead of time what  
variables these logistic  
regressions are trying to  
predict!
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… which we can feed into another logistic regression function

It is the loss function  
that will direct what  
the intermediate  
hidden variables  
should be, so as to do  
a good job at  
predicting the  
targets for the next  
layer, etc.

A neural network
= running several logistic regressions at the same time



19

19

Before we know it, we have a multilayer neural network….

A neural network
= running several logistic regressions at the same time
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Matrix notation for a layer

We have

In matrix notation

Activation f is applied element-wise
:

a2

a3

W12

a1

b3
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Non-linearities (aka “f ”): Why they’re needed

• Example: function approximation,  
e.g., regression or classification
• Without non-linearities, deep neural  

networks can’t do anything more than a  
linear transform

• Extra layers could just be compiled  
down into a single linear transform: W1 

W2 x = Wx

• With more layers, they can  
approximate more complex functions!
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Next: Named Entity Recognition
(as an example of Classification Task)
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Named Entity Recognition (NER)

• The task: find and classify names in text, for example:
The European Commission [ORG] said on Thursday it 
disagreed  with German [MISC] advice.

Only France [LOC] and Britain [LOC] backed Fischler 
[PER]  's proposal .

“What we have to be extremely careful of is how other  
countries are going to take Germany 's lead”, Welsh  
National Farmers ' Union [ORG] ( NFU [ORG] ) chairman 
John  Lloyd Jones [PER] said on BBC [ORG] radio .

• Possible purposes:
• Tracking mentions of particular entities in documents
• For question answering, answers are usually named entities
• A lot of wanted information is really associations between named entities
• The same techniques can be extended to other slot-filling classifications

• Often followed by Named Entity Linking/Canonicalization into Knowledge Base
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Named Entity Recognition on word sequences

We predict entities by classifying words in context and then  
extracting entities as word subsequences
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Why might NER be hard?

• Hard to work out boundaries of entity

Is the first entity “First National Bank” or “National Bank”
• Hard to know if something is an entity

Is there a school called “Future School” or is it a future  
school?

• Hard to know class of unknown/novel entity:

What class is “Zig Ziglar”? (A person.)
• Entity class is ambiguous and depends on context  

“Charles Schwab” is PER not ORG here! 
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Word-Window classification

• Idea: classify a word in its context window of neighboring  
words.

"Museums in Paris are amazing"
to classify whether or not the center word "Paris" is a named-entity

• For example, Named Entity Classification of a word in  
context:
• Person, Location, Organization, None

• A simple way to classify a word in context might be to 
average the word vectors in a window and to classify the  
average vector
• Problem: that would lose position information
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Window classificaiton: softmax
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Simplest window classifier: Softmax

• With x = xwindow we can use the softmax classifier

• How do you update the word vectors?
• Short answer: Just take derivatives and  optimize

• With cross entropy error:
same

predicted model  
output  
probability
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Slightly more complex: Multilayer Perceptron

• Introduce an additional layer in our softmax classifier with  
a non-linearity.

• MLPs are fundamental building blocks of more complex  
neural systems!
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Binary classification with unnormalized scores

Method used by Collobert & Weston (2008, 2011)

• For our previous example:

• Assume we want to classify whether the center word is
a Location

• Similar to word2vec, we will go over all positions in a
corpus. But this time, it will be supervised and only
some positions should get a high score.

• E.g., the positions that have an actual NER Location in
their center are “true” positions and get a high score
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Binary classification for NER Location

Example: Not all museums in Paris are amazing .

• Here: one true window, the one with Paris in its center and all other
windows are “corrupt” in terms of not having a named entity location in 
their center.

museums in Paris are amazing

• “Corrupt“ windows are easy to find and there are many: Any window
whose center word isn’t specifically labeled as NER location in our corpus

Not all museums in Paris
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Neural Network Feed-forward Computation

We compute a window’s score with a 3-layer neural net:

• s = score("museums in Paris are amazing”)

xwindow = [ xmuseums xin xParis xare xamazing ]



33

Main intuition for extra layer

The middle layer learns non-linear interactions  
between the input word vectors.

Xwindow = [ xmuseums xin xParis xare  xamazing ]

Example: only if “museums” is first vector should it  matter 
that “in” is in the second position
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Main model

x =[ xmuseums xin xParis xare xamazing]
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Next: Deep Learning Computation – Key Concepts
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Backpropagation

Regularization

Vectorization

Non-linearities

Initialization

Optimizers

Learning Rates

...

Deep Learning Computation: Some Key Concepts

x =[ xmuseums xin xParis xare xamazing]
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Computation Graphs and Backpropagation

+

• We represent our neuralnet  
equations as a graph
• Source nodes: inputs

• Interior nodes:operations

• Edges pass along result of the  
operation

● ●
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Computation Graphs and Backpropagation

+

• We represent our neuralnet  
equations as a graph
• Source nodes: inputs

• Interior nodes:operations

• Edges pass along result of the  
operation

● ●

“Forward Propagation”
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Backpropagation

+

• Go backwards along edges
• Pass alonggradients

● ●
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Backprop key concepts

• Backpropagation: recursively (and hence efficiently)  
apply the chain rule along computationgraph
• [downstream gradient] = [upstream gradient] x [local gradient]

• Forward pass: compute results of operations andsave  
intermediate values

• Backward pass: apply chain rule to computegradients
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We have models with many params: Regularization

• Really a full loss function in practice includesregularization over  
all parameters ! , e.g., L2 regularization:

• Regularization (largely) prevents overfitting when we havea lot  
of features (or later a very powerful/deep model, ++)

model power

Trainingerror

Testerror

overfitting
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“Vectorization”

• E.g., looping over word vectors versusconcatenating  
them all into one large matrix and then multiplying  
the softmax weights with thatmatrix

• 1000 loops, best of 3: 639 µs per loop  
10000 loops, best of 3: 53.8 µs per loop
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“Vectorization”

• The (10x) faster method is using a C x Nmatrix

• Always try to use vectors and matrices rather than for loops!

• You should speed-test your code a lot too!!

• tl;dr: Matrices areawesome!!!



44

Non-linearities: The starting points

logistic (“sigmoid”) tanh hard tanh

tanh is just a rescaled and shifted sigmoid (2 x assteep, [−1,1]):
tanh(z) = 2logistic(2z)−1

Both logistic and tanh are still used in particular uses, but are no  
longer the defaults formaking deep networks

1

0

1

−1
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Non-linearities: The new world order

Leaky ReLU Parametric ReLU

• For building a feed-forward deep network, the first thing you should try is  
ReLU —it trains quickly and performs well due to good gradient backflow

ReLU(rectified
linear unit)
rect(z) =max(z, 0)
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Parameter Initialization

• You normally must initialize weights tosmall random values
• To avoid symmetries that prevent learning/specialization

• Initialize hidden layer biases to 0 and output (or reconstruction)  
biases to optimal value if weights were 0 (e.g., mean target or  
inverse sigmoid of meantarget)

• Initialize all other weights ~ Uniform(–r, r), with rchosen so  
numbers get neither too big or too small

• Xavier initialization has variance inversely proportional to fan-in
nin (previous layer size) and fan-out nout (next layersize):
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Optimizers

• Usually, plain SGD will work just fine

• However, getting good results willoften require hand-tuning  

the learning rate (nextslide)

• For more complex nets and situations, or just to avoid worry,  

you often do better with one of a family of more sophisticated  

“adaptive” optimizers that scale the parameter adjustment by  

an accumulated gradient.

• These models give per-parameter learning rates

• Adagrad

• RMSprop

• Adam A fairly good, safe place to begin in many cases

• SparseAdam

• …
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LearningRates

• You can just use a constant learning rate. Start around lr= 0.001?

• It must be order of magnitude right – try powers of 10

• Too big: model may diverge or not converge

• Too small: your model may not have trained by thedeadline

• Better results can generally be obtained by allowing

learning  rates to decrease as youtrain

• By hand: halve the learning rate every kepochs

• An epoch = a pass through the data (shuffled or sampled)

• By a formula: !" = !"$%&'(, for epocht
• There are fancier methods like cyclic learning rates(q.v.)

• Fancier optimizers still use a learning rate but it may be an initial  

rate that the optimizer shrinks – so may be able to start high
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Summary

Classification Tasks can successfully be addressed with Neural Networks 
because they are able to capture non-linearities

Named Entity Recognition can be addressed as a Classification Task

Deep Learning Computation is complex and full of tricks and details


