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What to read

• Distributed Representations of Words and Phrases and their Compositionality [pdf]
• Efficient Estimation of Word Representations in Vector Space [pdf]
• A Neural Probabilistic Language Model [pdf]
• Speech and Language Processing by Dan Jurafsky and James H. Martin is a leading

resource for NLP. Word2vec is tackled in Chapter 6.
• Neural Network Methods in Natural Language Processing by Yoav Goldberg is a great read

for neural NLP topics.
• Chris McCormick has written some great blog posts about Word2vec. He also just released

The Inner Workings of word2vec, an E-book focused on the internals of word2vec.
• Want to read the code? Here are two options: 

• Gensim’s python implementation of word2vec

• Mikolov’s original implementation in C – better yet, this version with detailed comments
from Chris McCormick.

• Evaluating distributional models of compositional semantics
• On word embeddings, part 2
• Dune

• WE and NLP: (Levy and Goldberg, 2014, NIPS) 6Word Vectors

https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://arxiv.org/pdf/1301.3781.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://web.stanford.edu/~jurafsky/slp3/
https://www.amazon.com/Language-Processing-Synthesis-Lectures-Technologies/dp/1627052984
https://twitter.com/yoavgo
http://mccormickml.com/
https://www.preview.nearist.ai/paid-ebook-and-tutorial
https://github.com/RaRe-Technologies/gensim/blob/develop/gensim/models/word2vec.py
https://github.com/tmikolov/word2vec/blob/master/word2vec.c
https://github.com/chrisjmccormick/word2vec_commented/blob/master/word2vec.c
http://sro.sussex.ac.uk/id/eprint/61062/1/Batchkarov,%20Miroslav%20Manov.pdf
http://ruder.io/word-embeddings-1/index.html
http://ruder.io/word-embeddings-softmax/
https://www.amazon.com/Dune-Frank-Herbert/dp/0441172717/


Outline

● Word Embeddings: word2vec

● Beyond Word2vec: Glove and Word Senses

● Gender Bias in Word Embeddings
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A Word embedding is a numerical representation of a word

● Word embeddings allow for arithmetic operations on a text

○ Example: time + flies

● Word embeddings have been refered also as:
○ Semantic Representation of Words
○ Word Vector Representation
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Vector representation of flies and time
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Questions that may arise

● How can we obtain those numbers?
● What’s word2vec?
● Is it the only way to obtain those numbers?
● Do the vectors (and components!) have any semantic meaning?
● Are we crazy by summing or multiplying words?
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Distributional Hypothesis Contextuality

● Never ask for the meaning of a word in isolation, but only in the 
context of a sentence
(Frege, 1884) 

● For a large class of cases... the meaning of a word is its use in 
the language
(Wittgenstein, 1953) 

● You shall know a word by the company it keeps (Firth, 1957) 

● Words that occur in similar contexts tend to have similar 
meaning (Harris, 1954) 
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Word Vector Space
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Similar Meanings…
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Background: One-hot, frequency-based, words-embeddings

● One-hot representation

● Term frequency or TF-IDF methods

● Words embeddings
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One-hot vectors
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Two for tea and tea for two
Tea for me and tea for you
You for me and you for me 

Two = [1,0,0,0]

tea=[0,1,0,0]

me=[0,0,1,0]

you=[0,0,0,1]



Vector Space Model: Term-document matrix
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Term Frequency-Inverse Document Frecuency

17Count-based

TF-IDF(t, d, D) = TF(t, d)×IDF(t, D) 



Problems with simple co-occurrence vectors

Increase in size with vocabulary

Very high dimensional: requires a lot of storage  
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Solution: Low dimensional vectors

• Idea: store “most” of the important information in a fixed, 
small  number of dimensions: a dense vector

• Usually 25–1000 dimensions

• How to reduce the dimensionality?
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Method: Dimensionality Reduction on X (HW1)

Singular Value Decomposition of co-occurrence 

matrix X

Factorizes X into UΣVT, where U and V are 

orthonormal

Retain only k singular values, in order to generalize.

!J is the best rank k approximation to X , in terms of least 

squares.  Classic linear algebra result. Expensive to compute 

for large matrices.

Xk
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1. king - man +  woman  = queen
2. Huge splash in NLP world
3. Learns from raw text
4. Pretty simple algorithm

word2vec
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Word Embeddings use simple feed-forward network

● No deep learning at all! 

● A hidden layer in a NN interprets the input in his own way to optimise his 
work in the concrete task 

● The size of the hidden layer gives you the dimension of the word 
embeddings
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word2vec

Direct-based 23

1. Set up an objective function
2. Randomly initialize vectors
3. Do gradient descent



Word Embeddings learned by a neural network in two tasks/objectives: 

1. predict the probability of a word given a context (CBoW) 

2. predict the context given a word (skip-gram) 
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Continuous Bag of Words, CBoW
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Skip-Gram Model
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CBOW

vIN

“The fox jumped over the lazy dog”

vOUT vOUT vOUT vOUTvOUTvOUT

Better at syntax.
(this is  the one we  went over) 27Word Vectors

~20x faster.
(this is  the alternative.)

Guess the word  
given the context

vOUT

“The fox jumped over the lazy dog”
vINvIN vIN vIN vIN vIN

SkipGram
Guess the context  

given the word



Observations (Tensorflow Tutorial)

● CBoW
○ Smoothes over a lot of the distributional information by treating an 

entire context as one observation. This turns out to be a useful thing 
for smaller datasets 

● Skip-gram
○ Treats each context-target pair as a new observation, and this tends 

to do better when we have larger datasets 
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rd
2v
ec “The fox jumped over t he lazy dog”

word2vec: learn word vector from it’s surrounding context

29

Maximize the likelihood of  seeing the words given the word over.

P(the|over)  
P(fox|over)  

P(jumped|over)  
P(the|over)  
P(lazy|over)  
P(dog|over)

…instead of  maximizing the likelihood of  co-occurrence counts.Word Vectors
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For eachposition ! = 1, …," , predict context words within a  window of
fixed sizem, given center word # : P(vOUT|vIN)

$%&'(%ℎ**+ = $ - =.
/01
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For eachposition ! = 1, …," , predict context words within a  window of
fixed sizem, given center word # : P(vOUT|vIN)

$%&'(%ℎ**+ = $ - =.
/01
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Loop 1

Loop 2
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c

vIN

Twist: we  have two vectors for every word.
Should depend on whether it’s the input or the output.
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A context window around every input word.

P(vOUT|vIN)

“The fox jumped over the lazy dog”
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vOUT vIN

Loop 1: for the word ‘over’ iteration on loop 2: window around ‘over’

33

A context window around every input word.

P(vOUT|vIN)

“The fox jumped over the lazy dog”
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A context window around every input word.

P(vOUT|vIN)

“The fox jumped over the lazy dog”

vIN

Once loop 2 is finished for the word ‘over’ we move loop 1 into the following word

Loop 1: for the word ‘the’ iteration on loop 2: window around ‘the’
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For eachposition ! = 1, …," , predict context words within a  window of
fixed sizem, given center word # : P(vOUT|vIN)

$%&'(%ℎ**+ = $ - =.
/01
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Loop 1

Loop 2
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tiv
e

Measure loss between
vIN and vOUT?

!(#$%&|#(); +)

vin . vout

How should we  define P(vOUT|vIN)?
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wobo
jredc
2tviv
eec

vin . vout ~ 1

vin

vout
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vin

vout

vin . vout ~ 0
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wobo
jredc
2tviv
eec

vin

vout

vin . vout ~ -1
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But we’d like to measure a probability.

vin . vout ∈ [-1,1]

wobo
jredc
2tviv
eec
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∈ [-1,1]exp(vin . vout)
Σexp(vin . vk)

= P(vout|vin)

wobojre
dc2t

vivee
c

k ∈ V

But we’d like to measure a probability.

53

Dot product compares similarity of vout and vin
Larger dot product = larger probability

Exponentiation makes anything positive

Normalize over entire vocabulary
to give probability distribution

Word Vectors



wobojre
dc2t

vivee
c

∈ [-1,1]exp(vin . vout)
Σexp(vin . vk)

= P(vout|vin)
k ∈ V

But we’d like to measure a probability.
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Summary of the process

55
P(vOUT|vIN) softmax(vin . vout )

vIN

VOUT

Untrained model
Task: are the two words

neighbours?

Word Vectors

not

thou

Thou shalt not make a machine in the likeness of a human mind



Step-by-step

Let’s glance at how we use it to train a basic model that predicts if
two words appear together in the same context.
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Preliminary steps

We start with the first sample in our dataset. We grab the feature and feed to the
untrained model asking it to predict if the words are in the same context or not (1 
or 0)

57Word Vectors

Thou shalt not make a machine in the likeness of a human mind



Preliminary steps: Negative examples

This can now be computed at blazing
speed – processing millions of examples
in minutes. But there’s one loophole we
need to close. If all of our examples are 
positive (target: 1), we open ourself to 
the possibility of a smartass model that
always returns 1 – achieving 100% 
accuracy, but learning nothing and 
generating garbage embeddings.
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Preliminary steps: Negative examples

For each sample in our dataset, we add negative examples. Those have the same
input word, and a 0 label. 

We are contrasting the actual signal (positive examples of neighboring words) with
noise (randomly selected words that are not neighbors). This leads to a great tradeoff
of computational and statistical efficiency. 59Word Vectors



Preliminary steps: pre-process the text

Now that we’ve established the two central ideas of skipgram and negative sampling, 
one last preliminary step is we pre-process the text we’re training the model
against. In this step, we determine the size of our vocabulary (we’ll call
this vocab_size, think of it as, say, 10,000) and which words belong to it.

60Word Vectors



Training process: embedding and context matrices

Now that we’ve established the two central ideas of skipgram and negative
sampling and pre-process, we can proceed to look closer at the actual word2vec 
training process.

At the start of the training phase, we
create two matrices – an Embedding
matrix and a Context matrix. These
two matrices have an embedding
for each word in our vocabulary
(So vocab_size is one of their dimensions).
The seconddimension is how long we want each
embedding to be (embedding_size
– 300 is a common value

61Word Vectors



Training process: matrix initialization
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1. At the start of the training process, we initialize these matrices with random
values. Then we start the training process. In each training step, we take one
positive example and its associated negative examples. Let’s take our first
group:



Training process
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2. Now we have four words: 
○ the input word not

○ the output/context words (1-Word 
window): 

thou (the actual neighbor), aaron, 
and taco (the negative examples).

We proceed to look up their embeddings –
for the input word, we look in the Embedding
matrix. For the context words, we look in the
Context matrix (even though both matrices 
have an embedding for every word in our
vocabulary).. 



Training process
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3. Then, we take the dot product of the input embedding with each of the
context embeddings. In each case, that would result in a number, that number
indicates the similarity of the input and context embeddings

4. Now we need a way to turn these scores into something that looks like
probabilities – we need them to all be positive and have values between zero
and one. This is a great task for sigmoid, the logistic operation. And we can now
treat the output of the sigmoid operations as the model’s output for these
examples. 

https://jalammar.github.io/feedforward-neural-networks-visual-interactive/
https://en.wikipedia.org/wiki/Logistic_function


Training process
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5. Now that the untrained model has made a prediction, and seeing as though we
have an actual target label to compare against, let’s calculate how much error is
in the model’s prediction. To do that, we just subtract the sigmoid scores from the
target labels.



Training process
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6. Here comes the “learning” part of “machine learning”. We can now use this
error score to adjust the embeddings of not, thou, aaron, and taco so that the
next time we make this calculation, the result would be closer to the target scores



Training process
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7. This concludes the training step.
We emerge from it with slightly
better embeddings for the words
involved in this step (not, thou,
aaron, and taco). We now proceed
to our next step (the next positive
sample and its associated
negative samples) and do the
same process again.



Training process
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8. The embeddings continue to be improved while we cycle through our
entire dataset for a number of times. We can then stop the training process, 
discard the Context matrix, and use the Embeddings matrix as our pre-trained
embeddings for the next task.



Optimization Process

Gradient Descent

We go through gradients for each center vector Vin in a window. We also need gradients for
outside vectors Vout

But Corpus may have 40B tokens and Windows you would wait a very long time before making
a single update!

Stochastic Gradient Descent

We will update parameters after each samples of corpus sentences (what is called batches) à
Stochastic gradient descent (SGD)
and update weights after each one
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Let’s Play!

● Word Embedding Visual Inspector, wevi
https://ronxin.github.io/wevi/ 

● Gensim
http://web.stanford.edu/class/cs224n/materials/Gensim%2

0word%20vector%20visualization.html

● Embedding Projector 
http://projector.tensorflow.org/ 

70Word Vectors

http://web.stanford.edu/class/cs224n/materials/Gensim%20word%20vector%20visualization.html


Embedded space geometry

● King-Man + Woman = Queen
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Word2vec in Vikipedia

72Word Vectors

‘dimecres’ + (‘dimarts’ – ‘dilluns’) = ‘dijous’
‘tres’ + (‘dos’ – ‘un’) = ‘quatre’
‘tres’ + (‘2’ – ‘dos’) = ‘3’
‘viu’ + (‘coneixia’ – ‘coneix’) = ‘vivia’
‘la’ + (‘els’ – ‘el’) = ‘les’
‘Polònia’ + (‘francès’ – ‘França’) = ‘polonès’



GloVe and Words Senses
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Frequency based vs. direct prediction

• LSA, HAL (Lund & Burgess),
• COALS, Hellinger-PCA (Rohde  

et al, Lebret & Collobert)

• Fast training

• Efficient usage of statistics

• Primarily used to capture word  
similarity

• Disproportionate importance  
given to large counts

• Skip-gram/CBOW (Mikolov et al)
• NNLM, HLBL, RNN (Bengio et

al; Collobert & Weston; Huang et 
al; Mnih  & Hinton)

• Scales with corpus size

• Inefficient usage of statistics

• Generate improved performance  
on other tasks

• Can capture complex patterns  
beyond word similarity
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GloVE

Combines the advantages of the two major model families in the 
literature: global matrix factorization and local context window 
methods

The model efficiently leverages statistical information by training only 
on the nonzero elements in a word-word co-occurrence matrix rather 
than on the entire sparse matrix or on individual context windows in 
a large corpus

Word Vectors 75



Ratios of co-occurrence probabilities can encode meaning components

76Word Vectors



How?
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GloVE

GloVe does this by setting a function that represents ratios of co-
occurrence probabilities rather than the probabilities themselves

Word Vectors 78

• Fast training
• Scalable to huge corpora
• Good performance even with
small corpus and small vectors



Word Senses

• Most words have lots ofmeanings!
• Especially common words
• Especially words that have existed for a longtime

79Word Vectors



Improving Word Representations Via Global Context  And Multiple Word Prototypes 
(Huang et al. 2012)

• Idea: Cluster word windows around words, retrain with each  word 
assigned tomultiple different clusters bank1, bank2, etc

80



Linear Algebraic Structure of Word Senses, with application to polysemy
(Arora, …, Ma, …, TACL2018)

• Different senses of a word reside in a linear superposition 
(weighted  sum) in standard word embeddings like word2vec

• !pike = "1!pike1 + "2!pike2 + "3!pike3

• Where , etc., for frequency f
• Surprising result:

• Because of ideas from sparse coding you can actually separate out  the 
senses (providing they are relatively common)



Not so nice…

Man is to computer programmer as woman is to ….

82Word Vectors

http://wordbias.umiacs.umd.edu/


Gender bias in words embeddings
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Logic Riddle

A man and his son are in a terrible accident and are rushed to the hospital
in critical care.

The doctor looks at the boy and exclaims "I can't operate on this boy, he's my
son!”

How could this be?

Word Vectors 84



“Doctor”                  vs                                                                  “Female doctor” 85Word Vectors



Related Work: Word Embeddings encode bias

[Caliskan et al. 2017] replicate a spectrum of biases from using word 
embeddings, showing text corpora contain several types of biases:

○ morally neutral as toward insects or flowers

○ problematic as toward race or gender , 

○ reflecting the distribution of gender with respect to careers or first names

86Word Vectors

[credits to Hila Gonen]



Techniques to Debias Word Embeddings

(1) Debias After Training [Bolukbasi et al. 2016] ---> Debias WE
Define a gender direction 
Define inherently neutral words (nurse as opposed to mother)
Zero the projection of all neutral words on the gender direction
Remove that direction from words

(2) Debias During Training [Zhao et al. 2018] ---> GN-Glove
Train word embeddings using GloVe (Pennington et al., 2014)
Alter the loss to encourage the gender information to concentrate in the last    
coordinate (use two groups of male/female seed words, and encourage words from
different groups to differ in their last coordinate)
To ignore gender information –simply remove the last coordinate
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Experiments For Evaluation Bias

Three experiments were carried out in our evaluation:
1. Detecting the gender space and the Direct bias
2. Male and female biased words clustering
3. Classification approach of biased words

Our comparison is based on pre-trained sets of all 
these options. For experiments, we use the English-
German news corpus from WMT18
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Lists for Definitional, Biased and Professional Terms

● Definitional List 10 pairs (e.g. he-she, man-
woman, boy-girl)

● Biased List, which contains of 1000 words, 500 
female biased and 500 male biased. (e.g. diet for 
female and hero for male)

● Extended Biased List, extended version of Biased 
List. (5000 words, 2500 female biased and 2500 
male biased)

● Professional List 319 tokens (e.g. accountant, 
surgeon)
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1.Gender Space and Direct Bias

1. Randomly sampling sentences that contain words from 
the Definitional List, swap the definitional word with its 
pair-wise equivalent from the opposite gender.

2. Get word embeddings for the word and its swapped 
equivalence, compute their difference.

3. On the set of difference vectors,  we compute their 
principal components to verify the presence of bias.

4. Repeat for an equivalent list of random words (skipping 
the swapping).
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1. Gender Space and Direct Bias

Percentage of variance in PCA: definitional vs random

91

(Left) Percentage of variance explained in the PCA of definitional vector differences. 
(Right) The corresponding percentages for random vectors
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1. Gender Space and Direct Bias

Direct Bias is a measure of how close a certain set of 
words are to the gender vector. 
Computed on list of professions.

Word Vectors 92

Direct Bias

WE 0.08



2. Male and female-biased words clustering

k-means 

Generate 2 clusters of the embeddings of tokens from 
the Biased list (e.g. diet for female and hero for male)
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Debias WE 92.5%

GN-WE 85.6%

Accuracy

WE 99.9%



3. Classification Approach 

SVM
Classify Extended Biased List into words associated 
between male and female
1000 for training, 4000 for testing

Word Vectors 94

Accuracy

WE 98.25%

Debias WE 88.88%

GN-WE 98,65%



Conclusions. Is Debiasing What We Want?

Word Embeddings exhibit Gender Biases

Difficult to scale to different forms of bias 

Is debiasing even (always) desirable?
○ ML is about learning biases. Removing attributes removes 

information.

○ Gender information in NLP systems becomes harmful when the 
use of the system has a negative impact on people’s lives.

Gender bias is a social phenomenon that can’t be solved with 
mathematical methods alone. Collaborate with social 
sciences/sociolinguistics. 95



Arguments for Doing Research in Gender Bias

Unconscious bias can be harmful

Debiasing computer systems may help in debiasing society

Gender bias causes NLP systems to make errors. You should care about 
this even if accuracy is all you care about.
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