
Word Vectors

1

Marta R. Costa-jussà
Universitat Politecnica de Catalunya, Barcelona

Based on slides by
Christopher Manning, Stanford University, adapted from CS224n slides: Lecture 1
and illustrations from Jay Alammar, The Illustrated Word2Vec

Word Vectors

Towards an efficient representation of words

2Word Vectors

Towards an efficient representation of words

3Word Vectors

Towards an efficient representation of words

4Word Vectors

Towards an efficient representation of words

5Word Vectors

What to read

• Distributed Representations of Words and Phrases and their Compositionality [pdf]
• Efficient Estimation of Word Representations in Vector Space [pdf]
• A Neural Probabilistic Language Model [pdf]
• Speech and Language Processing by Dan Jurafsky and James H. Martin is a leading

resource for NLP. Word2vec is tackled in Chapter 6.
• Neural Network Methods in Natural Language Processing by Yoav Goldberg is a great read

for neural NLP topics.
• Chris McCormick has written some great blog posts about Word2vec. He also just released

The Inner Workings of word2vec, an E-book focused on the internals of word2vec.
• Want to read the code? Here are two options:

• Gensim’s python implementation of word2vec

• Mikolov’s original implementation in C – better yet, this version with detailed comments
from Chris McCormick.

• Evaluating distributional models of compositional semantics
• On word embeddings, part 2
• Dune

• WE and NLP: (Levy and Goldberg, 2014, NIPS) 6Word Vectors

https://papers.nips.cc/paper/5021-distributed-representations-of-words-and-phrases-and-their-compositionality.pdf
https://arxiv.org/pdf/1301.3781.pdf
http://www.jmlr.org/papers/volume3/bengio03a/bengio03a.pdf
https://web.stanford.edu/~jurafsky/slp3/
https://www.amazon.com/Language-Processing-Synthesis-Lectures-Technologies/dp/1627052984
https://twitter.com/yoavgo
http://mccormickml.com/
https://www.preview.nearist.ai/paid-ebook-and-tutorial
https://github.com/RaRe-Technologies/gensim/blob/develop/gensim/models/word2vec.py
https://github.com/tmikolov/word2vec/blob/master/word2vec.c
https://github.com/chrisjmccormick/word2vec_commented/blob/master/word2vec.c
http://sro.sussex.ac.uk/id/eprint/61062/1/Batchkarov,%20Miroslav%20Manov.pdf
http://ruder.io/word-embeddings-1/index.html
http://ruder.io/word-embeddings-softmax/
https://www.amazon.com/Dune-Frank-Herbert/dp/0441172717/

Outline

● Word Embeddings: word2vec

● Beyond Word2vec: Glove and Word Senses

● Gender Bias in Word Embeddings

7Word Vectors

A Word embedding is a numerical representation of a word

● Word embeddings allow for arithmetic operations on a text

○ Example: time + flies

● Word embeddings have been refered also as:
○ Semantic Representation of Words
○ Word Vector Representation

8Word Vectors

Vector representation of flies and time

9Word Vectors

Questions that may arise

● How can we obtain those numbers?
● What’s word2vec?
● Is it the only way to obtain those numbers?
● Do the vectors (and components!) have any semantic meaning?
● Are we crazy by summing or multiplying words?

10Word Vectors

Distributional Hypothesis Contextuality

● Never ask for the meaning of a word in isolation, but only in the
context of a sentence
(Frege, 1884)

● For a large class of cases... the meaning of a word is its use in
the language
(Wittgenstein, 1953)

● You shall know a word by the company it keeps (Firth, 1957)

● Words that occur in similar contexts tend to have similar
meaning (Harris, 1954)

11Word Vectors

Word Vector Space

12Word Vectors

Similar Meanings…

13Word Vectors

Background: One-hot, frequency-based, words-embeddings

● One-hot representation

● Term frequency or TF-IDF methods

● Words embeddings

14Count-based

One-hot vectors

15Word Vectors

Two for tea and tea for two
Tea for me and tea for you
You for me and you for me

Two = [1,0,0,0]

tea=[0,1,0,0]

me=[0,0,1,0]

you=[0,0,0,1]

Vector Space Model: Term-document matrix

Count-based 16

Term Frequency-Inverse Document Frecuency

17Count-based

TF-IDF(t, d, D) = TF(t, d)×IDF(t, D)

Problems with simple co-occurrence vectors

Increase in size with vocabulary

Very high dimensional: requires a lot of storage

Count-based 18

Solution: Low dimensional vectors

• Idea: store “most” of the important information in a fixed,
small number of dimensions: a dense vector

• Usually 25–1000 dimensions

• How to reduce the dimensionality?

Count-based 19

Method: Dimensionality Reduction on X (HW1)

Singular Value Decomposition of co-occurrence

matrix X

Factorizes X into UΣVT, where U and V are

orthonormal

Retain only k singular values, in order to generalize.

!J is the best rank k approximation to X , in terms of least

squares. Classic linear algebra result. Expensive to compute

for large matrices.

Xk

Count-based 20

1. king - man + woman = queen
2. Huge splash in NLP world
3. Learns from raw text
4. Pretty simple algorithm

word2vec

21Direct-based

Word Embeddings use simple feed-forward network

● No deep learning at all!

● A hidden layer in a NN interprets the input in his own way to optimise his
work in the concrete task

● The size of the hidden layer gives you the dimension of the word
embeddings

22Word Vectors

word2vec

Direct-based 23

1. Set up an objective function
2. Randomly initialize vectors
3. Do gradient descent

Word Embeddings learned by a neural network in two tasks/objectives:

1. predict the probability of a word given a context (CBoW)

2. predict the context given a word (skip-gram)

24Word Vectors

Continuous Bag of Words, CBoW

25Word Vectors

Skip-Gram Model

26Word Vectors

CBOW

vIN

“The fox jumped over the lazy dog”

vOUT vOUT vOUT vOUTvOUTvOUT

Better at syntax.
(this is the one we went over) 27Word Vectors

~20x faster.
(this is the alternative.)

Guess the word
given the context

vOUT

“The fox jumped over the lazy dog”
vINvIN vIN vIN vIN vIN

SkipGram
Guess the context

given the word

Observations (Tensorflow Tutorial)

● CBoW
○ Smoothes over a lot of the distributional information by treating an

entire context as one observation. This turns out to be a useful thing
for smaller datasets

● Skip-gram
○ Treats each context-target pair as a new observation, and this tends

to do better when we have larger datasets

28Word Vectors

wo
rd
2v
ec “The fox jumped over t he lazy dog”

word2vec: learn word vector from it’s surrounding context

29

Maximize the likelihood of seeing the words given the word over.

P(the|over)
P(fox|over)

P(jumped|over)
P(the|over)
P(lazy|over)
P(dog|over)

…instead of maximizing the likelihood of co-occurrence counts.Word Vectors

word
2ve

c Word2vec: objective function

30

For eachposition ! = 1, …," , predict context words within a window of
fixed sizem, given center word # : P(vOUT|vIN)

$%&'(%ℎ**+ = $ - =.
/01

2
.

345654
678

9(;<=/|;?@; -)

word
2ve

c Word2vec: objective function

31

For eachposition ! = 1, …," , predict context words within a window of
fixed sizem, given center word # : P(vOUT|vIN)

$%&'(%ℎ**+ = $ - =.
/01

2
.

345654
678

9(;<=/|;?@; -)

Loop 1

Loop 2

word
2ve

c

vIN

Twist: we have two vectors for every word.
Should depend on whether it’s the input or the output.

32

A context window around every input word.

P(vOUT|vIN)

“The fox jumped over the lazy dog”

word
2ve

c

vOUT vIN

Loop 1: for the word ‘over’ iteration on loop 2: window around ‘over’

33

A context window around every input word.

P(vOUT|vIN)

“The fox jumped over the lazy dog”

word
2ve

c

vOUT vIN

A context window around every input word.

P(vOUT|vIN)

“The fox jumped over the lazy dog”

Loop 1: for the word ‘over’ iteration on loop 2: window around ‘over’

word
2ve

c

vOUT vIN

A context window around every input word.

P(vOUT|vIN)

“The fox jumped over the lazy dog”

Loop 1: for the word ‘over’ iteration on loop 2: window around ‘over’

word
2ve

c

A context window around every input word.

P(vOUT|vIN)

“The fox jumped over the lazy dog”

vIN vOUT

Loop 1: for the word ‘over’ iteration on loop 2: window around ‘over’

word
2ve

c

vOUTvIN

A context window around every input word.

P(vOUT|vIN)

“The fox jumped over the lazy dog”

Loop 1: for the word ‘over’ iteration on loop 2: window around ‘over’

word
2ve

c

vOUTvIN

A context window around every input word.

P(vOUT|vIN)

“The fox jumped over the lazy dog”

Loop 1: for the word ‘over’ iteration on loop 2: window around ‘over’

word
2ve

c

39

A context window around every input word.

P(vOUT|vIN)

“The fox jumped over the lazy dog”

vIN

Once loop 2 is finished for the word ‘over’ we move loop 1 into the following word

Loop 1: for the word ‘the’ iteration on loop 2: window around ‘the’

word
2ve

c

A context window around every input word.

P(vOUT|vIN)

“The fox jumped over the lazy dog”

vIN

Loop 1: for the word ‘the’ iteration on loop 2: window around ‘the’

word
2ve

c

vOUT vIN

A context window around every input word.

P(vOUT|vIN)

“The fox jumped over the lazy dog”

Loop 1: for the word ‘the’ iteration on loop 2: window around ‘the’

word
2ve

c

vOUT vIN

A context window around every input word.

P(vOUT|vIN)

“The fox jumped over the lazy dog”

Loop 1: for the word ‘the’ iteration on loop 2: window around ‘the’

word
2ve

c

vOUT vIN

A context window around every input word.

P(vOUT|vIN)

“The fox jumped over the lazy dog”

Loop 1: for the word ‘the’ iteration on loop 2: window around ‘the’

word
2ve

c

vOUT vIN

A context window around every input word.

P(vOUT|vIN)

“The fox jumped over the lazy dog”

Loop 1: for the word ‘the’ iteration on loop 2: window around ‘the’

word
2ve

c

A context window around every input word.

P(vOUT|vIN)

“The fox jumped over the lazy dog”

vIN vOUT

Loop 1: for the word ‘the’ iteration on loop 2: window around ‘the’

word
2ve

c

vOUTvIN

A context window around every input word.

P(vOUT|vIN)

“The fox jumped over the lazy dog”

Loop 1: for the word ‘the’ iteration on loop 2: window around ‘the’

word
2ve

c Word2vec: objective function

47

For eachposition ! = 1, …," , predict context words within a window of
fixed sizem, given center word # : P(vOUT|vIN)

$%&'(%ℎ**+ = $ - =.
/01

2
.

345654
678

9(;<=/|;?@; -)

Loop 1

Loop 2

ob
jec

tiv
e

Measure loss between
vIN and vOUT?

!(#$%&|#(); +)

vin . vout

How should we define P(vOUT|vIN)?

48

wobo
jredc
2tviv
eec

vin . vout ~ 1

vin

vout

49Word Vectors

wobo
jredc
2tviv
eec

vin

vout

vin . vout ~ 0

50Word Vectors

wobo
jredc
2tviv
eec

vin

vout

vin . vout ~ -1

51Word Vectors

But we’d like to measure a probability.

vin . vout ∈ [-1,1]

wobo
jredc
2tviv
eec

52Word Vectors

∈ [-1,1]exp(vin . vout)
Σexp(vin . vk)

= P(vout|vin)

wobojre
dc2t

vivee
c

k ∈ V

But we’d like to measure a probability.

53

Dot product compares similarity of vout and vin
Larger dot product = larger probability

Exponentiation makes anything positive

Normalize over entire vocabulary
to give probability distribution

Word Vectors

wobojre
dc2t

vivee
c

∈ [-1,1]exp(vin . vout)
Σexp(vin . vk)

= P(vout|vin)
k ∈ V

But we’d like to measure a probability.

54Word Vectors

Summary of the process

55
P(vOUT|vIN) softmax(vin . vout)

vIN

VOUT

Untrained model
Task: are the two words

neighbours?

Word Vectors

not

thou

Thou shalt not make a machine in the likeness of a human mind

Step-by-step

Let’s glance at how we use it to train a basic model that predicts if
two words appear together in the same context.

56Word Vectors

Preliminary steps

We start with the first sample in our dataset. We grab the feature and feed to the
untrained model asking it to predict if the words are in the same context or not (1
or 0)

57Word Vectors

Thou shalt not make a machine in the likeness of a human mind

Preliminary steps: Negative examples

This can now be computed at blazing
speed – processing millions of examples
in minutes. But there’s one loophole we
need to close. If all of our examples are
positive (target: 1), we open ourself to
the possibility of a smartass model that
always returns 1 – achieving 100%
accuracy, but learning nothing and
generating garbage embeddings.

58Word Vectors

Preliminary steps: Negative examples

For each sample in our dataset, we add negative examples. Those have the same
input word, and a 0 label.

We are contrasting the actual signal (positive examples of neighboring words) with
noise (randomly selected words that are not neighbors). This leads to a great tradeoff
of computational and statistical efficiency. 59Word Vectors

Preliminary steps: pre-process the text

Now that we’ve established the two central ideas of skipgram and negative sampling,
one last preliminary step is we pre-process the text we’re training the model
against. In this step, we determine the size of our vocabulary (we’ll call
this vocab_size, think of it as, say, 10,000) and which words belong to it.

60Word Vectors

Training process: embedding and context matrices

Now that we’ve established the two central ideas of skipgram and negative
sampling and pre-process, we can proceed to look closer at the actual word2vec
training process.

At the start of the training phase, we
create two matrices – an Embedding
matrix and a Context matrix. These
two matrices have an embedding
for each word in our vocabulary
(So vocab_size is one of their dimensions).
The seconddimension is how long we want each
embedding to be (embedding_size
– 300 is a common value

61Word Vectors

Training process: matrix initialization

62Word Vectors

1. At the start of the training process, we initialize these matrices with random
values. Then we start the training process. In each training step, we take one
positive example and its associated negative examples. Let’s take our first
group:

Training process

63Word Vectors

2. Now we have four words:
○ the input word not

○ the output/context words (1-Word
window):

thou (the actual neighbor), aaron,
and taco (the negative examples).

We proceed to look up their embeddings –
for the input word, we look in the Embedding
matrix. For the context words, we look in the
Context matrix (even though both matrices
have an embedding for every word in our
vocabulary)..

Training process

64Word Vectors

3. Then, we take the dot product of the input embedding with each of the
context embeddings. In each case, that would result in a number, that number
indicates the similarity of the input and context embeddings

4. Now we need a way to turn these scores into something that looks like
probabilities – we need them to all be positive and have values between zero
and one. This is a great task for sigmoid, the logistic operation. And we can now
treat the output of the sigmoid operations as the model’s output for these
examples.

https://jalammar.github.io/feedforward-neural-networks-visual-interactive/
https://en.wikipedia.org/wiki/Logistic_function

Training process

65Word Vectors

5. Now that the untrained model has made a prediction, and seeing as though we
have an actual target label to compare against, let’s calculate how much error is
in the model’s prediction. To do that, we just subtract the sigmoid scores from the
target labels.

Training process

66Word Vectors

6. Here comes the “learning” part of “machine learning”. We can now use this
error score to adjust the embeddings of not, thou, aaron, and taco so that the
next time we make this calculation, the result would be closer to the target scores

Training process

67Word Vectors

7. This concludes the training step.
We emerge from it with slightly
better embeddings for the words
involved in this step (not, thou,
aaron, and taco). We now proceed
to our next step (the next positive
sample and its associated
negative samples) and do the
same process again.

Training process

68Word Vectors

8. The embeddings continue to be improved while we cycle through our
entire dataset for a number of times. We can then stop the training process,
discard the Context matrix, and use the Embeddings matrix as our pre-trained
embeddings for the next task.

Optimization Process

Gradient Descent

We go through gradients for each center vector Vin in a window. We also need gradients for
outside vectors Vout

But Corpus may have 40B tokens and Windows you would wait a very long time before making
a single update!

Stochastic Gradient Descent

We will update parameters after each samples of corpus sentences (what is called batches) à
Stochastic gradient descent (SGD)
and update weights after each one

Word Vectors 69

Let’s Play!

● Word Embedding Visual Inspector, wevi
https://ronxin.github.io/wevi/

● Gensim
http://web.stanford.edu/class/cs224n/materials/Gensim%2

0word%20vector%20visualization.html

● Embedding Projector
http://projector.tensorflow.org/

70Word Vectors

http://web.stanford.edu/class/cs224n/materials/Gensim%20word%20vector%20visualization.html

Embedded space geometry

● King-Man + Woman = Queen

71Word Vectors

Word2vec in Vikipedia

72Word Vectors

‘dimecres’ + (‘dimarts’ – ‘dilluns’) = ‘dijous’
‘tres’ + (‘dos’ – ‘un’) = ‘quatre’
‘tres’ + (‘2’ – ‘dos’) = ‘3’
‘viu’ + (‘coneixia’ – ‘coneix’) = ‘vivia’
‘la’ + (‘els’ – ‘el’) = ‘les’
‘Polònia’ + (‘francès’ – ‘França’) = ‘polonès’

GloVe and Words Senses

Word Vectors 73

Frequency based vs. direct prediction

• LSA, HAL (Lund & Burgess),
• COALS, Hellinger-PCA (Rohde

et al, Lebret & Collobert)

• Fast training

• Efficient usage of statistics

• Primarily used to capture word
similarity

• Disproportionate importance
given to large counts

• Skip-gram/CBOW (Mikolov et al)
• NNLM, HLBL, RNN (Bengio et

al; Collobert & Weston; Huang et
al; Mnih & Hinton)

• Scales with corpus size

• Inefficient usage of statistics

• Generate improved performance
on other tasks

• Can capture complex patterns
beyond word similarity

74Word Vectors

GloVE

Combines the advantages of the two major model families in the
literature: global matrix factorization and local context window
methods

The model efficiently leverages statistical information by training only
on the nonzero elements in a word-word co-occurrence matrix rather
than on the entire sparse matrix or on individual context windows in
a large corpus

Word Vectors 75

Ratios of co-occurrence probabilities can encode meaning components

76Word Vectors

How?

77Word Vectors

GloVE

GloVe does this by setting a function that represents ratios of co-
occurrence probabilities rather than the probabilities themselves

Word Vectors 78

• Fast training
• Scalable to huge corpora
• Good performance even with
small corpus and small vectors

Word Senses

• Most words have lots ofmeanings!
• Especially common words
• Especially words that have existed for a longtime

79Word Vectors

Improving Word Representations Via Global Context And Multiple Word Prototypes
(Huang et al. 2012)

• Idea: Cluster word windows around words, retrain with each word
assigned tomultiple different clusters bank1, bank2, etc

80

Linear Algebraic Structure of Word Senses, with application to polysemy
(Arora, …, Ma, …, TACL2018)

• Different senses of a word reside in a linear superposition
(weighted sum) in standard word embeddings like word2vec

• !pike = "1!pike1 + "2!pike2 + "3!pike3

• Where , etc., for frequency f
• Surprising result:

• Because of ideas from sparse coding you can actually separate out the
senses (providing they are relatively common)

Not so nice…

Man is to computer programmer as woman is to ….

82Word Vectors

http://wordbias.umiacs.umd.edu/

Gender bias in words embeddings

Word Vectors 83

Logic Riddle

A man and his son are in a terrible accident and are rushed to the hospital
in critical care.

The doctor looks at the boy and exclaims "I can't operate on this boy, he's my
son!”

How could this be?

Word Vectors 84

“Doctor” vs “Female doctor” 85Word Vectors

Related Work: Word Embeddings encode bias

[Caliskan et al. 2017] replicate a spectrum of biases from using word
embeddings, showing text corpora contain several types of biases:

○ morally neutral as toward insects or flowers

○ problematic as toward race or gender ,

○ reflecting the distribution of gender with respect to careers or first names

86Word Vectors

[credits to Hila Gonen]

Techniques to Debias Word Embeddings

(1) Debias After Training [Bolukbasi et al. 2016] ---> Debias WE
Define a gender direction
Define inherently neutral words (nurse as opposed to mother)
Zero the projection of all neutral words on the gender direction
Remove that direction from words

(2) Debias During Training [Zhao et al. 2018] ---> GN-Glove
Train word embeddings using GloVe (Pennington et al., 2014)
Alter the loss to encourage the gender information to concentrate in the last
coordinate (use two groups of male/female seed words, and encourage words from
different groups to differ in their last coordinate)
To ignore gender information –simply remove the last coordinate

87Word Vectors

Experiments For Evaluation Bias

Three experiments were carried out in our evaluation:
1. Detecting the gender space and the Direct bias
2. Male and female biased words clustering
3. Classification approach of biased words

Our comparison is based on pre-trained sets of all
these options. For experiments, we use the English-
German news corpus from WMT18

Word Vectors 88

Lists for Definitional, Biased and Professional Terms

● Definitional List 10 pairs (e.g. he-she, man-
woman, boy-girl)

● Biased List, which contains of 1000 words, 500
female biased and 500 male biased. (e.g. diet for
female and hero for male)

● Extended Biased List, extended version of Biased
List. (5000 words, 2500 female biased and 2500
male biased)

● Professional List 319 tokens (e.g. accountant,
surgeon)

Word Vectors 89

1.Gender Space and Direct Bias

1. Randomly sampling sentences that contain words from
the Definitional List, swap the definitional word with its
pair-wise equivalent from the opposite gender.

2. Get word embeddings for the word and its swapped
equivalence, compute their difference.

3. On the set of difference vectors, we compute their
principal components to verify the presence of bias.

4. Repeat for an equivalent list of random words (skipping
the swapping).

90Word Vectors

1. Gender Space and Direct Bias

Percentage of variance in PCA: definitional vs random

91

(Left) Percentage of variance explained in the PCA of definitional vector differences.
(Right) The corresponding percentages for random vectors

Word Vectors

1. Gender Space and Direct Bias

Direct Bias is a measure of how close a certain set of
words are to the gender vector.
Computed on list of professions.

Word Vectors 92

Direct Bias

WE 0.08

2. Male and female-biased words clustering

k-means

Generate 2 clusters of the embeddings of tokens from
the Biased list (e.g. diet for female and hero for male)

Word Vectors 93

Debias WE 92.5%

GN-WE 85.6%

Accuracy

WE 99.9%

3. Classification Approach

SVM
Classify Extended Biased List into words associated
between male and female
1000 for training, 4000 for testing

Word Vectors 94

Accuracy

WE 98.25%

Debias WE 88.88%

GN-WE 98,65%

Conclusions. Is Debiasing What We Want?

Word Embeddings exhibit Gender Biases

Difficult to scale to different forms of bias

Is debiasing even (always) desirable?
○ ML is about learning biases. Removing attributes removes

information.

○ Gender information in NLP systems becomes harmful when the
use of the system has a negative impact on people’s lives.

Gender bias is a social phenomenon that can’t be solved with
mathematical methods alone. Collaborate with social
sciences/sociolinguistics. 95

Arguments for Doing Research in Gender Bias

Unconscious bias can be harmful

Debiasing computer systems may help in debiasing society

Gender bias causes NLP systems to make errors. You should care about
this even if accuracy is all you care about.

96

