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A “real” sentence

nr/L\w
P e
Trees and T T

Wt mekoers of 0T WP W Cc W W

Grammars e Holse Whys sad Mekws Commitee

Constituency
Parsing

Dependency
Parsing

Influential members of the House Ways and Means Committee
introduced legislation that would restrict how the new
savings-and-loan bailout agency can raise capital, creating another
potential obstacle to the government's sale of sick thrifts.



Theories of Syntactic Structure

Constituent Trees Dependency Trees
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® Main element: constituents m Main element: dependency

(or phrases, or bracketings) m Focus on relations between

m Constituents = abstract words

linguistic units m Handles free word order

m Results in nested trees nicely.
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Context Free Grammars (CFGs)

A context-free grammar is defined as a tuple G = (N, X, R, S)
where:

m N is a set of non-terminal symbols
m S € N is a distinguished start symbol
m X is a set of terminal symbols

m R is a set of rules of the form X — Y1Y5...Y,, where
n>0, XeN, ;e NUX
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Context Free Grammars, Example

N = {S,VP,NP,PP,DT, Vi, Vt, NN, IN}!

S = {S}
Y = {sleeps, saw, man, woman, telescope, the, with, in}
S— NP VP Vi — sleeps
NP — DT NN Vt — saw
NP — NP PP NN — man
R o PP — IN NP NN — woman
VP — Vi NN — telescope
VP — Vt NP DT — the
VP — VP PP IN — with
IN — in )

1
S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner,
Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition
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Properties of CFGs

m A CFG defines a set of possible derivations (i.e. unique
trees)

m A sequence of terminals s € 3* is generated by the CFG
(or recognized by it, or belongs to the language defined by
it) if there is at least a derivation that produces s.

m Some sequences of terminals generated by the CFG may
have more than one derivation (ambiguity).
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Ambiguity

NP VP

Mary

saw the man in the mountain with a telescope

S

announced a program to promote safety in trucks and vans
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Can we model that?
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Context Free Grammar (CFGs)

A context-free grammar is defined as a tuple
G = (N,X, R, S) where:

m N is a set of non-terminal symbols
m S € N is a distinguished start symbol
m Y is a set of terminal symbols

m R is a set of rules of the form X — Y1Y5...Y,, where
n>0, XeN, Ve NUX
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Context Free Grammar ( CFGs)

A context-free grammar is defined as a tuple
G=(N,%R,S ) where:

m N is a set of non-terminal symbols
m S € N is a distinguished start symbol
m X is a set of terminal symbols

m R is a set of rules of the form X — Y1Y5...Y,, where
n>0, XeEN, ;e NUX



Probabilistic Context Free Grammar (PCFGs)

A context-free grammar is defined as a tuple
G=(N,%R,S ) where:

N is a set of non-terminal symbols
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Parsing 3. is a set of terminal symbols
D d .
Pareing R is a set of rules of the form X — Y1Y5...Y,, where

n>0, XeN,YV,e NUY



Probabilistic Context Free Grammar (PCFGs)

A probabilistic context-free grammar is defined as a tuple
G=(N,%R,S ) where:

N is a set of non-terminal symbols
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m S € N is a distinguished start symbol
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Parsing 3. is a set of terminal symbols
D d .
Pareing R is a set of rules of the form X — Y1Y5...Y,, where

n>0, XeN,YV,e NUY



Probabilistic Context Free Grammar (PCFGs)

A probabilistic context-free grammar is defined as a tuple
G =(N,%,R,S,q) where:

N is a set of non-terminal symbols
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m S € N is a distinguished start symbol
[
[

Parsing 3. is a set of terminal symbols
D d .
Pareing R is a set of rules of the form X — Y1Y5...Y,, where

n>0, XeN,YV,e NUY
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Probabilistic Context Free Grammar (PCFGs)

A probabilistic context-free grammar is defined as a tuple

G =

(N,%, R, S, q) where:

N is a set of non-terminal symbols

S € N is a distinguished start symbol
3. is a set of terminal symbols

R is a set of rules of the form X — Y71Y5...Y,, where
n>0, XeEN, ;e NUX

q is a set of non-negative parameters, one for each rule
X — « € R such that, for any X € N,

Z X —-a)=1

(X—a)ER
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Context Free Grammars, Example

N = {S,VP,NP,PP,DT, Vi, Vt, NN, IN}!

s = {8}
¥ = {sleeps, saw, man, woman, telescope, the, with, in}
(S — NP VP Vi — sleeps
NP — DT NN Vt — saw
NP — NP PP NN — man
R PP — IN NP NN — woman
VP — Vi NN — telescope
VP — Vt NP DT — the
VP — VP PP IN — with
IN — in

1
S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner,
Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition




Probabilistic Context Free Grammars, Example

N = {S,VP,NP,PP,DT, Vi, Vt, NN, IN}!

Triees e S = {S}

2:1:2:@ ¥ = {sleeps, saw, man, woman, telescope, the, with, in}
pering (S — NP VP 1.0 Vi — sleeps 1.0
oo NP - DT NN 04  Vt— saw 1.0
NP - NP PP 0.6 NN — man 0.7
R _ PP —-INNP 1.0 NN — woman 0.2
VP — Vi 0.5 NN — telescope 0.1
VP - Vt NP 0.4 DT — the 1.0
VP - VP PP 0.1 IN — with 0.5
IN — in 0.5

1
S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner,
Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition
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Properties of PCFGs

m The probability of a parse tree t € T is computed as:

p(t) = [Ta(r)

ret

m If there is more than one tree for a sentence, we can rank
them by probability.
m The most likely tree for a sentence s is:

arg max p(t
thT(s)p( )
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Learning Treebank Grammars

m Read the grammar rules from a treebank

S S—NPVP.
N NP — PRP
PRP VED NP . ‘ NP — DT NN
| | T
She heard DT NN VP — VBD NP
the noise PRP — She

0.5
0.5

m Set rule weights by maximum likelihood

Count(a — )

ale = B) = Count(«)

m Smoothing issues apply

m Having the appropriate CFG is critical to success
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Constituency Parsing
m CKY Algorithm
m Earley Algorithm
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Goal of a parser:

Trees and m Find all possible trees
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Parsing Natural Language Sentences

Goal of a parser:
m Find all possible trees
m Find all possible trees, ranked by probability

m Find most likely tree

m Many of the possible trees will share subtrees that we
don’t need to re-parse.
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Parsing Natural Language Sentences

Goal of a parser:
m Find all possible trees
m Find all possible trees, ranked by probability

m Find most likely tree

m Many of the possible trees will share subtrees that we
don’t need to re-parse.

m Define a dynammic programming table (aka chart) to
store intermediate results.
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CKY Algorithm

Bottom-up
Requires a grammar in Chomsky Normal Form (CNF).

Dynammic programming: Store partial results that can be
reused in different candidate solutions.

Analogous to Viterbi in HMMs.

Intermediate results stored in a chart structure.
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CKY Algorithm

Chart content:

m Maximum probability of a subtree with root X spanning
words 7. .. J:
(i, 4, X)

m Backpath to recover which rules produced the maximum
probability tree:

¥(i, 4, X)
The goal is to compute:

) =n(1,n,S
't?ﬁf)p() m(1,n,S)

m Y(1,n,S)

m It is possible to use it without probabilities to get all parse
trees (with higher complexity)
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CKY Algorithm

Base case: Tree leaves
mYi=1...n, VX s w;, € R, 7(i,i,X)=q(X — w;)
Recursive case: Non-terminal nodes
mYi=1...n,Vj=(i+1)...n, VX EN

(i, g, X) =  max (X = YZ)xn(i.kY) xa(k+1,j,2)
k:i<k<j

¥(i,7,X) = arg X_r)r%/aéceRq(X = YZ)xn(i,k,Y)xm(k+1,7,2)

kia<k<j
X
Y z
T~
¢ © k41 J

Output:
m Return 7(1,n,S) and recover backpath trough ¥(1,n,S)
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CKY Algorithm - Example

n

{S,VP,NP, PP, DT, Vi, Vt, NN, IN}?

{S}

{sleeps, saw, man, woman, telescope, the, with, in}

(S — NP VP
NP — DT NN
NP — NP PP
PP — IN NP
VP — Vi
VP — Vt NP
VP — VP PP

1.0
0.4
0.6
1.0
0.5
0.4
0.1

Vi — sleeps

Vt — saw

NN — man

NN — woman
NN — telescope
DT — the

IN — with

IN — in

1.0
1.0
0.7
0.2
0.1
1.0
0.5
0.5

1
S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner,
Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition
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CKY Algorithm - Example - CNF

n

{S,VP,NP, PP, DT, Vi, Vt, NN, IN}?

{S}

{sleeps, saw, man, woman, telescope, the, with, in}

(S — NP VP
NP — DT NN
NP — NP PP
PP — IN NP
VP — Vi
VP — Vt NP
VP — VP PP

1.0
0.4
0.6
1.0
0.5
0.4
0.1

Vi — sleeps

Vt — saw

NN — man

NN — woman
NN — telescope
DT — the

IN — with

IN — in

1.0
1.0
0.7
0.2
0.1
1.0
0.5
0.5

1
S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner,
Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition
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CKY Algorithm - Example - CNF

n

{S,VP,NP, PP, DT, Vi, Vt, NN, IN}?

{S}

{sleeps, saw, man, woman, telescope, the, with, in}

(S — NP VP
S — NP Vi
NP — DT NN
NP — NP PP
PP — IN NP
VP — Vt NP
VP — VP PP
VP — Vi PP

05
0.5
0.4
0.6
1.0
0.4
0.1
05

Vi — sleeps

Vt — saw

NN — man

NN — woman
NN — telescope
DT — the

IN — with

IN — in

1.0
1.0
0.7
0.2
0.1
1.0
0.5
0.5

1
S=sentence, VP=verb phrase, NP=noun phrase, PP=prepositional phrase, DT=determiner,
Vi=intransitive verb, Vt=transitive verb, NN=noun, IN=preposition
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DT 1.0 INN 0.2 IVt 1.0 DT 1.0 NN 0.7 IN 0.5 DT 1.0 NN 0.1
The lwoman saw he man with the ltelescope
1 22 jss lss 66 77 =
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NP-DT,NN,, NP~ DT, NN, NP — DT, NN,
0.4*1.0°0.2=0.08 10.441.0°0.7=0.28 0.4*1.00.1=0.04
12 s ja5 4 78
DT 1.0 INN 0.2 IVt 1.0 DT 1.0 NN 0.7 IN 0.5 DT 1.0 NN 0.1
The lwoman saw he man with the ltelescope
1 22 jss lss 66 77 =
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P -Vt NP, PP . IN NP,
10.4+1.0%0.28=0.112 1.00.5+0.04=0,02
s 2 jss Js7 5

NP-DT,NN,, NP - DT,,NN,_ NP —DT,_NN,,

0.4*1.00.2=0.08 0.441.0°0.7=0.28 0.4*1.00.1=0.04

12 s ) o7 78
DT 1.0 INN 0.2 IVt 1.0 DT 1.0 NN 0.7 IN 0.5 DT 1.0 NN 0.1
The lwoman saw he man with the telescope
1 22 jss 55 66 7 85
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CKY Algorithm - Example

13

Jss

PVt NP,
10.4%1.0%0.28=0.112
js5

PP . IN NP,
1.0%0.5%0.04=0,02
&

NP—DT,NN,,
0.4*1.0*0.2=0.08
12

NP — DT, NN,
0.41.00.7=0.28
Jas

NP DT, NN,
0.4*1.0*0.1=0.04
e

DT 1.0
The

11

INN 0.2
lwoman
2

IVt 1.0
saw

NN 0.7

man
Js5

DT 1.0
he

IN 0.5
with
3

|DT 10

NN 0.1

the ltelescope
=

77
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CKY Algorithm - Example

S—~NP VP, NP NP, PP
|0.5%0.08*0.112 |0.6*0.28*0.02
15 =0.00448  |os Js7 jus =0.00336
s 25 s ja7 e ‘
P -Vt NP, PP . IN NP,
0.4+1.0%0.28=0.112 1.00.5+0.04=0,02
15 2 s Js7 =
NP - DT, NN, NP - DT,,NN,_ NP - DT,NN,,
10.4+1.0°0.2=0.08 0.4°1.0°0.7=0.28 0.4*1.00.1=0.04
12 3 ) 56 4 i
DT 1.0 NN 0.2 IVt 1.0 DT 1.0 NN 0.7 IN 0.5 DT 1.0 NN 0.1
The woman saw he man with the ltelescope
11 2 js3 55 66 77 =




Trees and
Grammars

Constituency
Parsing
CKY Algorithm

Dependency
Parsing

CKY Algorithm - Example

S~ NP_VP, NP NP,,PP,,
|0.5%0.08*0.112 |0.6*0.28*0.02
15 =0.00448 o6 Js7 jus =0.00336
s 25 Jss Jaz e ‘
PVt NP, PP IN, NP,
0.4+1.0%0.28=0.112 1.00.540.04=0,02
s 2 jss js7 65
NP DT, NN,, NP - DT, NN, NP - DT,NN,,
0.4*1.00.2=0.08 0.441.0°0.7=0.28 0.4*1.00.1=0.04
12 s ) 23 4 78
DT 1.0 INN 0.2 IVt 1.0 DT 1.0 NN 0.7 IN 0.5 DT 1.0 NN 0.1
The lwoman saw he man with the telescope
1 22 jss 55 66 7 85




CKY Algorithm - Example
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. 10.1#0.112+0.02=0,000224
Parsing 16 o7 jss
CKY Algorithm S NP_VP, NP - NP,,PP,,
10.5%0.08*0.112 10.6%0.28'0.02
15 =0.00448 [ 57 e =0.00336
Dependency
Parsing
14 s jss. jaz e
P -Vt NP, PP . IN NP,
0.4+1.0°0.28=0.112 1.0°0.50.04=0,02
s 2 s js7 )
NP DT, NN,, NP - DT,,NN,_ NP - DT,NN,,
0.4*1.00.2=0.08 0.4*1.0°0.7=0.28 0.4*1.0°0.1=0.04
12 lea s % 56 7 i)
DT 1.0 INN 0.2 IVt 1.0 DT 1.0 NN 0.7 IN 0.5 DT 1.0 NN 0.1
The lwoman saw he man with the telescope
1 22 s ss 3 ” B
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CKY Algorithm - Example

VP -Vt NP,
10.4+1.0°0.00336=0,001344
16 o7 38
S—NP_VP, NP NP,,PP,,
|0.5%0.08*0.112 0.6*0.28*0.02
15 =0.00448 o6 Js7 8 =0.00336
s 25 jss a7 58 ‘
P -Vt NP, PP . IN NP,
10.4+1.0%0.28=0.112 1.00.5+0.04=0,02
s 2 jss 57 66
NP DT, NN,, NP~ DT,,NN,_ NP - DT,NN,,
0.4*1.00.2=0.08 0.4°1.0°0.7=0.28 0.4*1.00.1=0.04
12 le s ) 56 4 78
DT 1.0 INN 0.2 IVt 1.0 DT 1.0 NN 0.7 IN 0.5 DT 1.0 NN 0.1
The lwoman saw he man with the telescope
1 22 jss 55 66 7 85
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CKY Algorithm - Example

DT 1.0
The

11

VP - Vi NP,
0.4*1.0*0.00336=0,001344
VP - VP_PP,,
831‘0.112'0 02=0,000224

S—NP_VP, NP . NP,,PP,,
|0.5%0.08*0.112 |0.6*0.28*0.02
15 =0.00448 o6 Js7 jus =0.00336
s 25 Jss ja7 e ‘
PVt NP, PP IN,NP,
0.4+1.0%0.28=0.112 1.00.5+0.04=0,02
s 2 jss Js7 =
NP DT NN,, NP — DT, NN, NP - DT, NN,
0.4*1.00.2=0.08 10.441.0°0.7=0.28 0.4*1.00.1=0.04
12 s ja5 23 4 i
INN 0.2 IVt 1.0 DT 1.0 NN 0.7 IN 0.5 DT 1.0 NN 0.1
lwoman saw he man with the ltelescope
22 jss lss 66 77 =
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CKY Algorithm - Example

17 28
VP - Vt, NP,
10.4*1.0*0.00336=0,001344|
VP VP_PP,
10.1#0.112+0.02=0,000224
|27 138
NP - NP, PP,
0.6%0.28'0.02
les a7 8 =0.00336
36 |47 58 ‘
PV NP, PP . IN NP
0.4%1.0°0.28=0.112 1.0'0.50.04=0,02
2 s 57 )
P DT, NN, NP - DT,NN,,
0.4*1.0%0.7=0.28 0.4*1.0°0.1=0.04
34 45 67 78
DT 1.0 NN 0.2 Vt1.0 DT 1.0 NN 0.7 INO5 DT 1.0 NN 0.1
The woman saw he man with the telescope
11 33 55 66 7 &
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Earley Algorithm

m Top-down
m Can deal with any CFG (even left-recursive)

m Dynammic programming: Store partial results that can be
reused in different candidate solutions.

m Intermediate results stored in a chart structure.
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Earley Algorithm

Chart content:

m Set of items (aka states), each describing the applicability
status of each rule after each word:

[i,j, X — ave ]
m Backpath to recover which rules produced the complete
tree:
¥(i,j, X)
The goal is:

m Find if it is possible to reach [1,n,S — o]
m Recover ¢(0,n, S) if it is

m Probabilistic versions exist, though not as straightforward
as in CKY
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Earley Algorithm

Parsing state examples:

[0,0,S — o NP VP]

[1,2,NP — DT ¢ NN]

0,3, VP — V NP o]

A NP is expected at the beginning
of the sentence

A NP has been partially matched
(DT was found between
positions 1 and 2)

A VP has been completed
between positions 0 and 3
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Earley Algorithm

def Earley(words,grammar):
chart = [ [] foriin (len(words)+1) ]
chart[0].append([0,0,7 — S])
for i in (len(words)+1) :
for state in chart]i] :
if state.complete() : Complete(state)
elif is_PoS(state.next()) : Scan(state)
else : Predict(state)
return chart

def Scan([i,j,A — a e BA]):
if B in words[j].PoS() : chart[j+1].append([j,j+1,B —word[j]e])

def Predict([i,j,A — « e BS]):
for B — « in grammar : chart[j].append([j.j,.B — ov])
def Complete([k,j,B — ~e]):
for [i,k,A — « @ BA] in chart[k] : chart[j].append([i,j,A — aB e j])
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Earley Algorithm

chart[0]

chart[3]

chart[6]

chart[8]

chart[7]

chart[5]

chart[4]

chart[2]

chart[1]

the

woman

saw

the

man

with

the

7 8
telescope
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Earley Algorithm

chart[8]
chart[7]
chart[6]
chart[5]
chart[4]
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Why context-free 7

m Context-free means independent of the context, i.e,
assumes that any expansion of a non-terminal is
applicable regardless of the context in which it occurs.

/\
‘ /\

PRP  vBD
| | /\
She  heard DT NN
| |

the cat

S

T

NP VP

PN P
DT NN VBD NP
\ \ \ \
The «cat heard PRP

she
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Natural Language is not Context-Free

m NP expansion (for instance) is highly dependent on the
parent of the NP

All NPs NPs under S NPs under VP
23%
21%
1% 9% 9% 9% %
. . 6% = 4%
NPPP DTNN PRP NP PP DTNN PRP NPPP DTNN PRP

m Complete context independence is a too strong
independence assumption for natural language.
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Natural Language is not Context-Free

m The application of a rule may affect the applicability of

others
S s
NP VP NP VP
pip PRP
\ |
She
' vep PP PP VED PP PP
[ — ﬂ‘
flew from Indianapolis  to Houston W from Indianapolis  from Houston
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Natural Language is not Context-Free

m May contain non-projective structures:

John saw the dog yesterday which was a Yorkshire Terrier
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Dependency Parsing
m Dependency Trees
m Arc-factored Dependency Parsing
m Parsing Projective Structures
m Parsing non-Projective Structures
m Transition-Based parsers
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Dependency Trees
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Dependency
Parsing *
Dependency Trees PRP VBN DT

They solved the problem W|th statlstlcs



Trees and
Grammars

Constituency
Parsing

Dependency
Parsing

Dependency Trees

Theories of Syntactic Structure

Constituent Trees

S

N

NP VP
|
PRP
| VBD NP
They |
solved /’\

N
the problem N NNS

with  statistics

m Main element: constituents
(or phrases, or bracketings)

m Constituents = abstract
linguistic units

Focus on word order

m Builds nested trees

Dependency Trees

* PRP VBN DT

They solved the problem W|th statlstlcs

Main element: dependency

Focus on relations between
words

Nicely handles free word
order (fish the cat eats*) and
non-projectivity (John saw
the dog yesterday which was
a Yorkshire Terrier)

Builds dependency graphs
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Non-projective dependency trees

U Al

* John saw a dog yesterday which was a Yorkshire Terrier

I f—\/w—\l/ﬂ YA \

a hearing is scheduled on the issue today

(©Starbuck’s 2013
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Dependency trees

root dobj
[ = \X/”"“’dv "
* PRP VBN DT NN
They solved the problem W|th statistics
0 1 2 3 4 5 6

m * is a special root symbol
m Each dependency is a tuple (h, m,l) where

m h is the index of the head word (root is 0)

m m is the index of the modifier word

m [ is a dependency label

m eg.: (0,2,root), (2,1,nsubj), (2,5,dobj), (4,3, det),
(4,5, pmod), (5,6, pobj)

m Sometimes we just consider unlabeled dependencies
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Dependency trees for “John kissed Mary”

*

*

*

*

AR TARTAN

John

kissed Mary

John

kissed Mary

| ml/—x

John

kissed Mary

[/

John

kissed Mary

*

[ =

John

kissed Mary
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Dependency trees for “John kissed Mary”

*

*

*

*

AR TARTAN

John

kissed Mary

John

kissed Mary

| ml/—x

John

kissed Mary

[/

John

kissed Mary

*

*

[ =

John

John

John

kissed Mary

kissed Mary

kissed Mary
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Conditions on Dependency Structures

[ AV A
* PRP VBN NN
They solved the problem Wlth statistics

m y is a dependency tree if:

(a) Each non-root token has exactly an incoming arc (i.e. one
parent)
(b) The graph is connected
(c) There are no cycles
- That is, dependency arcs form a directed tree rooted at *
m y is a projective dependency tree if:
m Is a dependency tree
m There are no crossing dependencies

m Note that a projective tree is also in the non-projective set
—must be read as non-necessarily-projective
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Some Notation

* They solved the problem
0 1 2 3 4

Given a sentence with n words:

m D is the set of all possible dependencies that can be
assigned to the sentence. Eg.

D= { (0,1),(0,2),(0,3),(0,4),(1,2),(1,3),(1,4)
(231)7(273)3(274)7(3’1)’(37 Y )
(4,1),(4,2),(4,3) }

m y is a valid parse for s if:
myCD
m y is a dependency tree

m YV C 27 is the set of all valid dependency trees for the
sentence
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Probabilistic Arc-Factored Dependency Parsing

—\

0:* 1:They 2:solved 3:the 4:problem

Trees and
Grammars

Constituency

m Assume we have p(modifier word | head word)

Parsing

Dependency m In a probabilistic arc-factored model:
Parsing

o p(xy) = p(x(%2),(2,1),(2,4),(4,3))

p(XQ, (*a 2) ) X p(x, (27 1), (27 4)7 (47 3) ‘ X2, (*7 2))
= p(*) X p(XQ | *) X p(X, (27 1)7 (274)7 (47 3) | X2, (*7 2))

p(x2 | *) X p(x1 | X2) X p(xa | x2) X p(x3 | xa)

[T pxm | x)

(h,m)ey

m Note that we assume independence between arcs
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Towards Linear Arc-Factored Dependency Parsing

m Consider an arc-factored probabilistic model

p(x,

m Prediction is:

argmax p(x,y)
yey

vi= ] »6xmlxn)

(hym)ey

argmax H p(xXm | xp)
Y (hm)ey

argmax exp Z log p(x, | X1)
y (h,m)ey

argmax Z log p(Xm | Xn)
Y (hm)ey

argmax Z score(x, h,m)
Y (hmey

where score(x, h,m) = log p(Xy, | Xp)



A CRF for Arc-Factored Dependency Parsing

A log-linear distribution of trees y given x

exp( Z w - f(x, h,m,l))

ply | xiw) = — O
Trees and ! - N
Grammars Z(X7 W)
Constituency m f(x,h,m) is a vector of d features of (h,m,l) assigned to
Parsing
x
Dependency d
Parsing m w € R® are the parameters of the model

Arc-factored
Dependency Parsing

Z(x;w) =Y exp( Y w-f(x,h,m,l))
yey (h,m,)ey
m Prediction is linear:

exp( Y w-f(x,h,m,1))

(h,m,l) €Y

argmax P(y|x;w) = argmax
yEY* yEY* Z(x;w)

= argmax Z w - f(x, h,m,l)
YV (hm.l)ey



Features in Arc-Factored Dependency Parsing

f(x,l,h,m): a vector of features of (h,m,1) assigned to x

m As in PoS tagging or NERC, we typically use indicator

features
Trees and m Templates in (McDonald et al 2005):
Grammars
dependency features
Constituency word features P y
Parsing Toword, Tr-pos h-word, h-pos, m-word, m-pos
Depéndency h—V\/’Ord h—pOS, m—word, m-pos
Parsing h-word, m-word, m-pos
Arc-factored h- pos
e vy (P h-word, h-pos, m-pos
m-word, m-pos
h-word, h-pos, m-word
m-word
h-word, m-word
m-pos
h-pos, m-pos

m Example: (feature template + dependency direction)

1 if word(h) =solve and word(m) =problem
fi(x,h,m,l) = and [ =dobj and h < m
0 otherwise
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A CRF for Arc-Factored Dependency Parsing

eXp( Z W f(X,h,m,l))
(h,m,l)ey

ply [ x;w) = 706 w)

m Parameter estimation: Learn parameters w given training
data

{6,y 0), (2, y@), ., (<, ) |
m Decoding: predict the best dependency tree for x

argmax P(y|x; w)
yey
when

m ) is the set of projective trees for x
m ) is the set of non-projective trees for x



Parameter Estimation: CRFs for Parsing
..analogous to CRFs for Tagging

m Goal: Estimate w given a training set

Trees and {(x(l)) y(l))7 (X(z)) y(2))7 LA (X(m) 9 y(m))}

Grammars

Constituency

Parsing m Define the conditional log-likelihood of the data:

Dependency
Parsing

y (k
= E log Py [x*); w)

L(w) measures how well w explains the data. A good
value for w will give a high value for P(y*)|x(¥); w) for
all training examples k=1...m

m We want w that maximizes L(w)
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Learning the Parameters of a CRF

... analogous to CRFs for Tagging

m Consider a regularized objective:

A
w* = argmax L(w) — = ||w]|?
weRD 2

where

m The first term is the log-likelihood of the data

m The second term is a regularization term, it penalizes
solutions with large norm

m )\ is a parameter to control the trade-off between fitting
the data and model complexity



Learning the Parameters of a CRF
... analogous to CRFs for Tagging

m Find
* A 2

Trees and W = argmax L(W) - 7HWH
Grammars WERD 2
Constituency . . . .
Parsing m In general there is no analytical solution to this
Dependency optimization
Parsing ) . . . .
Arcfctored m We use iterative techniques, i.e. gradient-based

Dependency Parsing

optimization
Initialize w = 0
Take derivatives of L(w) — 3||w||?, compute gradient
Move w in steps proportional to the gradient
Repeat steps 2 and 3 until convergence



Computing the gradient
... analogous to CRFs for Tagging

OL(w) 1 & k) (k)
= ow, ~ w2 STV
k=1
Constituenc; m
Parsing g _ E (k) . f (k‘)
Dependency Z P(Y|x ) W) Vi (X ’ Y)
Parsing k=1 yey*

Arc-factored
Dependency Parsing

where

fx,y)= > £(xhm])

(h,m,l)ey

m First term: observed mean feature value

m Second term: expected feature value under current w



Computing the gradient
... analogous to CRFs for Tagging

m The first term is easy to compute, by counting explicitly

1 m
Trees and — .
Grammars m Z Z fj (X’ h7 m’ l)

Constituency k=1 (h,m,l)ey(k)
Parsing
Dependency m The second term is more involved,
Parsing
Arc-factored
Dependency Parsing m
k). k
Y D pyx®iw) >0 ", nm, )
k=1ye)y (hym,l)€y

because it sums over all sequencesy € Y

m There exist efficient algorithms for summing over ), both
for projective and non-projective sets of trees



Outline

Trees and
Grammars

Constituency
Parsing

Dependency
Parsing

Parsing Projective

S Dependency Parsing

m Parsing Projective Structures



Parsing Projective Structures (I)

m Any projective tree can be written as the combination of:

m two smaller adjacent projective trees and
Trees and m a dependency connecting their roots

Grammars

Constituency

Parsing \
Dependency

Parsing A
Parsing Projective i
Structures J

\
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Parsing Projective Structures (II)

m The algorithm is a variation of CKY

m 7[i, j, h]: score of dependency tree from i to j with head h

wli, j, h] = e
1<k<K

m Cost: O(Kn?)

max i, I, h] + [l + 1,5, A" +w-f(x,h,h) ,
I<h'<j

o 1 f ,
iér;f})élﬂ[z,l,h}—i—ﬂ[l-l— g bl +w-f(x,h, k') }



Parsing Projective Structures (llI)

m (Eisner 1996), (Eisner 2000): an algorithm in O(Kn3)

R— m Main idea: split constituents in half so that heads are at
Grammars the boundary

Constituency

Parsing
Dependency
Parsing
Parsing Projective
Structures
i i+1 h'h' j k

h

‘

h i
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m Parsing non-Projective Structures
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Parsing Non-Projective Structures

m (McDonald et al 2005): non-projective parsing as
maximum-spanning trees, using the Chu-Liu-Edmonds
algorithm

0 Mary
\\3J
m Example for John saw Mary
m Build a graph:

m Nodes are tokens (and the root token)
m A weighted directed edge between any two vertices

= f k
Wiy = max wef(x,i.j.k)
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Dependency
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Structures

Chu-Liu-Edmonds, example

m Step 1: for each word, find highest-scoring incoming edge

root

—

20 saw 30

/7 \

John 30 Mary

m If we get a tree, we have found the MST
m If not, there has to be a cycle



Chu-Liu-Edmonds, example

m Step 2: identify cycle and contract it into a new node ¢

/ root 10 9
o —
saw 30 oot
Trees and \ / \ .
P 3 —_—
rammars John __ 0 ~_ Mary 20 “saw 30
Constituency \ 11 —/ / / \
Parsing 3 John 30 Mary
Dependency
Parsing - 9
o root 4()\{
non-Projective g :L\
Structures ,// saw ;30
e i
1 John rad Mary
\ A

31

m Weight of edges between ¢ and other nodes i:
B ¢ — ¢ max weight of any node in ¢ to 4
® 7 — ¢ max weight of tree with root 7 that spans ¢
root — saw — John : 40
root — John — saw : 29



Chu-Liu-Edmonds

m Theorem (Leonidas 2003): the weight of the MST on the

contracted graph is equal to the weight of the MST in the
original graph

Trees and
Grammars
Constituency K\\ 9
Parsing TOOt
Dependency \V
Parsing
-
Parsing / )\
non-Projective
S _- _S CLU)
- .
P UJJS / / \
7 ”
I John _ -7 Mary

\/

m Recursively call the algorithm on the new graph
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Chu-Liu-Edmonds

m After one recursive call we get

root - 40

~
~
- saw ] 30
7 - ~
- Wys -
7 - //
t John _~ Mary

\ P
~ -

~

m It is a tree! (if not, contract and recurse)

m The original MST can be reconstructued by undoing the

contraction operations (see (McDonald et al 2005) for
details)

m Cost: O(n?) (naive), O(n?) (improved)
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Transition-Based parsers

m Inspired on shift-reduce parsers.

Trees and
Grammars

m The parser has a current state or configuration consisting

C i .

Parsing of a stack (of tokens processed and tree built so far) and a
B buffer (tokens remaining).

Parsing . .

Transtion-Based m At each step, a transition is chosen to alter the

parsers

configuration and move.
m Parsing stops when a final configuration is reached

m No backtracking, cost is O(n)
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Shift-Reduce Parsing Example

The woman
DT NN

saw the man with the telescope

Vt DT NN IN

DT NN

Stack

Buffer

Transition

DT NN Vt DT NN IN DT NN




Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN

Stack | Buffer Transition

DT NN Vt DT NN IN DT NN | shift
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Parsing

Transition-Based
parsers



Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN

Stack | Buffer Transition

DT NN Vt DT NN IN DT NN | shift
DT | NN Vit DT NN IN DT NN




Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN

Stack | Buffer Transition

DT NN Vt DT NN IN DT NN | shift
DT | NN Vit DT NN IN DT NN shift
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Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN

Stack | Buffer Transition
DT NN Vt DT NN IN DT NN | shift
DT | NN Vt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN
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Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN

Stack | Buffer Transition
DT NN Vt DT NN IN DT NN | shift
DT | NN Vt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
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Shift-Reduce Parsing Example

The woman

saw the man with the telescope

DT NN Vit DT NN IN DT NN
Stack | Buffer Transition
DT NN Vt DT NN IN DT NN | shift
DT | NN Vt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN
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Shift-Reduce Parsing Example

The woman

saw the man with the telescope

DT NN Vit DT NN IN DT NN
Stack | Buffer Transition
DT NN Vt DT NN IN DT NN | shift
DT | NN Vt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
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Shift-Reduce Parsing Example

The woman

saw the man with the telescope

DT NN Vit DT NN IN DT NN
Stack | Buffer Transition
DT NN Vt DT NN IN DT NN | shift
DT | NN Vt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN
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Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN
Stack | Buffer Transition
DT NN Vit DT NN IN DT NN | shift
DT | NN Vt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN shift
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Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN
Stack | Buffer Transition
DT NN Vit DT NN IN DT NN | shift
DT | NN Vt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN shift
NP Vt DT | NN IN DT NN
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Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN
Stack | Buffer Transition
DT NN Vit DT NN IN DT NN | shift
DT | NN Vt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN shift
NP Vt DT | NN IN DT NN shift
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Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN
Stack | Buffer Transition
DT NN Vit DT NN IN DT NN | shift
DT | NN Vt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN shift
NP Vt DT | NN IN DT NN shift
NP Vt DT NN | IN DT NN
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Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN
Stack | Buffer Transition
DT NN Vit DT NN IN DT NN | shift
DT | NN Vt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN shift
NP Vt DT | NN IN DT NN shift
NP Vt DT NN | IN DT NN reduce NP—DT NN
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Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN
Stack | Buffer Transition
DT NN Vit DT NN IN DT NN | shift
DT | NN Vt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN shift
NP Vt DT | NN IN DT NN shift
NP Vt DT NN | IN DT NN reduce NP—DT NN
NP Vit NP | IN DT NN
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Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN
Stack | Buffer Transition
DT NN Vit DT NN IN DT NN | shift
DT | NN Vt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN shift
NP Vt DT | NN IN DT NN shift
NP Vt DT NN | IN DT NN reduce NP—DT NN
NP Vit NP | IN DT NN *reduce VP—Vt NP
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Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN
Stack | Buffer Transition
DT NN Vit DT NN IN DT NN | shift
DT | NN Vt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN shift
NP Vt DT | NN IN DT NN shift
NP Vt DT NN | IN DT NN reduce NP—DT NN
NP Vit NP | IN DT NN *reduce VP—Vt NP
NP VP | IN DT NN




Trees and
Grammars

Constituency
Parsing

Dependency
Parsing

Transition-Based
parsers

Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN
Stack | Buffer Transition
DT NN Vit DT NN IN DT NN | shift
DT | NN Vt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN shift
NP Vt DT | NN IN DT NN shift
NP Vt DT NN | IN DT NN reduce NP—DT NN
NP Vit NP | IN DT NN *reduce VP—Vt NP
NP VP | IN DT NN shift
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Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN
Stack | Buffer Transition
DT NN Vit DT NN IN DT NN | shift
DT | NN Vt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN shift
NP Vt DT | NN IN DT NN shift
NP Vt DT NN | IN DT NN reduce NP—DT NN
NP Vit NP | IN DT NN *reduce VP—Vt NP
NP VP | IN DT NN shift
NP VP IN | DT NN
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Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN
Stack | Buffer Transition
DT NN Vit DT NN IN DT NN | shift
DT | NN Vt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN shift
NP Vt DT | NN IN DT NN shift
NP Vt DT NN | IN DT NN reduce NP—DT NN
NP Vit NP | IN DT NN *reduce VP—Vt NP
NP VP | IN DT NN shift
NP VP IN | DT NN shift
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Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN
Stack | Buffer Transition
DT NN Vt DT NN IN DT NN | shift
DT | NNVt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN shift
NP Vt DT | NN IN DT NN shift
NP Vt DT NN | IN DT NN reduce NP—DT NN
NP Vt NP | IN DT NN *reduce VP—Vt NP
NP VP | IN DT NN shift
NP VP IN | DT NN shift
NP VP IN DT | NN
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Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN
Stack | Buffer Transition
DT NN Vt DT NN IN DT NN | shift
DT | NNVt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN shift
NP Vt DT | NN IN DT NN shift
NP Vt DT NN | IN DT NN reduce NP—DT NN
NP Vt NP | IN DT NN *reduce VP—Vt NP
NP VP | IN DT NN shift
NP VP IN | DT NN shift
NP VP IN DT | NN shift
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Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN
Stack | Buffer Transition
DT NN Vt DT NN IN DT NN | shift
DT | NNVt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN shift
NP Vt DT | NN IN DT NN shift
NP Vt DT NN | IN DT NN reduce NP—DT NN
NP Vt NP | IN DT NN *reduce VP—Vt NP
NP VP | IN DT NN shift
NP VP IN | DT NN shift
NP VP IN DT | NN shift

NP VP IN DT NN




Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN

Stack | Buffer Transition

DT NN Vt DT NN IN DT NN | shift

lrees and DT | NN Vt DT NN IN DT NN shift
Constituency DT NN | Vt DT NN IN DT NN reduce NP—DT NN

e NP | Vt DT NN IN DT NN shift

S NP Vt | DT NN IN DT NN shift

Parsing NP Vit DT | NN IN DT NN shift
NP Vit DT NN | IN DT NN reduce NP—DT NN
NP Vi NP | IN DT NN *reduce VP—Vt NP

NP VP | IN DT NN shift

NP VP IN | DT NN shift

NP VP IN DT | NN shift
NP VP IN DT NN reduce NP—DT NN
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Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN
Stack | Buffer Transition
DT NN Vt DT NN IN DT NN | shift
DT | NNVt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN shift
NP Vt DT | NN IN DT NN shift
NP Vt DT NN | IN DT NN reduce NP—DT NN
NP Vt NP | IN DT NN *reduce VP—Vt NP
NP VP | IN DT NN shift
NP VP IN | DT NN shift
NP VP IN DT | NN shift

NP VP IN DT NN
NP VP IN NP

reduce NP—DT NN
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Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN
Stack | Buffer Transition
DT NN Vt DT NN IN DT NN | shift
DT | NNVt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN shift
NP Vt DT | NN IN DT NN shift
NP Vt DT NN | IN DT NN reduce NP—DT NN
NP Vt NP | IN DT NN *reduce VP—Vt NP
NP VP | IN DT NN shift
NP VP IN | DT NN shift
NP VP IN DT | NN shift
NP VP IN DT NN reduce NP—DT NN
NP VP IN NP reduce PP—IN NP
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Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN
Stack | Buffer Transition
DT NN Vt DT NN IN DT NN | shift
DT | NNVt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN shift
NP Vt DT | NN IN DT NN shift
NP Vt DT NN | IN DT NN reduce NP—DT NN
NP Vt NP | IN DT NN *reduce VP—Vt NP
NP VP | IN DT NN shift
NP VP IN | DT NN shift
NP VP IN DT | NN shift
NP VP IN DT NN reduce NP—DT NN
NP VP IN NP reduce PP—IN NP

NP VP PP




Trees and
Grammars

Constituency
Parsing

Dependency
Parsing

Transition-Based
parsers

Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN
Stack | Buffer Transition
DT NN Vt DT NN IN DT NN | shift
DT | NNVt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN shift
NP Vt DT | NN IN DT NN shift
NP Vt DT NN | IN DT NN reduce NP—DT NN
NP Vt NP | IN DT NN *reduce VP—Vt NP
NP VP | IN DT NN shift
NP VP IN | DT NN shift
NP VP IN DT | NN shift
NP VP IN DT NN reduce NP—DT NN
NP VP IN NP reduce PP—IN NP
NP VP PP reduce VP—VP PP
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Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN
Stack | Buffer Transition
DT NN Vt DT NN IN DT NN | shift
DT | NNVt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN shift
NP Vt DT | NN IN DT NN shift
NP Vt DT NN | IN DT NN reduce NP—DT NN
NP Vt NP | IN DT NN *reduce VP—Vt NP
NP VP | IN DT NN shift
NP VP IN | DT NN shift
NP VP IN DT | NN shift
NP VP IN DT NN reduce NP—DT NN
NP VP IN NP reduce PP—IN NP
NP VP PP reduce VP—VP PP

NP VP
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Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN
Stack | Buffer Transition
DT NN Vt DT NN IN DT NN | shift
DT | NNVt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN shift
NP Vt DT | NN IN DT NN shift
NP Vt DT NN | IN DT NN reduce NP—DT NN
NP Vt NP | IN DT NN *reduce VP—Vt NP
NP VP | IN DT NN shift
NP VP IN | DT NN shift
NP VP IN DT | NN shift
NP VP IN DT NN reduce NP—DT NN
NP VP IN NP reduce PP—IN NP
NP VP PP reduce VP—VP PP
NP VP reduce S—NP VP
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Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN
Stack | Buffer Transition
DT NN Vt DT NN IN DT NN | shift
DT | NNVt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN shift
NP Vt DT | NN IN DT NN shift
NP Vt DT NN | IN DT NN reduce NP—DT NN
NP Vt NP | IN DT NN *reduce VP—Vt NP
NP VP | IN DT NN shift
NP VP IN | DT NN shift
NP VP IN DT | NN shift
NP VP IN DT NN reduce NP—DT NN
NP VP IN NP reduce PP—IN NP
NP VP PP reduce VP—VP PP
NP VP reduce S—NP VP

S
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Shift-Reduce Parsing Example

The woman saw the man with the telescope
DT NN Vt DT NN IN DT NN
Stack | Buffer Transition
DT NN Vt DT NN IN DT NN | shift
DT | NNVt DT NN IN DT NN shift
DT NN | Vt DT NN IN DT NN reduce NP—DT NN
NP | Vt DT NN IN DT NN shift
NP Vt | DT NN IN DT NN shift
NP Vt DT | NN IN DT NN shift
NP Vt DT NN | IN DT NN reduce NP—DT NN
NP Vt NP | IN DT NN *reduce VP—Vt NP
NP VP | IN DT NN shift
NP VP IN | DT NN shift
NP VP IN DT | NN shift
NP VP IN DT NN reduce NP—DT NN
NP VP IN NP reduce PP—IN NP
NP VP PP reduce VP—VP PP
NP VP reduce S—NP VP
S stop
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Transition-Based parsers

m Only one tree is produced: Not suitable for ambiguous
grammars (common in NLP)

m We can add probabilities to select which transition is
selected at each step: Similar to CKY with PCFGs, but
greedy search (may be made less greedy with e.g.
beam-search)

m Or better: we can add features and use ML to take the
decision.

Let's see how it is applied to dependency parsing
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Arc-Standard algorithm

m A configuration (S, B, A) of the parser consists of:
m A stack S containing seen words
m A buffer B containing not-yet seen words
m The dependency graph A built so far (not a tree yet)

m Initial configuration: ([ ],[0...n],[])

m Final configuration: ([0],[ ], 4)
m Possible transitions:

m shift: push next word in the buffer onto the stack

m left-arc: add an arc from S[0] to S[1] and remove S[1]
from the stack

m right-arc: add an arc from S[1] to S[0] and remove S|[0]
from the stack
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Arc-Standard Transition definitions

m shift (sh)
(0,1ilB], A) = ([oli], B, A)
m left-arc (la-L)
([olilj], B, A) = ([o]4], B, AU{j,i, L})
m right-arc (ra-L): ([0]i|j], B, A) = ([o]i], B, AU {3, j, L})



Arc-Standard Example

Stack | Buffer Transition

* the woman saw the man with glasses

Trees and
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Dependency
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parsers

* the woman saw the man with glasses



Arc-Standard Example

Stack | Buffer Transition

* the woman saw the man with glasses | sh

Trees and
Grammars
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Dependency
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parsers

* the woman saw the man with glasses



Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses
Trees and
Grammars
Constituency
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Dependency
Parsing
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pareers
* the woman saw the man with glasses



Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
Trees and
Grammars
Constituency
Parsing
Dependency
Parsing
Transition-Based
pareers
* the woman saw the man with glasses



Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses
Trees and
Grammars

Constituency
Parsing

Dependency
Parsing

Transition-Based
parsers

*  the

woman saw the man with glasses



Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det

Trees and
Grammars
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Dependency
Parsing

Transition-Based
parsers

* the woman saw the man with glasses
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Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses
* the woman saw the man with glasses
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Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* the woman saw the man with glasses
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Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh

* woman saw

*  the

the man with glasses

woman saw the man with glasses
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Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj

*  the

woman saw the man with glasses
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Arc-Standard Example
Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses

*  the

woman saw the man with glasses
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Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh

*  the

woman saw the man with glasses
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Arc-Standard Example
Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses

*  the

woman saw the man with glasses




Trees and
Grammars

Constituency
Parsing

Dependency
Parsing

Transition-Based
parsers

Arc-Standard Example

Stack | Buffer Transition

* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh

* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh

* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh

*  the

woman saw the man with glasses
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Arc-Standard Example

Stack | Buffer Transition

* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh

* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh

* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh

* saw the man

*  the

with glasses

woman

saw the

with glasses
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Arc-Standard Example

Stack | Buffer Transition

* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh

* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh

* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh

* saw the man | with glasses la-det

*  the

woman

saw the

with glasses
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Arc-Standard Example

Stack | Buffer Transition

* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh

* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh

* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh

* saw the man | with glasses la-det

* saw man | with glasses

*  the

e

woman saw the man with glasses
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Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj

*  the

e

woman saw the man with glasses
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Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj
* saw | with glasses

*  the

woman saw the man with glasses
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Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj
* saw | with glasses sh

*  the

woman saw the man with glasses
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Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj
* saw | with glasses sh
* saw with | glasses

*  the

woman saw the man with glasses
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Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj
* saw | with glasses sh
* saw with | glasses sh

*  the

woman saw the man with glasses
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Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj
* saw | with glasses sh
* saw with | glasses sh

* saw with glasses

*  the

woman saw the man with glasses
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Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj
* saw | with glasses sh
* saw with | glasses sh
* saw with glasses ra-pmod

*  the

woman saw the man with glasses
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Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj
* saw | with glasses sh
* saw with | glasses sh
* saw with glasses ra-pmod
* saw with

*  the

woman saw the man with glasses
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Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj
* saw | with glasses sh
* saw with | glasses sh
* saw with glasses ra-pmod
* saw with ra-madj

*  the

woman saw the man with glasses
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Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj
* saw | with glasses sh
* saw with | glasses sh
* saw with glasses ra-pmod
* saw with ra-madj
* saw

*  the

woman saw the man with glasses
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Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj
* saw | with glasses sh
* saw with | glasses sh
* saw with glasses ra-pmod
* saw with ra-madj
* saw ra-root

*  the

woman saw the man with glasses
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Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj
* saw | with glasses sh
* saw with | glasses sh
* saw with glasses ra-pmod
* saw with ra-madj
* saw ra-root
*

*  the

woman saw the man with

glasses
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Arc-Standard Example

Stack | Buffer Transition
* the woman saw the man with glasses | sh
* the | woman saw the man with glasses sh
* the woman | saw the man with glasses la-det
* woman | saw the man with glasses sh
* woman saw | the man with glasses la-subj
* saw | the man with glasses sh
* saw the | man with glasses sh
* saw the man | with glasses la-det
* saw man | with glasses ra-dobj
* saw | with glasses sh
* saw with | glasses sh
* saw with glasses ra-pmod
* saw with ra-madj
* saw ra-root
* stop

*  the

woman saw the man with

glasses



Alternative Transition Models

Trees and

Grammars m Stack-stack arcs

g:r":i:;“ency m Arc-standard (shift, left-arc, right-arc)
Dependny m Non-projective (shift, swap, left-arc, right-arc)
AR m Stack-buffer arcs

parsers

m Arc-eager (shift, reduce, left-arc, right-arc)
m Arc-standard variant (shift, left-arc, right-arc)



Transition Selection

m Classifier that produces the best transition for the current
configuration

m Too many possible configurations: Need to model them as

rees and. feature vectors and use ML:

Constituency m Typical features:

Z::ency m word/lemma/PoS for S[0], S[1], B[0], B[1]

P m morphological features (gender, number, mode, tense, etc)
oo Based in S[0], B[O]

m number of children of S[0]
m dependency labels of S[0] children
m ..etc
m We can use SVM, perceptron, MBL, DT, ... any
feature-based ML classifier



Transition Selection

m Classifier that produces the best transition for the current
configuration

m Too many possible configurations: Need to model them as

rees and feature vectors and use ML:

Constituency m Typical features:

Z:;iency m word/lemma/PoS for S[0], S[1], B[0], B[1]

P m morphological features (gender, number, mode, tense, etc)
oo Based in S[0], B[O]

m number of children of S[0]
m dependency labels of S[0] children
m ..etc

m We can use SVM, perceptron, MBL, DT, ... any
feature-based ML classifier

. or we can use Deep Learning
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