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Examples - Named Entity Recognition (NER)

y per - qnt - - org org - time
x Jim bought 300 shares of Acme Corp. in 2006

y per per - - loc
x Jack London went to Paris

y per per - - loc
x Paris Hilton went to London
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Examples Part-of-Speech (PoS) Tagging

y dt nn vbz in dt jj nn .
x The fox jumps over the lazy dog .

y dt nn nn vbd dt jj nn .
x The fox jumps scared the lazy dog .
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Problem Formulation

x = x1x2 . . . xn are input sequences, xi ∈ X

y = y1y2 . . . yn are output sequences, yi ∈ {1, . . . ,L}

Goal: given training data{
(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))

}
learn a predictor x→ y that works well on unseen inputs x

What is the form of our prediction model?
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Approach 1: Local Classifiers

?
Jack London went to Paris

Decompose the sequence into n classification problems:

A classifier predicts individual labels at each position

ŷi = argmax
l ∈ {loc, per, -}

w · f(x, i, l)

f(x, i, l) represents an assignment of label l for xi
w is a vector of parameters, has a weight for each feature
of f

Use standard classification methods to learn w

At test time, predict the best sequence by
a simple concatenation of the best label for each position
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Indicator Features

f(x, i, l) is a vector of d features representing label l for xi

f(x, i, l) = ( f1(x, i, l), . . . , fj(x, i, l), . . . , fd(x, i, l) )

What’s in a feature fj(x, i, l)?

Anything we can compute using x and i and l
Anything that indicates whether l is (not) a good label for
xi
Indicator features: binary-valued features looking at a
single simple property

fj(x, i, l) =

{
1 if xi =London and l =loc
0 otherwise

fk(x, i, l) =

{
1 if xi+1 =went and l =loc
0 otherwise
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More Features for NE Recognition

per

per

-

Jack London went to Paris

In practice, construct f(x, i, l) by . . .

Define a number of simple patterns of x and i
current word xi
is xi capitalized?
xi has digits?
prefixes/suffixes of size 1, 2, 3,
. . .
is xi a known location?
is xi a known person?

next word
previous word
current and next
words together
other combinations

Generate features by combining patterns with label
identities l

Main limitation: features can’t capture interactions between
labels!
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Approach 2: HMM for Sequence Prediction

per
πper

per
Tper,per

- - loc

Jack London

Oper, London

went to Paris

Define an HMM were each label is a state
Model parameters:

πl : probability of starting with label l
Tl,l′ : probability of transitioning from l to l ′

Ol,x: probability of generating symbol x given label l

Predictions:

p(x, y) = πy1Oy1,x1

∏
i>1

Tyi−1,yiOyi,xi

Learning: relative counts + smoothing

Prediction: Viterbi algorithm
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Approach 2: Representation in HMM

per
πper

per
Tper,per

- - loc

Jack London

Oper, London

went to Paris

Label interactions are captured in the transition
parameters
But interactions between symbols and labels are quite
limited!

Only Oyi,xi = p(xi | yi)
Not clear how to exploit patterns such as:

Capitalization, digits
Prefixes and suffixes
Next word, previous word
Combinations of these with label transitions

Why? HMM independence assumptions:
given label yi, token xi is independent of anything else
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Local Classifiers vs. HMM

Local Classifiers

Form:

w · f(x, i, l)

Learning: standard
classifiers

Prediction: independent
for each xi

Advantage: feature-rich

Drawback: no label
interactions

HMM

Form:

πy1Oy1,x1

∏
i>1

Tyi−1,yiOyi,xi

Learning: relative counts

Prediction: Viterbi

Advantage: label
interactions

Drawback: no fine-grained
features
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Approach 3: Global Sequence Predictors

y: per per - - loc
x: Jack London went to Paris

Learn a single classifier from x→ y

predict(x1:n) = argmax
y∈Yn

w · f(x, y)

But . . .

How do we represent entire sequences in f(x, y)?

There are exponentially-many sequences y for a given x,
how do we solve the argmax problem?
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Factored Representations

y: per per - - loc
x: Jack London went to Paris

How do we represent entire sequences in f(x, y)?

Look at the full label sequence y (intractable)
Look at n-grams of output labels 〈yi−n+1, . . . , yi−1, yi〉
(too expensive)
Look at trigrams of output labels 〈yi−2, yi−1, yi〉 (possible
for small |Y|)
Look at bigrams of output labels 〈yi−1, yi〉 (definitely
tractable)
Look at individual assignments yi (standard classification)

A factored representation will lead to a tractable model
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Bigram Indicator Features

1 2 3 4 5
y per per - - loc
x Jack London went to Paris

Indicator features:

fj(x, i, yi−1, yi) =


1 if xi =”London” and

yi−1 = per and yi = per
0 otherwise

e.g., fj(x, 2,per,per) = 1, fj(x, 3,per, -) = 0
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More Bigram Indicator Features

1 2 3 4 5
x Jack London went to Paris
y per per - - loc
y ′ per loc - - loc
y ′′ - - - loc -
x ′ My trip to London . . .

f1(. . .) = 1 iff xi =”London” and yi−1 = per and yi = per

f2(. . .) = 1 iff xi =”London” and yi−1 = per and yi = loc

f3(. . .) = 1 iff xi−1 ∼/(in|to|at)/ and xi ∼/[A-Z]/ and yi = loc

f4(. . .) = 1 iff yi = loc and world-cities(xi) = 1

f5(. . .) = 1 iff yi = per and first-names(xi) = 1



Advanced
Human

Language
Technologies

Sequence
Prediction

Approaches

Gobal Predictors

Log-linear
Models for
Sequence
Prediction

More Bigram Indicator Features

1 2 3 4 5
x Jack London went to Paris
y per per - - loc
y ′ per loc - - loc
y ′′ - - - loc -
x ′ My trip to London . . .

f1(. . .) = 1 iff xi =”London” and yi−1 = per and yi = per

f2(. . .) = 1 iff xi =”London” and yi−1 = per and yi = loc

f3(. . .) = 1 iff xi−1 ∼/(in|to|at)/ and xi ∼/[A-Z]/ and yi = loc

f4(. . .) = 1 iff yi = loc and world-cities(xi) = 1

f5(. . .) = 1 iff yi = per and first-names(xi) = 1



Advanced
Human

Language
Technologies

Sequence
Prediction

Approaches

Gobal Predictors

Log-linear
Models for
Sequence
Prediction

More Bigram Indicator Features

1 2 3 4 5
x Jack London went to Paris
y per per - - loc
y ′ per loc - - loc
y ′′ - - - loc -
x ′ My trip to London . . .

f1(. . .) = 1 iff xi =”London” and yi−1 = per and yi = per

f2(. . .) = 1 iff xi =”London” and yi−1 = per and yi = loc

f3(. . .) = 1 iff xi−1 ∼/(in|to|at)/ and xi ∼/[A-Z]/ and yi = loc

f4(. . .) = 1 iff yi = loc and world-cities(xi) = 1

f5(. . .) = 1 iff yi = per and first-names(xi) = 1



Advanced
Human

Language
Technologies

Sequence
Prediction

Approaches

Gobal Predictors

Log-linear
Models for
Sequence
Prediction

More Bigram Indicator Features

1 2 3 4 5
x Jack London went to Paris
y per per - - loc
y ′ per loc - - loc
y ′′ - - - loc -
x ′ My trip to London . . .

f1(. . .) = 1 iff xi =”London” and yi−1 = per and yi = per

f2(. . .) = 1 iff xi =”London” and yi−1 = per and yi = loc

f3(. . .) = 1 iff xi−1 ∼/(in|to|at)/ and xi ∼/[A-Z]/ and yi = loc

f4(. . .) = 1 iff yi = loc and world-cities(xi) = 1

f5(. . .) = 1 iff yi = per and first-names(xi) = 1



Advanced
Human

Language
Technologies

Sequence
Prediction

Approaches

Gobal Predictors

Log-linear
Models for
Sequence
Prediction

More Bigram Indicator Features

1 2 3 4 5
x Jack London went to Paris
y per per - - loc
y ′ per loc - - loc
y ′′ - - - loc -
x ′ My trip to London . . .

f1(. . .) = 1 iff xi =”London” and yi−1 = per and yi = per

f2(. . .) = 1 iff xi =”London” and yi−1 = per and yi = loc

f3(. . .) = 1 iff xi−1 ∼/(in|to|at)/ and xi ∼/[A-Z]/ and yi = loc

f4(. . .) = 1 iff yi = loc and world-cities(xi) = 1

f5(. . .) = 1 iff yi = per and first-names(xi) = 1



Advanced
Human

Language
Technologies

Sequence
Prediction

Approaches

Gobal Predictors

Log-linear
Models for
Sequence
Prediction

Bigram-Factored Representations

y: per per - - loc
x: Jack London went to Paris

f(x, i, yi−1, yi) = (f1(x, i, yi−1, yi), . . . , fd(x, i, yi−1, yi))

A d-dimensional feature vector of a label bigram at i
Each dimension is typically a boolean indicator (0 or 1)

f(x, y) =
∑n
i=1 f(x, i, yi−1, yi)

A d-dimensional feature vector of the entire y
Aggregated representation by summing bigram feature
vectors
Each dimension is now a count of a feature pattern
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Linear Sequence Prediction

best(x1:n) = argmax
y∈Yn

w · f(x, y) = argmax
y∈Yn

w ·
n∑
i=1

f(x, i, yi−1, yi)

Note the linearity of the expression:

w · f(x, y) = w ·
n∑
i=1

f(x, i, yi−1, yi) =
n∑
i=1

w · f(x, i, yi−1, yi)

=

n∑
i=1

d∑
j=1

wjfj(x, i, yi−1, yi)

Next questions:

How do we solve the argmax problem?
How do we learn w?
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Predicting with Factored Sequence Models

Consider a fixed w. Given x1:n find:

argmax
y∈Yn

n∑
i=1

w · f(x, i, yi−1, yi)

We can use the Viterbi algorithm, takes O(n|Y|2)

Intuition: output sequences that share bigrams will share
scores

. . . i− 2 i− 1 i i+ 1 . . .

best subsequence with yi−1 = per

best subsequence with yi−1 = loc

best subsequence with yi−1 = –

best subsequence with yi = per

w·f
(x

,i,lo
c,

per
)

best subsequence with yi = loc

best subsequence with yi = –
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Viterbi for Linear Factored Predictors

ŷ = argmax
y∈Yn

n∑
i=1

w · f(x, i, yi−1, yi)

Definition: score of optimal sequence for x1:i ending with
a ∈ Y

δi(a) = max
y∈Yi:yi=a

i∑
j=1

w · f(x, j, yj−1, yj)

Use the following recursions, for all a ∈ Y:

δ1(a) = w · f(x, 1, y0 = null,a)

δi(a) = max
b∈Y

δi−1(b) + w · f(x, i,b,a)

The optimal score for x is maxa∈Y δn(a)

The optimal sequence ŷ can be recovered through pointers
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Linear Factored Sequence Prediction

predict(x1:n) = argmax
y∈Yn

w · f(x, y)

Factored representation, e.g. based on bigrams

Flexible, arbitrary features of full x and the factors

Efficient prediction using Viterbi

Next topic: learning w:

Maximum-Entropy Markov Models (local)
Conditional Random Fields (global)
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Sequence Tagging with Log-Linear Models

x are input sequences (e.g. sentences of words)

y are output sequences (e.g. sequences of NE tags)

Goal: given training data{
(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))

}
learn a model x→ y

Log-linear models:

argmax
y∈Yn

P(y|x;w) = argmax
y∈Yn

exp(w · f(x, y))

Z(x;w)

Exponentially many y’s for a given input x

Solution 1: decompose P(y | x) (MEMMs)

Solution 2: decompose f(x, y) (CRFs)
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Maximum Entropy Markov Models (MEMMs)
(McCallum, Freitag, Pereira ’00)

Notation: x1:n = x1 . . . xn

Similarly to HMMs:

P(y1:n | x1:n) = P(y1 | x1:n)× P(y2:n | x1:n, y1)

= P(y1 | x1:n)×
n∏
i=2

P(yi|x1:n, y1:i−1)

= P(y1|x1:n)×
n∏
i=2

P(yi|x1:n, yi−1)

Assumption under MEMMs:

P(yi|x1:n, y1:i−1) = P(yi|x1:n, yi−1)
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Sequence Tagging: MEMMs

Decompose tagging problem:

P(y1:n | x1:n) = P(y1|x1:n)×
n∏
i=2

P(yi|x1:n, i, yi−1)

Learn local log-linear distributions (i.e. MaxEnt)

p(y | x, i,y ′) =
exp{w · f(x, i,y ′,y)}

Z(x, i,y ′)

where

x is an input sequence
y and y ′ are tags
f(x, i,y ′,y) is a feature vector of x, the position to be
tagged, the previous tag and the current tag
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Decoding with MEMMs

Given w, given x, find:

argmax
y∈Y∗

P(y | x;w) = argmax
y

n∏
i=1

P(yi | x, yi−1)

= argmax
y

∏n
i=1 exp(w · f(x, i, yi−1, yi))∏n

i=1 Z(x, i;w)

= argmax
y

n∏
i=1

exp(w · f(x, i, yi−1, yi))

= argmax
y

n∑
i=1

w · f(x, i, yi−1, yi)

We can use the Viterbi algorithm
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Conditional Random Fields
(Lafferty, McCallum, Pereira 2001)

Log-linear model of the conditional distribution:

P(y|x;w) =
exp{w · f(x, y)}

Z(x)

where
x = x1x2 . . . xn ∈ X∗

y = y1y2 . . . yn ∈ Y∗ and Y = {1, . . . ,L}
f(x, y) is a feature vector of x and y
w are model parameters

To predict the best sequence

ŷ = argmax
y∈Y∗

P(y|x)

Exponentially many y’s for a given input x

Choose f(x, y) so that ŷ can be computed efficiently
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Conditional Random Fields (CRFs)

The model form is:

P(y|x;w) =
exp(
∑n
i=1 w · f(x, i, yi−1, yi))

Z(x,w)

where

Z(x,w) =
∑
z∈Y∗

exp(
n∑
i=1

w · f(x, i, zi−1, zi))

Features f(. . .) are given (they are problem-dependent)

w ∈ RD are the parameters of the model

CRFs are log-linear models on the feature functions
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Conditional Random Fields: Three Problems

Compute the probability of an output sequence y for x

P(y|x;w)

Decoding: predict the best output sequence for x

argmax
y∈Y∗

P(y|x;w)

Parameter estimation: given training data

((x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))) ,

learn parameters w
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Decoding with CRFs

Given w, given x, find:

argmax
y∈Y∗

P(y|x;w) = argmax
y

exp(
∑n
i=1 w · f(x, i, yi−1, yi))

Z(x;w)

= argmax
y

exp(
n∑
i=1

w · f(x, i, yi−1, yi))

= argmax
y

n∑
i=1

w · f(x, i, yi−1, yi)

We can use the Viterbi algorithm
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Viterbi for CRFs
. . . and MEMMs

Calculate in O(nL2):

ŷ = argmax
y∈Yn

n∑
i=1

w · f(x, i, yi−1, yi)

Define (score of optimal sequence for x1:i ending with
a ∈ Y):

δi(a) = max
y∈Yi:yi=a

i∑
j=1

w · f(x, j, yj−1, yj)

Use the following recursions, for all a ∈ Y:

δ1(a) = w · f(x, 1, y0 = null,a)

δi(a) = max
b∈Y

δi−1(b) + w · f(x, i,b,a)

The optimal score for x is maxa∈Y δn(a)

The optimal sequence ŷ can be recovered through pointers
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Parameter Estimation in CRFs

How to estimate model parameters w given a training set:{
(x(1), y(1)), (x(2), y(2)), . . . , (x(m), y(m))

}
Let’s define the conditional log-likelihood of the data:

L(w) =
1

m

m∑
k=1

log P(y(k)|x(k);w)

L(w) measures how well w explains the data. A good
value for w will give a high value for P(y(k)|x(k);w) for all
k = 1 . . .m.

We want w that maximizes L(w)
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Learning the Parameters of a CRF

Recall previous lecture on log-linear / maximum-entropy
models

Find:

w∗ = argmax
w∈RD

L(w) −
λ

2
||w||2

where

The first term is the log-likelihood of the data
The second term is a regularization term, it penalizes
solutions with large norm
λ is a parameter to control the trade-off between fitting
the data and model complexity
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Learning the Parameters of a CRF

So we want to find:

w∗ = argmax
w∈Rd

L ′(w)

= argmax
w∈Rd

(
1

m

m∑
k=1

log P(y(k)|x(k);w) −
λ

2
||w||2

)

In general there is no analytical solution to this
optimization

... but it is a convex function ⇒ We use iterative
techniques, i.e. gradient-based optimization

Very fast algorithms exist (e.g. LBFGS)
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Learning the Parameters of a CRF: Gradient step

Initialize w = 0

Repeat

Compute gradient δ = (δ1, . . . , δd), where:

δj =
∂L ′(w)

∂wj
∀j = 1 . . .d

Compute step size

β∗ = argmax
β∈R

L ′(w + βδ)

Move w in the direction of the gradient

w← w + β∗δ

until convergence (||δ|| < ε)
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Computing the gradient

∂L ′(w)

∂wj
=

1

m

m∑
k=1

fj(x
(k), y(k))

−

m∑
k=1

∑
y∈Ynk

P(y|x(k);w) fj(x
(k), y)

−λwj

where

fj(x, y) =
n∑
i=1

fj(x, i, yi−1, yi)

First term: observed mean feature value

Second term: expected feature value under current w
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Computing the gradient

The first term is easy to compute, by counting explicitly
over all sequence elements:

1

m

m∑
k=1

∑
i

fj(x, i, y
(k)
i−1, y

(k)
i )

The second term is more involved, because it sums over all
sequences y ∈ Ynk

m∑
k=1

∑
y∈Ynk

P(y|x(k);w)
∑
i

fj(x
(k), i, yi−1, yi)
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Computing the gradient

For a given training example (x(k), y(k)):

∑
y∈Ynk

P(y|x(k);w)
n∑
i=1

fj(x
(k), i, yi−1, yi) =

n∑
i=1

∑
a,b∈Y

µki (a,b)fj(x
(k), i,a,b)

where

µki (a,b) =
∑

y∈Ynk : yi−1=a, yi=b

P(y|x(k);w)

The quantities µki can be computed efficiently in O(nL2)
using the forward-backward algorithm
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Forward-Backward for CRFs

Assume fixed x. Calculate in O(nL2)

µi(a,b) =
∑

y∈Yn:yi−1=a,yi=b

P(y|x;w) , 1 6 i 6 n; a,b ∈ Y

Define (forward and backward quantities):

αi(a) =
∑

y∈Yi:yi=a

exp(
∑i
j=1 w · f(x, j, yj−1, yj))

βi(b) =
∑

y∈Y(n−i+1):y1=b

exp(
∑n−i+1
j=2 w · f(x, i+ j− 1, yj−1, yj))

Compute recursively αi(a) and βi(b) (similar to Viterbi)

Z =
∑
a αn(a)

µi(a,b) = αi−1(a) · exp(w · f(x, i,a,b)) · βi(b)/Z
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Compute the probability of a label sequence

P(y|x,w) =
1

Z(x;w)
exp(
∑
i

w · f(x, i, yi−1, yi))

where

Z(x;w) =
∑
z∈Yn

exp(
∑
i

w · f(x, i, zi−1, zi))

Compute Z(x;w) efficiently, using the forward algorithm
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CRFs: summary so far

Log-linear models for sequence prediction, P(y|x;w)

Computations factorize on label bigrams

Model form:

argmax
y∈Y∗

∑
i

w · f(x, i, yi−1, yi)

Decoding: uses Viterbi (from HMMs)

Parameter estimation:

Gradient-based methods, in practice L-BFGS
Computation of gradient uses forward-backward (from
HMMs)
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CRFs: summary so far

Log-linear models for sequence prediction, P(y|x;w)

Computations factorize on label bigrams

Model form:

argmax
y∈Y∗

∑
i

w · f(x, i, yi−1, yi)

Decoding: uses Viterbi (from HMMs)

Parameter estimation:

Gradient-based methods, in practice L-BFGS
Computation of gradient uses forward-backward (from
HMMs)

Next Questions: MEMMs or CRFs? HMMs or CRFs?
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MEMMs and CRFs

MEMMs: P(y | x) =

n∏
i=1

exp(w · f(x, i, yi−1, yi))

Z(x, i, yi−1;w)

CRFs: P(y | x) =
exp(
∑n
i=1 w · f(x, i, yi−1, yi))

Z(x)

MEMMs locally normalized; CRFs globally normalized

MEMM assume that

P(yi | x1:n, y1:i−1) = P(yi | x1:n, yi−1)

Both exploit the same factorization, i.e. same features

Same computations to compute argmaxy P(y | x)

MEMMs are cheaper to train

CRFs are easier to extend to other structures (e.g. parsing
trees)
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HMMs for sequence prediction

x are the observations, y are the (un)hidden states

HMMs model the joint distributon P(x, y)

Parameters: (assume X = {1, . . . ,k} and Y = {1, . . . , l})

π ∈ Rl, πa = P(y1 = a)
T ∈ Rl×l, Ta,b = P(yi = b|yi−1 = a)
O ∈ Rl×k, Oa,c = P(xi = c|yi = a)

Model form

P(x, y) = πy1Oy1,x1

n∏
i=2

Tyi−1,yiOyi,xi

Parameter Estimation: maximum likelihood by counting
events and normalizing
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HMMs and CRFs

In CRFs: ŷ = amaxy
∑
iw · f(x, i, yi−1, yi)

In HMMs:
ŷ = amaxy πy1Oy1,x1

∏n
i=2 Tyi−1,yiOyi,xi

= amaxy log(πy1Oy1,x1) +
∑n
i=2 log(Tyi−1,yiOyi,xi)

An HMM can be ported into a CRF by setting:

fj(x, i,y,y ′) wj

i = 1 & y ′ = a log(πa)
i > 1 & y = a & y ′ = b log(Ta,b)

y ′ = a & xi = c log(Oa,b)

Hence, HMM parameters ⊂ CRF parameters
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HMMs and CRFs: main differences

Representation:

HMM “features” are tied to the generative process.
CRF features are very flexible. They can look at the whole
input x paired with a label bigram (y,y ′).
In practice, for prediction tasks, “good” discriminative
features can improve accuracy a lot.

Parameter estimation:

HMMs focus on explaining the data, both x and y.
CRFs focus on the mapping from x to y.
A priori, it is hard to say which paradigm is better.
Same dilemma as Naive Bayes vs. Maximum Entropy.
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