Master in Artificial Intelligence

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Advanced Human Language Technologies

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Facultat d'Informàtica de Barcelona

Outline

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

1 Sequence Prediction

- Examples
- Problem Formulation

Approaches

- Local Classifiers
- HMMs
- Gobal Predictors

- Log-linear Models for Sequence Prediction

 Maximum Entropy Markov Models (MEMMs)
- Conditional Random Fields (CRF)

Outline

Sequence Prediction Examples

Approaches

Log-linear Models for Sequence Prediction

1 Sequence Prediction

- Examples
- Problem Formulation

2 Approaches

- Local Classifiers
- HMMs
- Gobal Predictors

- Log-linear Models for Sequence Prediction
 Maximum Entropy Markov Models (MEMMs)
 - Conditional Random Fields (CRF)

Examples - Named Entity Recognition (NER)

Sequence Prediction Examples	-	y x	PER Jim	- bought	QNT 300	- shares	- of	ORG Acme	ORG Corp.	- in	TIME 2006
Approaches Log-linear Models for Sequence											
Prediction											

Examples - Named Entity Recognition (NER)

Sequence Prediction	у	PER	-	QI		-	OR		-	TIME
Examples	x	Jim	boug	ht 30	JU sha	res of	Acn	ne Corp.	in	2006
Approaches										
Log-linear Models for Sequence Prediction			y x	PER Jack	PER Londo	- n went	- to	LOC Paris		
			y x	PER Paris	PER Hilton	- went	- to	LOC London		

S

LNSF

Examples Part-of-Speech (PoS) Tagging

Sequence Prediction Examples Approaches Log-linear Models for Sequence Prediction	y x	DT The	NN fox	VBZ jumps	IN over	DT the	JJ lazy	NN dog	

Examples Part-of-Speech (PoS) Tagging

Sequence Prediction Examples Approaches	y x	DT The	NN fox	VBZ jumps	IN over	DT the	JJ lazy	NN dog	
Log-linear Models for Sequence Prediction	y x	DT The	NN fox	NN jumps	VBD scared	DT the	JJ lazy	NN dog	•

Outline

Sequence Prediction Problem Formulation

Approaches

Log-linear Models for Sequence Prediction

1 Sequence Prediction

Examples

Problem Formulation

Approaches

- Local Classifiers
- HMMs
- Gobal Predictors

- Log-linear Models for Sequence Prediction

 Maximum Entropy Markov Models (MEMMs)
 - Conditional Random Fields (CRF)

Problem Formulation

Sequence Prediction Problem Formulation Approaches

Log-linear Models for Sequence Prediction • $\mathbf{x} = \mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_n$ are input sequences, $\mathbf{x}_i \in \mathcal{X}$

• $\mathbf{y} = \mathbf{y}_1 \mathbf{y}_2 \dots \mathbf{y}_n$ are output sequences, $\mathbf{y}_i \in \{1, \dots, L\}$

Goal: given training data

 $\left\{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)}) \right\}$

learn a predictor $\mathbf{x} \rightarrow \mathbf{y}$ that works well on unseen inputs \mathbf{x}

What is the form of our prediction model?

Outline

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Sequence Prediction

- Examples
- Problem Formulation

2 Approaches

- Local Classifiers
- HMMs
- Gobal Predictors

- Maximum Entropy Markov Models (MEMMs)
- Conditional Random Fields (CRF)

Outline

Sequence Prediction Approaches

Local Classifiers

Log-linear Models for Sequence Prediction Sequence Prediction

- Examples
- Problem Formulation

2 Approaches

- Local Classifiers
- HMMs
- Gobal Predictors

Log-linear Models for Sequence Prediction
 Maximum Entropy Markov Models (MEMMs)
 Conditional Random Fields (CRF)

Approach 1: Local Classifiers

Sequence Prediction Approaches

Local Classifiers

Log-linear Models for Sequence Prediction

Jack London went to Paris

Decompose the sequence into n classification problems: Г

$$\hat{y_i} = \underset{l \in \{\text{LOC, PER, -}\}}{\operatorname{argmax}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, l)$$

- **f**(x, i, l) represents an assignment of label l for x_i
- w is a vector of parameters, has a weight for each feature of **f**
 - Use standard classification methods to learn w

Approach 1: Local Classifiers

Sequence Prediction Approaches

Local Classifiers

Log-linear Models for Sequence Prediction **؟** Jack London went to Paris

Decompose the sequence into n classification problems:

A classifier predicts individual labels at each position

$$\hat{y_i} = \underset{l \in \{\text{LOC, PER, -}\}}{\text{argmax}} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, l)$$

- $\blacksquare~ \mathbf{f}(\mathbf{x}, \textbf{i}, \textbf{l})$ represents an assignment of label l for $x_{\textbf{i}}$
- ${\ensuremath{\,\, \rm w}}$ is a vector of parameters, has a weight for each feature of ${\ensuremath{\, \rm f}}$
 - $\hfill\blacksquare$ Use standard classification methods to learn $\hfill\blacksquare$
- At test time, predict the best sequence by a simple concatenation of the best label for each position

Indicator Features

 $\blacksquare \ f(x, i, l)$ is a vector of d features representing label l for x_i

 $\mathbf{f}(x,\textbf{i},\textbf{l}) = (\ \mathbf{f}_1(x,\textbf{i},\textbf{l}),\ldots,\mathbf{f}_j(x,\textbf{i},\textbf{l}),\ldots,\mathbf{f}_d(x,\textbf{i},\textbf{l})\)$

Sequence Prediction

Approaches Local Classifiers

• What's in a feature
$$f_j(x, i, l)$$
?

- Anything we can compute using x and i and l
- Anything that indicates whether l is (not) a good label for \mathbf{x}_i
- Indicator features: binary-valued features looking at a single simple property

$$\begin{split} \mathbf{f}_{j}(\mathbf{x},\mathfrak{i},\mathfrak{l}) = \left\{ \begin{array}{ll} 1 & \text{if } \mathbf{x}_{\mathfrak{i}} = & \text{London and } \mathfrak{l} = & \text{LOC} \\ 0 & \text{otherwise} \\ \mathbf{f}_{k}(\mathbf{x},\mathfrak{i},\mathfrak{l}) = \left\{ \begin{array}{ll} 1 & \text{if } \mathbf{x}_{\mathfrak{i}+1} = & \text{went and } \mathfrak{l} = & \text{LOC} \\ 0 & \text{otherwise} \end{array} \right. \end{split} \end{split}$$

More Features for NE Recognition

PER Jack London went to

London went to Paris

next word

previous word

current and next

words together other combinations

- In practice, construct $\mathbf{f}(\mathbf{x},\mathfrak{i},\mathfrak{l})$ by \ldots
 - \blacksquare Define a number of simple patterns of x and i
 - \blacksquare current word x_i
 - is x_i capitalized?
 - x_i has digits?
 - prefixes/suffixes of size 1, 2, 3,
 - is x_i a known location?
 - is x_i a known person?
 - Generate features by combining patterns with label identities l

- Sequence Prediction
- Approaches Local Classifiers
- Log-linear Models for Sequence Prediction

More Features for NE Recognition

PER PER -Jack London went to Paris

- In practice, construct $\mathbf{f}(\mathbf{x},\mathfrak{i},\mathfrak{l})$ by \ldots
 - \blacksquare Define a number of simple patterns of x and i
 - \blacksquare current word x_i
 - is x_i capitalized?
 - x_i has digits?
 - prefixes/suffixes of size 1, 2, 3,
- next word
- previous word
- current and next words together
- other combinations

- is x_i a known location?
- is x_i a known person?
- Generate features by combining patterns with label identities l

Main limitation: features can't capture interactions between labels!

Sequence Prediction

Approaches Local Classifiers

Outline

Sequence Prediction

Approaches HMMs

Log-linear Models for Sequence Prediction

Sequence Prediction

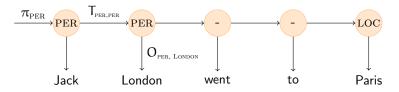
- Examples
- Problem Formulation

2 Approaches

- Local Classifiers
- HMMs
- Gobal Predictors

Log-linear Models for Sequence Prediction
 Maximum Entropy Markov Models (MEMMs)
 Conditional Random Fields (CRF)

Approach 2: HMM for Sequence Prediction



Define an HMM were each label is a state

- Model parameters:
 - π_l : probability of starting with label l
 - $T_{l,l'}$: probability of transitioning from l to l'
 - $O_{l,x}$: probability of generating symbol x given label l

Predictions:

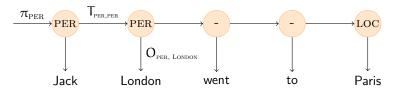
$$p(\mathbf{x}, \mathbf{y}) = \pi_{\mathbf{y}_1} O_{\mathbf{y}_1, \mathbf{x}_1} \prod_{i>1} \mathsf{T}_{\mathbf{y}_{i-1}, \mathbf{y}_i} O_{\mathbf{y}_i, \mathbf{x}_i}$$

- Learning: relative counts + smoothing
- Prediction: Viterbi algorithm

Sequence Prediction

Approaches нмм₅

Approach 2: Representation in HMM

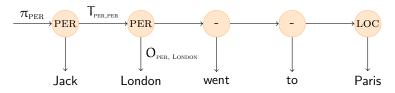


Sequence Prediction

Approaches HMMs

- Label interactions are captured in the transition parameters
- But interactions between symbols and labels are quite limited!
 - Only $O_{y_i,x_i} = p(x_i \mid y_i)$
 - Not clear how to exploit patterns such as:
 - Capitalization, digits
 - Prefixes and suffixes
 - Next word, previous word
 - Combinations of these with label transitions

Approach 2: Representation in HMM



Prediction Approaches HMMs

Sequence

Log-linear Models for Sequence Prediction

- Label interactions are captured in the transition parameters
- But interactions between symbols and labels are quite limited!
 - Only $O_{y_i,x_i} = p(x_i \mid y_i)$
 - Not clear how to exploit patterns such as:
 - Capitalization, digits
 - Prefixes and suffixes
 - Next word, previous word
 - Combinations of these with label transitions
- Why? HMM independence assumptions:

given label $\boldsymbol{y}_i,$ token \boldsymbol{x}_i is independent of anything else

Local Classifiers vs. HMM

LOCAL CLASSIFIERS

Sequence Prediction

Approaches HMMs

Log-linear Models for Sequence Prediction Form:

 $\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, l)$

- Learning: standard classifiers
- Prediction: independent for each x_i
- Advantage: feature-rich
- Drawback: no label interactions

Form:

$$\pi_{y_1}O_{y_1,x_1}\prod_{i>1}\mathsf{T}_{y_{i-1},y_i}O_{y_i,x_i}$$

Learning: relative counts

HMM

- Prediction: Viterbi
- Advantage: label interactions
- Drawback: no fine-grained features

Outline

Sequence Prediction

Approaches Gobal Predictors

Log-linear Models for Sequence Prediction Sequence Prediction

- Examples
- Problem Formulation

2 Approaches

Local Classifiers

HMMs

Gobal Predictors

Log-linear Models for Sequence Prediction

Maximum Entropy Markov Models (MEMMs)
Conditional Random Fields (CRF)

Approach 3: Global Sequence Predictors

Sequence Prediction

Approaches Gobal Predictors

Log-linear Models for Sequence Prediction

y∈yn

Approach 3: Global Sequence Predictors

Sequence Prediction Approaches

Gobal Predictors Log-linear Models for Sequence Prediction

y: Jack London Paris x: went to

PER.

LOC

Learn a single classifier from $\mathbf{x} \rightarrow \mathbf{y}$

PER.

$$\mathsf{predict}(x_{1:n}) = \operatorname*{argmax}_{y \in \mathcal{Y}^n} w \cdot f(x, y)$$

But ...

- How do we represent entire sequences in f(x, y)?
- There are exponentially-many sequences y for a given x, how do we solve the argmax problem?

y: PER PER - - LOC x: Jack London went to Paris

• How do we represent entire sequences in f(x, y)?

Sequence Prediction

Approaches Gobal Predictors

y: PER PER - - LOC x: Jack London went to Paris

Sequence Prediction Approaches

Gobal Predictors

Log-linear Models for Sequence Prediction How do we represent entire sequences in f(x, y)?
 Look at the full label sequence y (intractable)

y: PER PER - - LOC x: Jack London went to Paris

Sequence Prediction

Approaches Gobal Predictors

Log-linear Models for Sequence Prediction • How do we represent entire sequences in f(x, y)?

- Look at the full label sequence y (intractable)
- Look at n-grams of output labels $\langle y_{i-n+1}, \dots, y_{i-1}, y_i \rangle$ (too expensive)

Sequence Prediction

Approaches Gobal Predictors

Log-linear Models for Sequence Prediction • How do we represent entire sequences in f(x, y)?

- Look at the full label sequence y (intractable)
- Look at n-grams of output labels $\langle y_{i-n+1}, \dots, y_{i-1}, y_i \rangle$ (too expensive)
- \blacksquare Look at trigrams of output labels $\langle y_{i-2}, y_{i-1}, y_i \rangle$ (possible for small $|\mathcal{Y}|)$

Sequence Prediction

Approaches Gobal Predictors

- How do we represent entire sequences in f(x, y)?
 - Look at the full label sequence y (intractable)
 - Look at n-grams of output labels $\langle y_{i-n+1}, \dots, y_{i-1}, y_i \rangle$ (too expensive)
 - \blacksquare Look at trigrams of output labels $\langle y_{i-2}, y_{i-1}, y_i \rangle$ (possible for small $|\mathcal{Y}|)$
 - \blacksquare Look at bigrams of output labels $\langle y_{i-1}, y_i \rangle$ (definitely tractable)

Sequence Prediction

Approaches Gobal Predictors

- How do we represent entire sequences in f(x, y)?
 - Look at the full label sequence y (intractable)
 - Look at n-grams of output labels $\langle y_{i-n+1}, \dots, y_{i-1}, y_i \rangle$ (too expensive)
 - Look at trigrams of output labels $\langle y_{i-2}, y_{i-1}, y_i \rangle$ (possible for small $|\mathcal{Y}|)$
 - \blacksquare Look at bigrams of output labels $\langle y_{i-1}, y_i \rangle$ (definitely tractable)
 - Look at individual assignments y_i (standard classification)

Sequence Prediction

Approaches Gobal Predictors

- How do we represent entire sequences in f(x, y)?
 - Look at the full label sequence y (intractable)
 - Look at n-grams of output labels $\langle y_{i-n+1}, \dots, y_{i-1}, y_i \rangle$ (too expensive)
 - Look at trigrams of output labels $\langle y_{i-2}, y_{i-1}, y_i \rangle$ (possible for small $|\mathcal{Y}|)$
 - \blacksquare Look at bigrams of output labels $\langle y_{i-1}, y_i \rangle$ (definitely tractable)
 - Look at individual assignments y_i (standard classification)
- A factored representation will lead to a tractable model

1

Sequence Prediction

Approaches Gobal Predictors

Log-linear Models for Sequence Prediction

	T	2	5	4	5
у	PER	PER	-	-	LOC
х	Jack	London	went	to	Paris

2

2

Λ

Б

Indicator features:

$$\mathbf{f}_j(\mathbf{x}, \mathbf{i}, \mathbf{y}_{i-1}, \mathbf{y}_i) = \left\{ \begin{array}{ll} 1 & \text{if } \mathbf{x}_i = \text{"London" and} \\ & \mathbf{y}_{i-1} = \text{PER and } \mathbf{y}_i = \text{PER} \\ 0 & \text{otherwise} \end{array} \right.$$

e.g.,
$$f_j(x, 2, \text{per, per}) = 1$$
, $f_j(x, 3, \text{per, -}) = 0$

			1	2	3	4	5	
		х	Jack	London	went	to	Paris	
		У	PER	PER	-	-	LOC	
		y′	PER	LOC	-	-	LOC	
Sequence Prediction		$\mathbf{y}^{\prime\prime}$	-	-	-	LOC	-	
Approaches		\mathbf{x}'	My	trip	to	London		
Gobal Predictors Log-linear Models for Sequence Prediction	$\mathbf{f}_2(\dots$	$\mathbf{y}_i = \text{PEF}$ $\mathbf{y}_i = \text{LOC}$	C					
						_i ~/[A-Z]/		LOC
	$\mathbf{f}_4(\ldots)$) = 1	$iff \; y_{\mathfrak{i}} =$	LOC and W	VORLD-C	$\operatorname{TTIES}(\mathbf{x}_{i}) =$	= 1	
	$\mathbf{f}_5(\ldots)$) = 1	$\text{iff } y_{\mathfrak{i}} =$	$\ensuremath{\operatorname{PER}}$ and $\ensuremath{\operatorname{F}}$	IRST-NA	$\operatorname{mes}(x_{\mathfrak{i}}) =$	1	

			1	2	3	4	5	
		х	Jack	London	went	to	Paris	
		У	PER	PER	-	-	LOC	
		\mathbf{y}'	PER	LOC	-	-	LOC	
Sequence Prediction		$\mathbf{y}^{\prime\prime}$	-	-	-	LOC	-	
Approaches		\mathbf{x}'	My	trip	to	London		
Gobal Predictors Log-linear Models for Sequence Prediction	$\mathbf{f}_1(\ldots)$) = 1	iff $\mathbf{x}_i = \mathbf{x}_i$	"London" a	and $\mathbf{y}_{\mathfrak{i}-1}$	= PER and	$\mathbf{y}_{i} = pe$	R
	f ₂ () = 1	iff $\mathbf{x}_i = \mathbf{x}_i$	"London" a	and $\mathbf{y}_{\mathfrak{i}-1}$	= PER and	$\mathbf{y}_{i} = lo$	С
	$\mathbf{f}_3(\ldots)$) = 1	$\text{iff } x_{\iota-1}$	$\sim/(in to at)$)/ and x	i ~/[A-Z]/	and $\mathbf{y}_{\mathfrak{i}} =$	LOC
	f ₄ ()) = 1	$\text{iff } \mathbf{y}_{\mathfrak{i}} =$	$_{\rm LOC}$ and w	VORLD-C	$\operatorname{TTIES}(\mathbf{x}_{\mathfrak{i}}) =$	= 1	
	f ₅ ()) = 1	$\text{iff } \mathbf{y}_{\mathfrak{i}} =$	PER and F	IRST-NA	$\operatorname{MES}(\mathbf{x}_i) = 1$	1	

S P

L M S P

			1	2	3	4	5				
		x	Jack	London	went	to	Paris				
		у	PER	PER	-	-	LOC				
		\mathbf{y}'	PER	LOC	-	-	LOC				
Sequence Prediction		$\mathbf{y}^{\prime\prime}$	-	-	-	LOC	-				
Approaches		\mathbf{x}'	My	trip	to	London					
Gobal Predictors Log-linear Models for	$\mathbf{f}_1(\ldots)$) = 1	iff $\mathbf{x}_i = \mathbf{x}_i$	"London" a	and $\mathbf{y}_{\mathfrak{i}-1}$	= PER and	$\mathbf{y}_{i} = \text{Pei}$	ર			
Sequence Prediction	$\mathbf{f}_2(\ldots) = 1 ~~\text{iff}~ \mathbf{x}_i = "\text{London"}~\text{and}~ \mathbf{y}_{i-1} = \operatorname{PER}~\text{and}~ \mathbf{y}_i = \operatorname{LOC}$										
	$f_3(\ldots) = 1 \ \ \text{iff} \ x_{\mathfrak{i}-1} \sim / (\text{in} \text{to} \text{at})/ \ \text{and} \ x_{\mathfrak{i}} \sim / [\text{A-Z}]/ \ \text{and} \ y_{\mathfrak{i}} = \text{loc}$										
	$\mathbf{f}_4(\ldots) = 1 ~~\text{iff}~ \mathbf{y}_i = \text{loc}~\text{and}~ \text{WORLD-CITIES}(\mathbf{x}_i) = 1$										
	$\mathbf{f}_5(\ldots)$) = 1	$\text{iff } \mathbf{y}_{\mathfrak{i}} =$	PER and F	IRST-NA	$\operatorname{mes}(\mathbf{x}_{i}) =$	1				

Se Pi

Lo M So P

				1	2	3	4	5	
			x	Jack	London	went	to	Paris	
			у	PER	PER	-	-	LOC	
			\mathbf{y}'	PER	LOC	-	-	LOC	
Sequence Prediction			$\mathbf{y}^{\prime\prime}$	-	-	-	LOC	-	
Approaches			\mathbf{x}'	My	trip	to	London		
Gobal Predictors Log-linear Models for Sequence Prediction		$\mathbf{f}_1(\ldots)$) = 1	$iff \; \mathbf{x}_\mathfrak{i} = '$	"London" a	and $\mathbf{y}_{\mathfrak{i}-1}$	= PER and	$\mathbf{y}_{i} = \text{PER}$	t
	$f_2(\ldots)=1~$ iff $x_{\mathfrak{i}}=$ "London" and $y_{\mathfrak{i}-1}=\operatorname{PER}$ and $y_{\mathfrak{i}}=\operatorname{Le}$								
		f ₃ ()) = 1	$\text{iff } x_{i-1}$	~/(in to at))/ and x	$_{i} \sim /[A-Z]/$	and $\mathbf{y}_i = \mathbf{x}_i$	LOC
		f ₄ ()) = 1	$\text{iff } y_{\mathfrak{i}} =$	LOC and W	VORLD-C	$ITIES(\mathbf{x}_i) =$	= 1	
		f ₅ ()) = 1	$\text{iff } y_{\mathfrak{i}} =$	PER and F	IRST-NA	$\text{mes}(x_{\mathfrak{i}}) =$	1	

More Bigram Indicator Features

S P A

L M S P

				1	2	3	4	5			
			x	Jack	London	went	to	Paris			
			У	PER	PER	-	-	LOC			
			\mathbf{y}'	PER	LOC	-	-	LOC			
Sequence Prediction			$\mathbf{y}^{\prime\prime}$	-	-	-	LOC	-			
Approaches			\mathbf{x}'	My	trip	to	London				
Gobal Predictors Log-linear Models for Sequence Prediction	$f_1(\ldots) = 1 \ \text{ iff } x_i = \text{``London'' and } y_{i-1} = \operatorname{PER} \text{ and } y_i = \operatorname{PER}$										
		$f_2(\ldots)=1~$ iff $x_i="\text{London"}$ and $y_{i-1}=\operatorname{PER}$ and $y_i=\operatorname{LOC}$									
		$f_3(\ldots) = 1 \ \text{ iff } x_{i-1} \sim / (\text{in} \text{to} \text{at})/ \text{ and } x_i \sim / [\text{A-Z}]/ \text{ and } y_i = \text{LOC}$									
		$f_4(\ldots)=1~~\text{iff}~y_{\mathfrak{i}}=\text{loc}~\text{and}~\text{world-cities}(x_{\mathfrak{i}})=1$									
		f ₅ ()) = 1	$1 \ \mbox{iff} \ \mathbf{y}_i = \mbox{per} \ \mbox{and} \ \mbox{First-names}(\mathbf{x}_i) = 1$							

Bigram-Factored Representations

Sequence Prediction

Approaches Gobal Predictors

Log-linear Models for Sequence Prediction y: PER PER - - LOC x: Jack London went to Paris

$$\mathbf{f}(\mathbf{x},\mathfrak{i},\mathbf{y}_{\mathfrak{i}-1},\mathbf{y}_{\mathfrak{i}}) = (\mathbf{f}_1(\mathbf{x},\mathfrak{i},\mathbf{y}_{\mathfrak{i}-1},\mathbf{y}_{\mathfrak{i}}),\ldots,\mathbf{f}_d(\mathbf{x},\mathfrak{i},\mathbf{y}_{\mathfrak{i}-1},\mathbf{y}_{\mathfrak{i}}))$$

- \blacksquare A d-dimensional feature vector of a label bigram at i
- Each dimension is typically a boolean indicator (0 or 1)

• $\mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i})$

- A d-dimensional feature vector of the entire y
- Aggregated representation by summing bigram feature vectors
- Each dimension is now a count of a feature pattern

Linear Sequence Prediction

$$\mathsf{best}(\mathbf{x}_{1:n}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \mathbf{w} \cdot \sum_{i=1}^n \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i)$$

~~

Sequence Prediction

Approaches Gobal Predictors

Linear Sequence Prediction

$$\mathsf{best}(\mathbf{x}_{1:n}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \mathbf{w} \cdot \sum_{i=1}^n \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i)$$

Prediction Approaches Gobal Predictors

Sequence

• Note the linearity of the expression:

$$\begin{split} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) &= \mathbf{w} \cdot \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i}) = \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i}) \\ &= \sum_{i=1}^{n} \sum_{j=1}^{d} \mathbf{w}_{j} \mathbf{f}_{j}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i}) \end{split}$$

Linear Sequence Prediction

$$\mathsf{best}(\mathbf{x}_{1:n}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^n} \mathbf{w} \cdot \sum_{i=1}^n \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i)$$

Prediction Approaches Gobal Predictors

Sequence

Log-linear Models for Sequence Prediction

Note the linearity of the expression:

$$\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) = \mathbf{w} \cdot \sum_{i=1}^{n} \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i}) = \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i})$$

$$= \sum_{i=1}^{n} \sum_{j=1}^{d} \mathbf{w}_{j} \mathbf{f}_{j}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i})$$

Next questions:

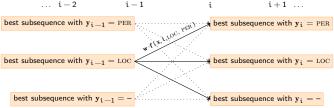
- How do we solve the argmax problem?
- How do we learn w?

Predicting with Factored Sequence Models

• Consider a fixed w. Given $x_{1:n}$ find:

$$\underset{\mathbf{y}\in\mathcal{Y}^{n}}{\operatorname{argmax}}\sum_{i=1}^{n}\mathbf{w}\cdot\mathbf{f}(\mathbf{x},i,\mathbf{y}_{i-1},\mathbf{y}_{i})$$

- We can use the Viterbi algorithm, takes $O(n|\mathcal{Y}|^2)$
 - Intuition: output sequences that share bigrams will share scores
 i-2
 i-1
 i + 1



Sequence Prediction

Approaches Gobal Predictors

Viterbi for Linear Factored Predictors

$$\hat{\mathbf{y}} = \underset{y \in \mathcal{Y}^n}{\text{argmax}} \sum_{i=1}^n \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i)$$

Sequence Prediction

Approaches Gobal Predictors

Log-linear Models for Sequence Prediction **Definition:** score of optimal sequence for $x_{1:i}$ ending with $a \in \mathcal{Y}$,

$$\delta_{i}(\alpha) = \max_{\mathbf{y} \in \mathbb{Y}^{i}: \mathbf{y}_{i} = \alpha} \sum_{j=1}^{r} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, j, \mathbf{y}_{j-1}, \mathbf{y}_{j})$$

• Use the following recursions, for all $a \in \mathcal{Y}$:

$$\begin{array}{lll} \delta_1(a) &=& \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{1}, \mathbf{y}_0 = \text{null}, a) \\ \delta_i(a) &=& \max_{b \in \mathcal{Y}} \delta_{i-1}(b) + \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, b, a) \end{array}$$

The optimal score for x is max_{a∈y} δ_n(a)
 The optimal sequence ŷ can be recovered through *pointers*

Linear Factored Sequence Prediction

Sequence Prediction

Approaches Gobal Predictors

$$\mathsf{predict}(x_{1:n}) = \operatorname*{argmax}_{y \in \mathcal{Y}^n} w \cdot f(x, y)$$

- Factored representation, e.g. based on bigrams
- \blacksquare Flexible, arbitrary features of full ${\bf x}$ and the factors
- Efficient prediction using Viterbi
- Next topic: learning w:
 - Maximum-Entropy Markov Models (local)
 - Conditional Random Fields (global)

Outline

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction Sequence Prediction

- Examples
- Problem Formulation

Approaches

- Local Classifiers
- HMMs

Gobal Predictors

- Maximum Entropy Markov Models (MEMMs)
- Conditional Random Fields (CRF)

Sequence Tagging with Log-Linear Models

- x are input sequences (e.g. sentences of words)
- y are output sequences (e.g. sequences of NE tags)
- **Goal:** given training data $\left\{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)}) \right\}$ learn a model $\mathbf{x} \to \mathbf{y}$
- Log-linear models: $\underset{\mathbf{y}\in\mathcal{Y}^n}{\operatorname{argmax}} P(\mathbf{y}|\mathbf{x};\mathbf{w}) = \underset{\mathbf{y}\in\mathcal{Y}^n}{\operatorname{argmax}} \frac{\exp(\mathbf{w}\cdot\mathbf{f}(\mathbf{x},\mathbf{y}))}{Z(\mathbf{x};\mathbf{w})}$

Sequence Prediction

Approaches

Sequence Tagging with Log-Linear Models

- x are input sequences (e.g. sentences of words)
- y are output sequences (e.g. sequences of NE tags)
- **Goal:** given training data $\left\{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)}) \right\}$ learn a model $\mathbf{x} \to \mathbf{y}$
- Log-linear models: $\underset{\mathbf{y}\in\mathcal{Y}^n}{\operatorname{argmax}} P(\mathbf{y}|\mathbf{x};\mathbf{w}) = \underset{\mathbf{y}\in\mathcal{Y}^n}{\operatorname{argmax}} \frac{\exp(\mathbf{w}\cdot\mathbf{f}(\mathbf{x},\mathbf{y}))}{Z(\mathbf{x};\mathbf{w})}$

Exponentially many y's for a given input x

Sequence Prediction

Approaches

Sequence Tagging with Log-Linear Models

- x are input sequences (e.g. sentences of words)
- y are output sequences (e.g. sequences of NE tags)
- **Goal:** given training data $\left\{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)}) \right\}$ learn a model $\mathbf{x} \to \mathbf{y}$
- Log-linear models: $\underset{\mathbf{y}\in\mathcal{Y}^n}{\operatorname{argmax}} P(\mathbf{y}|\mathbf{x};\mathbf{w}) = \underset{\mathbf{y}\in\mathcal{Y}^n}{\operatorname{argmax}} \frac{\exp(\mathbf{w}\cdot\mathbf{f}(\mathbf{x},\mathbf{y}))}{Z(\mathbf{x};\mathbf{w})}$
- \blacksquare Exponentially many y's for a given input ${\bf x}$
- Solution 1: decompose $P(\mathbf{y} \mid \mathbf{x})$ (MEMMs)
- Solution 2: decompose f(x, y) (CRFs)

Sequence Prediction

Approaches

Outline

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Maximum Entropy Markov Models (MEMMs) Sequence Prediction

- Examples
- Problem Formulation
- Approaches
 - Local Classifiers
 - HMMs
 - Gobal Predictors

3 Log-linear Models for Sequence Prediction
 Maximum Entropy Markov Models (MEMMs)
 Conditional Random Fields (CRF)

Maximum Entropy Markov Models (MEMMs) (McCallum, Freitag, Pereira '00)

- Notation: $x_{1:n} = x_1 \dots x_n$
- Similarly to HMMs:

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Maximum Entropy Markov Models (MEMMs)

$$\begin{split} \mathsf{P}(\mathbf{y}_{1:n} \mid \mathbf{x}_{1:n}) &= \mathsf{P}(\mathbf{y}_1 \mid \mathbf{x}_{1:n}) \times \mathsf{P}(\mathbf{y}_{2:n} \mid \mathbf{x}_{1:n}, \mathbf{y}_1) \\ &= \mathsf{P}(\mathbf{y}_1 \mid \mathbf{x}_{1:n}) \times \prod_{i=2}^n \mathsf{P}(\mathbf{y}_i | \mathbf{x}_{1:n}, \mathbf{y}_{1:i-1}) \\ &= \mathsf{P}(\mathbf{y}_1 | \mathbf{x}_{1:n}) \times \prod_{i=2}^n \mathsf{P}(\mathbf{y}_i | \mathbf{x}_{1:n}, \mathbf{y}_{i-1}) \end{split}$$

Assumption under MEMMs:

$$\mathsf{P}(\mathbf{y}_{\mathfrak{i}}|\mathbf{x}_{1:\mathfrak{n}},\mathbf{y}_{1:\mathfrak{i}-1}) = \mathsf{P}(\mathbf{y}_{\mathfrak{i}}|\mathbf{x}_{1:\mathfrak{n}},\mathbf{y}_{\mathfrak{i}-1})$$

Sequence Tagging: MEMMs

Decompose tagging problem:

$$P(\mathbf{y}_{1:n} \mid \mathbf{x}_{1:n}) = P(\mathbf{y}_1 | \mathbf{x}_{1:n}) \times \prod_{i=2}^{n} P(\mathbf{y}_i | \mathbf{x}_{1:n}, i, \mathbf{y}_{i-1})$$

Learn local log-linear distributions (i.e. MaxEnt)

$$p(y \mid \mathbf{x}, i, y') = \frac{exp\{\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, y', y)\}}{Z(\mathbf{x}, i, y')}$$

where

- **x** is an input sequence
- y and y' are tags
- f(x, i, y', y) is a feature vector of x, the position to be tagged, the previous tag and the current tag

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Maximum Entropy Markov Models (MEMMs)

Decoding with MEMMs

Given w, given x, find:

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Maximum Entropy Markov Models (MEMMs)

$$\begin{aligned} \underset{\mathbf{y} \in \mathfrak{Y}^*}{\operatorname{argmax}} \mathsf{P}(\mathbf{y} \mid \mathbf{x}; \mathbf{w}) &= \operatorname{argmax}_{\mathbf{y}} \prod_{i=1}^n \mathsf{P}(\mathbf{y}_i \mid \mathbf{x}, \mathbf{y}_{i-1}) \\ &= \operatorname{argmax}_{\mathbf{y}} \frac{\prod_{i=1}^n \mathsf{exp}(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i))}{\prod_{i=1}^n \mathsf{Z}(\mathbf{x}, i; \mathbf{w})} \\ &= \operatorname{argmax}_{\mathbf{y}} \prod_{i=1}^n \mathsf{exp}(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i)) \\ &= \operatorname{argmax}_{\mathbf{y}} \sum_{i=1}^n \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i) \end{aligned}$$

We can use the Viterbi algorithm

Outline

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Conditional Random Fields (CRF)

- Examples
- Problem Formulation

- Local Classifiers
- HMMs

Gobal Predictors

3 Log-linear Models for Sequence Prediction Maximum Entropy Markov Models (MEMMs) Conditional Random Fields (CRF)

Conditional Random Fields

(Lafferty, McCallum, Pereira 2001)

Log-linear model of the conditional distribution:

$$\mathsf{P}(\mathbf{y}|\mathbf{x};\mathbf{w}) = \frac{\mathsf{exp}\{\mathbf{w} \cdot \mathbf{f}(\mathbf{x},\mathbf{y})\}}{\mathsf{Z}(\mathbf{x})}$$

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Conditional Random Fields (CRF)

•
$$\mathbf{x} = \mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_n \in \mathfrak{X}^*$$

•
$$\mathbf{y} = \mathbf{y}_1 \mathbf{y}_2 \dots \mathbf{y}_n \in \mathcal{Y}^*$$
 and $\mathcal{Y} = \{1, \dots, L\}$

- **f**(\mathbf{x}, \mathbf{y}) is a feature vector of \mathbf{x} and \mathbf{y}
- w are model parameters

To predict the best sequence

$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y} \in \mathfrak{Y}^*} \mathsf{P}(\mathbf{y} | \mathbf{x})$$

Conditional Random Fields

(Lafferty, McCallum, Pereira 2001)

Log-linear model of the conditional distribution:

$$\mathsf{P}(\mathbf{y}|\mathbf{x};\mathbf{w}) = \frac{\mathsf{exp}\{\mathbf{w} \cdot \mathbf{f}(\mathbf{x},\mathbf{y})\}}{\mathsf{Z}(\mathbf{x})}$$

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Conditional Random Fields (CRF)

•
$$\mathbf{x} = \mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_n \in \mathcal{X}^*$$

• $\mathbf{y} = \mathbf{y}_1 \mathbf{y}_2 \dots \mathbf{y}_n \in \mathcal{Y}^*$ and $\mathcal{Y} = \{1, \dots, n\}$

- $\mathbf{y} = \mathbf{y}_1 \mathbf{y}_2 \dots \mathbf{y}_n \in \mathcal{Y}^*$ and $\mathcal{Y} = \{1, \dots, L\}$ • $\mathbf{f}(\mathbf{x}, \mathbf{y})$ is a feature vector of \mathbf{x} and \mathbf{y}
- w are model parameters
- To predict the best sequence

$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y} \in \boldsymbol{\mathcal{Y}}^*} \mathsf{P}(\mathbf{y} | \mathbf{x})$$

 \blacksquare Exponentially many y's for a given input $\mathbf x$

Conditional Random Fields

(Lafferty, McCallum, Pereira 2001)

Log-linear model of the conditional distribution:

$$\mathsf{P}(\mathbf{y}|\mathbf{x};\mathbf{w}) = \frac{\mathsf{exp}\{\mathbf{w} \cdot \mathbf{f}(\mathbf{x},\mathbf{y})\}}{\mathsf{Z}(\mathbf{x})}$$

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Conditional Random Fields (CRF)

$$\mathbf{x} = \mathbf{x}_1 \mathbf{x}_2 \dots \mathbf{x}_n \in \mathfrak{X}^*$$

•
$$\mathbf{y} = \mathbf{y}_1 \mathbf{y}_2 \dots \mathbf{y}_n \in \mathcal{Y}^*$$
 and $\mathcal{Y} = \{1, \dots, L\}$

- **f**(\mathbf{x}, \mathbf{y}) is a feature vector of \mathbf{x} and \mathbf{y}
- w are model parameters
- To predict the best sequence

$$\hat{\mathbf{y}} = \operatorname*{argmax}_{\mathbf{y} \in \mathcal{Y}^*} \mathsf{P}(\mathbf{y}|\mathbf{x})$$

Exponentially many y's for a given input x

 \blacksquare Choose f(x,y) so that \hat{y} can be computed efficiently

Conditional Random Fields (CRFs)

The model form is:

$$\mathsf{P}(\mathbf{y}|\mathbf{x};\mathbf{w}) = \frac{\mathsf{exp}(\sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i}))}{\mathsf{Z}(\mathbf{x}, \mathbf{w})}$$

where

$$Z(\mathbf{x}, \mathbf{w}) = \sum_{\mathbf{z} \in \mathcal{Y}^*} \exp(\sum_{i=1}^n \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{z}_{i-1}, \mathbf{z}_i))$$

Features f(...) are given (they are problem-dependent)
 w ∈ ℝ^D are the parameters of the model

CRFs are log-linear models on the feature functions

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction Conditional Random Fields (CRF) Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Conditional Random Fields (CRF) Conditional Random Fields: Three Problems

 \blacksquare Compute the probability of an output sequence ${\bf y}$ for ${\bf x}$ $\mathsf{P}({\bf y}|{\bf x};{\bf w})$

Decoding: predict the best output sequence for x

 $\mathop{\mathsf{argmax}}_{\mathbf{y}\in \mathfrak{Y}^*} \mathsf{P}(\mathbf{y}|\mathbf{x};\mathbf{w})$

Parameter estimation: given training data

 $((x^{(1)},y^{(1)}),(x^{(2)},y^{(2)}),\ldots,(x^{(m)},y^{(m)}))$,

learn parameters w

Decoding with CRFs

Given w, given x, find:

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Conditional Random Fields (CRF)

$$\begin{aligned} \underset{\mathbf{y} \in \mathfrak{Y}^{*}}{\operatorname{argmax}} \mathsf{P}(\mathbf{y} | \mathbf{x}; \mathbf{w}) &= \operatorname{argmax}_{\mathbf{y}} \frac{\exp(\sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i}))}{Z(\mathbf{x}; \mathbf{w})} \\ &= \operatorname{argmax}_{\mathbf{y}} \exp(\sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i})) \\ &= \operatorname{argmax}_{\mathbf{y}} \sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i}) \end{aligned}$$

We can use the Viterbi algorithm

Viterbi for CRFs ... and MEMMs

$$\begin{aligned} \bullet \quad \text{Calculate in } O(nL^2): \\ \hat{\mathbf{y}} = \underset{\mathbf{y} \in \mathcal{Y}^n}{\operatorname{argmax}} \sum_{i=1}^n \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i) \end{aligned}$$

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Conditional Random Fields (CRF)
$$\delta_{i}(a) = \max_{\mathbf{y} \in \mathcal{Y}^{i}: \mathbf{y}_{i} = a} \sum_{j=1}^{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{j}, \mathbf{y}_{j-1}, \mathbf{y}_{j})$$

• Use the following recursions, for all $a \in \mathcal{Y}$:

$$\begin{split} \delta_1(a) &= & \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{1}, \mathbf{y}_0 = \text{null}, a) \\ \delta_i(a) &= & \max_{b \in \mathcal{Y}} \delta_{i-1}(b) + \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, b, a) \end{split}$$

The optimal score for x is max_{a∈y} δ_n(a)
 The optimal sequence ŷ can be recovered through *pointers*

Parameter Estimation in CRFs

How to estimate model parameters w given a training set:

$$\left\{ (\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), (\mathbf{x}^{(2)}, \mathbf{y}^{(2)}), \dots, (\mathbf{x}^{(m)}, \mathbf{y}^{(m)}) \right\}$$

• Let's define the conditional log-likelihood of the data:

$$L(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} \log \mathsf{P}(\mathbf{y}^{(k)} | \mathbf{x}^{(k)}; \mathbf{w})$$

- L(w) measures how well w explains the data. A good value for w will give a high value for P(y^(k)|x^(k); w) for all k = 1...m.
- We want w that maximizes L(w)

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Fields (CRF)

Learning the Parameters of a CRF

 Recall previous lecture on log-linear / maximum-entropy models

Find:

$$\mathbf{w}^* = \operatorname*{argmax}_{\mathbf{w} \in \mathbb{R}^{\mathrm{D}}} \mathrm{L}(\mathbf{w}) - \frac{\lambda}{2} \|\mathbf{w}\|^2$$

where

- The first term is the log-likelihood of the data
- The second term is a regularization term, it penalizes solutions with large norm
- λ is a parameter to control the trade-off between fitting the data and model complexity

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Learning the Parameters of a CRF

So we want to find:

 \mathbf{w}^{*}

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Conditional Random Fields (CRF)

$$= \operatorname{argmax}_{\mathbf{w} \in \mathbb{R}^{d}} L'(\mathbf{w})$$

$$= \operatorname{argmax}_{\mathbf{w} \in \mathbb{R}^{d}} \left(\frac{1}{m} \sum_{k=1}^{m} \log P(y^{(k)} | x^{(k)}; \mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||^{2} \right)$$

In general there is no analytical solution to this optimization

- ... but it is a convex function ⇒ We use iterative techniques, i.e. gradient-based optimization
- Very fast algorithms exist (e.g. LBFGS)

Learning the Parameters of a CRF: Gradient step

- Initialize w = 0
- Repeat

• Compute gradient $\boldsymbol{\delta} = (\delta_1, \ldots, \delta_d),$ where:

$$\delta_j = \frac{\partial L'(\mathbf{w})}{\partial \mathbf{w}_j} \quad \forall j = 1 \dots d$$

$$\beta^* = \operatorname*{argmax}_{\beta \in \mathbb{R}} L'(\mathbf{w} + \beta \delta)$$

Move w in the direction of the gradient

$$\mathbf{w} \leftarrow \mathbf{w} + \beta^* \delta$$

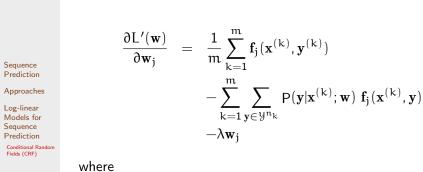
• until convergence $(\|\delta\| < \varepsilon)$

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Computing the gradient



 $\mathbf{f}_j(\mathbf{x},\mathbf{y}) = \sum_{i=1}^n \mathbf{f}_j(\mathbf{x},i,\mathbf{y}_{i-1},\mathbf{y}_i)$

First term: observed mean feature value

Second term: expected feature value under current w

Computing the gradient

The first term is easy to compute, by counting explicitly over all sequence elements:

$$\frac{1}{m}\sum_{k=1}^{m}\sum_{i}\mathbf{f}_{j}(\mathbf{x}, i, \mathbf{y}_{i-1}^{(k)}, \mathbf{y}_{i}^{(k)})$$

Log-linear Models for Sequence Prediction

Sequence Prediction Approaches

Conditional Random Fields (CRF) - The second term is more involved, because it sums over all sequences $y \in \mathbb{Y}^{n_k}$

$$\sum_{k=1}^{m} \sum_{\boldsymbol{y} \in \boldsymbol{\mathbb{Y}}^{n_k}} \mathsf{P}(\boldsymbol{y} | \boldsymbol{x}^{(k)}; \boldsymbol{w}) \sum_i \mathbf{f}_j(\boldsymbol{x}^{(k)}, i, \boldsymbol{y}_{i-1}, \boldsymbol{y}_i)$$

Computing the gradient

For a given training example $(\mathbf{x}^{(k)}, \mathbf{y}^{(k)})$:

$$\sum_{\mathbf{y}\in\mathcal{Y}^{n_k}} \mathsf{P}(\mathbf{y}|\mathbf{x}^{(k)};\mathbf{w}) \sum_{i=1}^{n} \mathbf{f}_j(\mathbf{x}^{(k)}, i, \mathbf{y}_{i-1}, \mathbf{y}_i) = \sum_{i=1}^{n} \sum_{a, b\in\mathcal{Y}} \mu_i^k(a, b) \mathbf{f}_j(\mathbf{x}^{(k)}, i, a, b)$$

where

$$\mu_i^k(a, b) = \sum_{\boldsymbol{y} \in \boldsymbol{\mathcal{Y}}^{n_k} \ : \ \boldsymbol{y}_{i-1} = a, \ \boldsymbol{y}_i = b} \mathsf{P}(\boldsymbol{y} | \boldsymbol{x}^{(k)}; \boldsymbol{w})$$

- The quantities μ_i^k can be computed efficiently in $O(nL^2)$ using the forward-backward algorithm

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Forward-Backward for CRFs

Assume fixed x. Calculate in $O(nL^2)$

$$\mu_i(a,b) = \sum_{\mathbf{y} \in \mathcal{Y}^n: \mathbf{y}_{i-1} = a, \mathbf{y}_i = b} \quad \mathsf{P}(\mathbf{y} | \mathbf{x}; \mathbf{w}) \quad \text{, } 1 \leqslant i \leqslant n; \ a,b \in \mathcal{Y}$$

Prediction Approaches

Sequence

Log-linear Models for Sequence Prediction

Conditional Random Fields (CRF)

Define (forward and backward quantities):

$$\begin{aligned} \alpha_i(a) &= \sum_{\mathbf{y} \in \mathcal{Y}^i: \mathbf{y}_i = a} \exp(\sum_{j=1}^i \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, j, \mathbf{y}_{j-1}, \mathbf{y}_j)) \\ \beta_i(b) &= \sum_{\mathbf{y} \in \mathcal{Y}^{(n-i+1)}: \mathbf{y}_1 = b} \exp(\sum_{j=2}^{n-i+1} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i+j-1, \mathbf{y}_{j-1}, \mathbf{y}_j)) \end{aligned}$$

• Compute recursively $\alpha_i(a)$ and $\beta_i(b)$ (similar to Viterbi)

 $Z = \sum_{a} \alpha_{n}(a)$ $\mu_{i}(a, b) = \alpha_{i-1}(a) \cdot \exp(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, a, b)) \cdot \beta_{i}(b) / Z$

Compute the probability of a label sequence

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Conditional Random Fields (CRF)

$$\mathsf{P}(\mathbf{y}|\mathbf{x}, \mathbf{w}) = \frac{1}{\mathsf{Z}(\mathbf{x}; \mathbf{w})} \exp(\sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i}))$$

where

$$\mathsf{Z}(\mathbf{x}; \mathbf{w}) = \sum_{\mathbf{z} \in \mathfrak{Y}^n} \exp(\sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{z}_{i-1}, \mathbf{z}_i))$$

Compute $Z(\mathbf{x}; \mathbf{w})$ efficiently, using the forward algorithm

CRFs: summary so far

- Log-linear models for sequence prediction, $P(\mathbf{y}|\mathbf{x}; \mathbf{w})$
- Computations factorize on label bigrams
- Model form:

$$\underset{y \in \mathcal{Y}^*}{\operatorname{argmax}} \sum_i \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i)$$

- Decoding: uses Viterbi (from HMMs)
- Parameter estimation:
 - Gradient-based methods, in practice L-BFGS
 - Computation of gradient uses forward-backward (from HMMs)

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

CRFs: summary so far

 \blacksquare Log-linear models for sequence prediction, $\mathsf{P}(\mathbf{y}|\mathbf{x};\mathbf{w})$

- Computations factorize on label bigrams
- Model form:

$$\underset{y \in \mathcal{Y}^*}{\operatorname{argmax}} \sum_i \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_i)$$

Models for Sequence Prediction

Log-linear

Sequence Prediction Approaches

- Decoding: uses Viterbi (from HMMs)
- Parameter estimation:
 - Gradient-based methods, in practice L-BFGS
 - Computation of gradient uses forward-backward (from HMMs)
- Next Questions: MEMMs or CRFs? HMMs or CRFs?

MEMMs and CRFs

MEMMs:
$$P(\mathbf{y} | \mathbf{x}) = \prod_{i=1}^{n} \frac{\exp(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i}))}{Z(\mathbf{x}, i, \mathbf{y}_{i-1}; \mathbf{w})}$$

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

$$\mathsf{CRFs:} \quad \mathsf{P}(\mathbf{y} \mid \mathbf{x}) = \frac{\mathsf{exp}(\sum_{i=1}^{n} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i}))}{\mathsf{Z}(\mathbf{x})}$$

- MEMMs locally normalized; CRFs globally normalized
- MEMM assume that
 - $\mathsf{P}(\mathbf{y}_{\mathfrak{i}} \mid \mathbf{x}_{1:n}, \mathbf{y}_{1:\mathfrak{i}-1}) = \mathsf{P}(\mathbf{y}_{\mathfrak{i}} \mid \mathbf{x}_{1:n}, \mathbf{y}_{\mathfrak{i}-1})$
- Both exploit the same factorization, i.e. same features
- Same computations to compute $\operatorname{argmax}_{\mathbf{y}} \mathsf{P}(\mathbf{y} \mid \mathbf{x})$
- MEMMs are cheaper to train
- CRFs are easier to extend to other structures (e.g. parsing trees)

HMMs for sequence prediction

- \mathbf{x} are the observations, \mathbf{y} are the (un)hidden states
- HMMs model the joint distributon $P(\mathbf{x}, \mathbf{y})$
- Parameters: (assume $\mathcal{X} = \{1, \dots, k\}$ and $\mathcal{Y} = \{1, \dots, l\}$)

•
$$\pi \in \mathbb{R}^1$$
, $\pi_a = \mathsf{P}(\mathbf{y}_1 = a)$

T
$$\in \mathbb{R}^{l \times l}$$
, $T_{a,b} = P(\mathbf{y}_i = b | \mathbf{y}_{i-1} = a)$

•
$$O \in \mathbb{R}^{l \times k}$$
, $O_{a,c} = P(\mathbf{x}_i = c | \mathbf{y}_i = a)$

Model form

$$\mathsf{P}(\mathbf{x}, \mathbf{y}) = \pi_{y_1} \mathsf{O}_{y_1, x_1} \prod_{i=2}^n \mathsf{T}_{y_{i-1}, y_i} \mathsf{O}_{y_i, x_i}$$

Parameter Estimation: maximum likelihood by counting events and normalizing

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

In CRFs:
$$\hat{\mathbf{y}} = \mathsf{amax}_{\mathbf{y}} \sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i})$$

In HMMs:

$$\begin{split} \hat{\mathbf{y}} &= \mathsf{amax}_{\mathbf{y}} \, \pi_{\mathbf{y}_1} O_{\mathbf{y}_1, \mathbf{x}_1} \prod_{i=2}^n \mathsf{T}_{\mathbf{y}_{i-1}, \mathbf{y}_i} O_{\mathbf{y}_i, \mathbf{x}_i} \\ &= \mathsf{amax}_{\mathbf{y}} \log(\pi_{\mathbf{y}_1} O_{\mathbf{y}_1, \mathbf{x}_1}) + \sum_{i=2}^n \log(\mathsf{T}_{\mathbf{y}_{i-1}, \mathbf{y}_i} O_{\mathbf{y}_i, \mathbf{x}_i}) \end{split}$$

An HMM can be ported into a CRF by setting: $\label{eq:fj} \underbrace{\mathbf{f}_j(\mathbf{x},i,y,y')}_{\mathbf{w}_j} \\ \boxed{\mathbf{w}_j}$

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

In CRFs:
$$\hat{\mathbf{y}} = \mathsf{amax}_{\mathbf{y}} \sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i})$$

In HMMs:

$$\begin{split} \hat{\mathbf{y}} &= \mathsf{amax}_{\mathbf{y}} \, \pi_{\mathbf{y}_1} \mathbf{O}_{\mathbf{y}_1, \mathbf{x}_1} \prod_{i=2}^n \mathsf{T}_{\mathbf{y}_{i-1}, \mathbf{y}_i} \mathbf{O}_{\mathbf{y}_i, \mathbf{x}_i} \\ &= \mathsf{amax}_{\mathbf{y}} \log(\pi_{\mathbf{y}_1} \mathbf{O}_{\mathbf{y}_1, \mathbf{x}_1}) + \sum_{i=2}^n \log(\mathsf{T}_{\mathbf{y}_{i-1}, \mathbf{y}_i} \mathbf{O}_{\mathbf{y}_i, \mathbf{x}_i}) \end{split}$$

An HMM can be ported into a CRF by setting: $\begin{array}{c|c} \mathbf{f}_j(\mathbf{x},i,y,y') & \mathbf{w}_j \\ \hline & i=1 \ \& \ y'=a & \log(\pi_a) \\ \end{array}$

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

In CRFs:
$$\hat{\mathbf{y}} = \mathsf{amax}_{\mathbf{y}} \sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i})$$

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction

Conditional Random Fields (CRF) • In HMMs: $\hat{\mathbf{y}} = \operatorname{amax}_{\mathbf{y}} \pi_{\mathbf{y}_{1}} O_{\mathbf{y}_{1},\mathbf{x}_{1}} \prod_{i=2}^{n} T_{\mathbf{y}_{i-1},\mathbf{y}_{i}} O_{\mathbf{y}_{i},\mathbf{x}_{i}}$ $= \operatorname{amax}_{\mathbf{y}} \log(\pi_{\mathbf{y}_{1}} O_{\mathbf{y}_{1},\mathbf{x}_{1}}) + \sum_{i=2}^{n} \log(T_{\mathbf{y}_{i-1},\mathbf{y}_{i}} O_{\mathbf{y}_{i},\mathbf{x}_{i}})$

An HMM can be ported into a CRF by setting:

$\mathbf{f}_{j}(\mathbf{x}, i, y, y')$	\mathbf{w}_{j}
i = 1 & y' = a	$\log(\pi_a)$
i > 1 & y = a & y' = b	$log(T_{a,b})$

In CRFs:
$$\hat{\mathbf{y}} = \mathsf{amax}_{\mathbf{y}} \sum_{i} \mathbf{w} \cdot \mathbf{f}(\mathbf{x}, i, \mathbf{y}_{i-1}, \mathbf{y}_{i})$$

In HMMs:

Prediction Approaches

Sequence

Log-linear Models for Sequence Prediction

Conditional Random Fields (CRF)

$$\begin{split} \hat{\mathbf{y}} &= \mathsf{amax}_{\mathbf{y}} \, \pi_{\mathbf{y}_1} O_{\mathbf{y}_1, \mathbf{x}_1} \prod_{i=2}^n \mathsf{T}_{\mathbf{y}_{i-1}, \mathbf{y}_i} O_{\mathbf{y}_i, \mathbf{x}_i} \\ &= \mathsf{amax}_{\mathbf{y}} \log(\pi_{\mathbf{y}_1} O_{\mathbf{y}_1, \mathbf{x}_1}) + \sum_{i=2}^n \log(\mathsf{T}_{\mathbf{y}_{i-1}, \mathbf{y}_i} O_{\mathbf{y}_i, \mathbf{x}_i}) \end{split}$$

An HMM can be ported into a CRF by setting:

$\mathbf{f}_{j}(\mathbf{x}, \mathbf{i}, \mathbf{y}, \mathbf{y'})$	\mathbf{w}_{j}
i = 1 & y' = a	$\log(\pi_a)$
i > 1 & y = a & y' = b	$log(T_{a,b})$
$y' = a \& x_i = c$	$\log(O_{a,b})$

■ Hence, HMM parameters ⊂ CRF parameters

HMMs and CRFs: main differences

Representation:

- HMM "features" are tied to the generative process.
- CRF features are very flexible. They can look at the whole input x paired with a label bigram (y, y').
- In practice, for prediction tasks, "good" discriminative features can improve accuracy a lot.

Parameter estimation:

- \blacksquare HMMs focus on explaining the data, both x and y.
- CRFs focus on the mapping from x to y.
- A priori, it is hard to say which paradigm is better.
- Same dilemma as Naive Bayes vs. Maximum Entropy.

Sequence Prediction

Approaches

Log-linear Models for Sequence Prediction