Master in Artificial Intelligence

Statistical Models for NI P

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models

IIP

Advanced Human Language Technologies Statistical Models of Language

UNIVERSITAT POLITÈCNICA DE CATALUNYA BARCELONATECH

Facultat d'Informàtica de Barcelona

FIR

Outline

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models

1 Statistical Models for NLP

- Why modeling
- Prediction & Similarity Models
- Maximum Likelihood Estimation (MLE)
 Working example
 - Smoothing & Estimator Combination
- 3 Maximum Entropy Modeling
 - Overview
 - Building ME Models

Outline

Statistical Models for NLP

Why modeling

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models

1 Statistical Models for NLP

- Why modeling
- Prediction & Similarity Models
- g
- Working example
 - Smoothing & Estimator Combination
- Maximum Entropy Modeling
 - Overview
 - Building ME Models

Statistical Models for NLP Why modeling Maximum Likelihood

Estimation (MLE)

Maximum Entropy Modeling

Statistical

Maximum Entropy Modeling

Maximum Entropy Modeling

Outline

Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models

Statistical Models for NLP

Why modeling

Prediction & Similarity Models

Working example

- Smoothing & Estimator Combination

- Overview
- Building ME Models

Prediction Models & Similarity Models

Statistical Models for NLP

Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

- Prediction Models: Oriented to *predict* probabilities of future events, knowing past and present.
- **Similarity Models**: Oriented to compute *similarities* between objects (may be used to predict, EBL).

Similarity Models

 Objects represented as feature-vectors, feature-sets, distribution-vectors, ...

Statistical Models for NLP

Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

- Used to group objects (clustering, data analysis, pattern discovery, ...)
- If classified objects are available, similarity may be used as a prediction (example-based ML techniques).
- Example: Document representation
 - Documents are represented as vectors in a high dimensional Rⁿ space.
 - Dimensions are word forms, lemmas, NEs, n-grams, ...
 - Values may be either binary or real-valued (count, frequency, ...)
 - Vector-space algebra and metrics can be used

Statistical Models for NLP

Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models

Prediction Models

Estimation: Using data to infer information about distributions

- Parametric / non-parametric estimation
- Finding good estimators: MLE, MEE, ...
- Explicit / implicit models
- Classification: Predictions based on past behaviour
 - Predict most likely target given classification features (implies independence assumptions!)
 - Granularity of equivalence classes (bins): discrimination power *vs.* statistical reliability
- In general, ML models estimate (i.e. *learn*) conditional probability distributions P(target|features)
- Many NLP tasks require a posterior search step to find the best combination of predictions.

Prediction Models

NLP Applications

Statistical Models for NLP

Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models

Appl.	Input	Output	p(i)	p(o i)
MT	L word	M word	p(L)	Translation
	sequence	sequence		model
OCR	Actual text	Text with	prob. of	model of
		mistakes	language text	OCR errors
PoS	PoS tags	word	prob. of PoS	$p(w \mid t)$
tagging	sequence	sequence	sequence	
Speech	word	speech	prob. of word	acoustic
recog.	sequence	signal	sequence	model

Given o, we want to find the most likely i

$$\underset{i}{\operatorname{argmax}} P(\mathbf{i} \mid \mathbf{o}) = \underset{i}{\operatorname{argmax}} P(\mathbf{o}, \mathbf{i}) = \underset{i}{\operatorname{argmax}} P(\mathbf{i})P(\mathbf{o} \mid \mathbf{i})$$

Finding good estimators: MLE

Maximum Likelihood Estimation (MLE)

- Choose the alternative that maximizes the probability of the observed outcome.
- $\bar{\mu}_n$ is a MLE for E(X)
- s_n^2 is a MLE for σ^2
- Zipf's Laws. Data sparseness. Smoothing tecnhiques.

P(a, b)	dans	en	à	sur	au-cours-de	pendant	selon	
in	0.04	0.10	0.15	0	0.08	0.03	0	0.40
on	0.06	0.25	0.10	0.15	0	0	0.04	0.60
total	0.10	0.35	0.25	0.15	0.08	0.03	0.04	1.0

Statistical Models for NLP

Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Finding good estimators: MEE

Maximum Entropy Estimation (MEE)

 Choose the alternative that maximizes the entropy of the obtained distribution, maintaining the observed probabilities.

```
Observations:
```

$$p(en \lor a) = 0.6$$

P(a, b)	dans	en	à	sur	au-cours-de	pendant	selon	
in	0.04	0.15	0.15	0.04	0.04	0.04	0.04	
on	0.04	0.15	0.15	0.04	0.04	0.04	0.04	
total			_					1.0
		õ	.6					

Statistical Models for NLP

Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Finding good estimators: MEE

Maximum Entropy Estimation (MEE)

 Choose the alternative that maximizes the entropy of the obtained distribution, maintaining the observed probabilities.

```
Observations:
```

$$p(en \lor a) = 0.6;$$
 $p((en \lor a) \land in) = 0.4$

P(a, b)	dans	en	à	sur	au-cours-de	pendant	selon	
in	0.04	0.20	0.20	0.04	0.04	0.04	0.04	
on	0.04	0.10	0.10	0.04	0.04	0.04	0.04	
total			_					1.0
		0	.6					

Statistical Models for NLP

Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Finding good estimators: MEE

Maximum Entropy Estimation (MEE)

 Choose the alternative that maximizes the entropy of the obtained distribution, maintaining the observed probabilities.

```
Observations:
```

$$p(\mathsf{en} \lor \grave{\mathsf{a}}) = \mathsf{0.6}; \qquad p((\mathsf{en} \lor \grave{\mathsf{a}}) \land \mathsf{in}) = \mathsf{0.4}; \qquad p(\mathsf{in}) = \mathsf{0.5}$$

P(a, b)	dans	en	à	sur	au-cours-de	pendant	selon	
in	0.02	0.20	0.20	0.02	0.02	0.02	0.02	0.5
on	0.06	0.10	0.10	0.06	0.06	0.06	0.06	
total								1.0
		0	.6					

Statistical Models for NLP

Prediction & Similarity Models

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Outline

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models

Statistical Models for NLP

- Why modeling
- Prediction & Similarity Models

2 Maximum Likelihood Estimation (MLE)

- Working example
- Smoothing & Estimator Combination
- 8 Maximum Entropy Modeling
 - Overview
 - Building ME Models

Outline

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Working example

Maximum Entropy Modeling

Log-Linear Models

2 Maximum Likelihood Estimation (MLE)

Prediction & Similarity Models

Working example

Why modeling

Smoothing & Estimator Combination

Maximum Entropy Modeling

- Overview
- Building ME Models

Working Example: N-gram models

- Predict the next element in a sequence (e.g. next character, next word, next PoS, next stock value, ...), given the *history* of previous elements: $P(w_n | w_1 \dots w_{n-1})$
- Markov assumption: Only *local* context (of size n − 1) is taken into account. P(w_i | w_{i-n+1}...w_{i-1})
- bigrams, trigrams, four-grams (n = 2, 3, 4).
 Sue swallowed the large green <?>
- Parameter estimation (number of equivalence classes)
- Parameter reduction: stemming, semantic classes, PoS, ...

Model	Parameters
bigram	$20,000^2 = 4 imes 10^8$
trigram	$20,000^3 = 8 imes 10^{12}$
four-gram	$20,000^4 = 1.6 imes 10^{17}$

Language model sizes for a 20,000 words vocabulary

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Working example

Maximum Entropy Modeling

N-gram model estimation

Estimate the probability of the target feature based on observed data. The prediction task can be reduced to having good estimations of the n-gram distribution:

$$\mathsf{P}(w_n \mid w_1 \dots w_{n-1}) = \frac{\mathsf{P}(w_1 \dots w_n)}{\mathsf{P}(w_1 \dots w_{n-1})}$$

• MLE (Maximum Likelihood Estimation) $P_{MLE}(w_1 \dots w_n) = \frac{C(w_1 \dots w_n)}{N}$ $P_{MLE}(w_n \mid w_1 \dots w_{n-1}) = \frac{C(w_1 \dots w_n)}{C(w_1 \dots w_{n-1})}$

- No probability mass for unseen events
- Data sparseness, Zipf's Law
- Unsuitable for NLP (widely used, though)

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Working example

Maximum Entropy Modeling

Brief Parenthesis: Zipf's Laws

Zipf's Laws (1929)

- \blacksquare Word frequency is inversely proportional to its rank (speaker/hearer minimum effort) $f\sim 1/r$
- \blacksquare Number of senses is proportional to frequency root $m\sim \sqrt{f}$
- \blacksquare Frequency of intervals between repetitions is inversely proportional to the length of the interval F $\sim 1/I$
- Frequency based approaches are hard, since most words are rare
 - Most common 5% words account for about 50% of a text
 - 90% least common words account for less than 10% of the text
 - Almost half of the words in a text occurr only once

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Working example

Maximum Entropy Modeling

Outline

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Smoothing & Estimator Combination

Maximum Entropy Modeling

Log-Linear Models

1 Statistical Models for NLP

- Why modeling
- Prediction & Similarity Models

Maximum Likelihood Estimation (MLE) Working example

Smoothing & Estimator Combination

Maximum Entropy Modeling

- Overview
- Building ME Models

Notation

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Smoothing & Estimator Combination

Maximum Entropy Modeling

- $C(w_1 \dots w_n)$: Observed occurrence count for n-gram $w_1 \dots w_n$.
- N: Number of observed n-gram occurrences

$$\mathsf{N} = \sum_{w_1 \dots w_n} \mathsf{C}(w_1 \dots w_n)$$

- N_k: Number of classes (n-grams) observed k times.
- B: Number of equivalence classes or bins (number of potentially observable n-grams).

Smoothing 1 - Adding Counts

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Smoothing & Estimator Combination

Maximum Entropy Modeling

Log-Linear Models

• Laplace's Law (adding one) $P_{LAP}(w_1 \dots w_n) = \frac{C(w_1 \dots w_n) + 1}{N + B}$

 For large values of B too much probability mass is assigned to unseen events

Lidstone's Law

$$\mathsf{P}_{\mathrm{LID}}(w_1 \dots w_n) = \frac{\mathsf{C}(w_1 \dots w_n) + \lambda}{\mathsf{N} + \mathsf{B}\lambda}$$

• Usually $\lambda = 0.5$, *Expected Likelihood Estimation*.

Equivalent to linear interpolation between MLE and uniform prior, with $\mu = N/(N + B\lambda)$,

$$P_{LID}(w_1 \dots w_n) = \mu \frac{C(w_1 \dots w_n)}{N} + (1-\mu) \frac{1}{B}$$

Smoothing 2 - Discounting Counts

Absolute Discounting

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Smoothing & Estimator Combination

Maximum Entropy Modeling

Log-Linear Models

$$P_{ABS}(w_1 \dots w_n) = \begin{cases} \frac{C(w_1 \dots w_n) - \delta}{N} & \text{if } C(w_1 \dots w_n) > 0\\ \frac{(B - N_0)\delta/N_0}{N} & \text{otherwise} \end{cases}$$

Linear Discounting

$$P_{LIN}(w_1 \dots w_n) = \left\{ \begin{array}{ll} (1-\alpha) \frac{C(w_1 \dots w_n)}{N} & \text{if } C(w_1 \dots w_n) > 0 \\ \\ \alpha/N_0 & \text{otherwise} \end{array} \right.$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Smoothing & Estimator Combination

Maximum Entropy Modeling

Log-Linear Models

Combining Estimators

Simple Linear Interpolation

$$P_{LI}(w_{n} | w_{n-2}, w_{n-1}) = \lambda_{1} P_{1}(w_{n}) + \lambda_{2} P_{2}(w_{n} | w_{n-1}) + \lambda_{3} P_{3}(w_{n} | w_{n-2}, w_{n-1})$$

Backing-off

$$P_{BO}(w_i \mid h) = \begin{cases} (1 - \alpha_h) \frac{C(h, w_i)}{C(h)} & \text{if } C(h, w_i) > k \\ \delta_{h'} P_{BO}(w_i \mid h') & \text{otherwise} \end{cases}$$

 $\begin{array}{ll} \left(\text{where } h = w_{i-n+1} \dots w_{i-1}, & h' = w_{i-n+2} \dots w_{i-1} \right) \\ \text{Different options to determine } \alpha_h \text{ and } \delta_{h'} \ \left(\text{e.g. } \alpha_h = \delta_{h'} & \forall h \right) \end{array}$

Outline

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models

Statistical Models for NLP

- Why modeling
- Prediction & Similarity Models
- Maximum Likelihood Estimation (MLE Working example
- Smoothing & Estimator Combination

3 Maximum Entropy Modeling

- Overview
- Building ME Models

Outline

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Overview

Log-Linear Models

Statistical Models for NLP

- Why modeling
- Prediction & Similarity Models
- Maximum Likelihood Estimation (MLE Working example
- Smoothing & Estimator Combination

Maximum Entropy Modeling
 Overview

Building ME Models

MEM Overview

- Maximum Entropy: alternative estimation technique.
- Able to deal with different kinds of evidence
- ME principle:
 - Do not assume anything about non-observed events.
 - Find the most uniform (maximum entropy, less informed) probability distribution that matches the observations.
- Example:

p(x, y)	0	1		p(x, y)	0	1		p(x, y)	0	1	
а	?	?		а	0.5	0.1		а	0.3	0.2	
b	?	?		b	0.1	0.3		b	0.3	0.2	
total	0.6		1.0	total	0.6		1.0	total	0.6		1.0
Obse	 ervat	ion	5	One po	ssible	e p(x	.,y)	Max.Er	htrop	y p()	(, y)

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Overview

ME Modeling

Observed facts are constraints for the desired model p.
 Constraints take the form of feature functions:

$$f_i: \varepsilon \to \{0, 1\}$$

 The desired model p must satisfy the constraints: The expectation predicted by model p for any feature f_i must match the observed expectation for f_i i.e.:

$$\begin{array}{rcl} \mathsf{E}_{p}(\mathsf{f}_{\mathfrak{i}}) &=& \mathsf{E}_{\widetilde{p}}(\mathsf{f}_{\mathfrak{i}}) & \forall \mathfrak{i} \\ \displaystyle \sum_{x \in \varepsilon} p(x) \mathsf{f}_{\mathfrak{i}}(x) &=& \displaystyle \sum_{x \in \varepsilon} \widetilde{p}(x) \mathsf{f}_{\mathfrak{i}}(x) & \forall \mathfrak{i} \end{array}$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Overview

Example

Example:

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Overview

Log-Linear Models

	p(x, y)	0	1	
$c = [a, b] \times [0, 1]$	a	?	?	
$\mathcal{E} = \{\mathbf{u}, \mathbf{v}\} \times \{\mathbf{v}, \mathbf{I}\}$	b	?	?	
	total	0.6		1.0

• Observed fact: p(a, 0) + p(b, 0) = 0.6

• Encoded as a constraint: $E_p(f_1) = 0.6$ where:

•
$$f_1(x, y) = \begin{cases} 1 & \text{if } y = 0 \\ 0 & \text{otherwise} \end{cases}$$

• $E_p(f_1) = \sum_{(x,y) \in \{\alpha,b\} \times \{0,1\}} p(x,y) f_1(x,y)$

Outline

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Building ME Models

Log-Linear Models

Statistical Models for NLP

- Why modeling
- Prediction & Similarity Models

Maximum Likelihood Estimation (MLE) Working example

Smoothing & Estimator Combination

3 Maximum Entropy Modeling

- Overview
- Building ME Models

Probability Model

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Building ME Models

Log-Linear Models There is an infinite set P of probability models consistent with observations:

$$\mathbf{P} = \{ \mathbf{p} \mid \mathsf{E}_{\mathbf{p}}(\mathsf{f}_{\mathfrak{i}}) = \mathsf{E}_{\widetilde{\mathbf{p}}}(\mathsf{f}_{\mathfrak{i}}), \ \forall \mathfrak{i} \}$$

Maximum entropy model

$$\begin{aligned} p^* &= & \underset{p \in P}{\operatorname{argmax}} H(p) \\ &= & \underset{p \in P}{\operatorname{argmax}} \left(-\sum_{x \in \varepsilon} p(x) \log p(x) \right) \end{aligned}$$

Conditional Probability Model

 For NLP applications, we are usually interested in conditional distributions P(Y|X), thus, the ME model is

$$p^* = \mathop{\text{argmax}}_{p \in P} H(p) = \mathop{\text{argmax}}_{p \in P} H(Y \mid X)$$

where:

Н

$$\begin{aligned} (Y \mid X) &= \sum_{x \in X} p(x) H(Y \mid X = x) \\ &= -\sum_{x \in X} p(x) \sum_{y \in Y} p(y \mid x) \log p(y \mid x) \\ &= -\sum_{x \in X, y \in Y} p(x, y) \log p(y \mid x) \\ &= -\sum_{x \in X, y \in Y} p(x, y) \log \frac{p(x, y)}{p(x)} \end{aligned}$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Building ME Models

Parameter Estimation

	Example: Maximum entropy model for translating in to French				
	No constraints				
Statistical Models for	P(x) dans en à au-cours-de pendant				
NLP	0.2 0.2 0.2 0.2 0.2				
Maximum	total 1.0				
Estimation (MLE)	• With constraint $p(ans) + p(en) = 0.3$				
Maximum	P(x) dans en à au-cours-de pendant				
Entropy Modeling	0.15 0.15 0.233 0.233 0.233				
Building ME Models	total 0.3 1.0				
Log-Linear Models	 With constraints 				
	p(dans) + p(en) = 0.3; p(en) + p(a) = 0.5				
	Not so easy !				

Parameter estimation

Exponential models

$$p(y \mid x) = \frac{1}{\mathsf{Z}(x)} \prod_{j=1}^{k} \alpha_{j}^{f_{j}(x,y)} \quad \alpha_{j} > 0, \quad \mathsf{Z}(x) = \sum_{y} \prod_{i=1}^{k} \alpha_{i}^{f_{i}(x,y)}$$

- Can also be formuled as $p(y \mid x) = \frac{1}{\mathsf{Z}(x)} \exp\left(\sum_{j=1}^k \lambda_j f_j(x, y)\right) \qquad (i.e. \ \lambda_i = \ln \alpha_i)$
- Each model parameter weights the influence of a feature.
- Optimal parameters can be computed with:
 - Generalized Iterative Scaling (GIS) [Darroch & Ratcliff 72]
 - Improved Iterative Scaling (IIS) [Della Pietra et al. 96]
 - Limited Memory BFGS (LM-BFGS) [Malouf 03]

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Building ME Models

Example: Text Categorization

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Building ME Models

Log-Linear Models ■ Probabilistic model over W × C (Words × Categories).
 A document is a set of words: d = (w₁, w₂...w_N).
 Each combination w, c ∈ W × C is a feature:

$$f_{w,c}(d,c') = \begin{cases} \frac{N(w,d)}{N(d)} & \text{if } c = c' \\ 0 & \text{otherwise} \end{cases}$$

Disambiguation: Select class with highest $P(c \mid d)$

$$P(c \mid d) = \frac{1}{Z(d)} \exp(\sum_{i} \lambda_i f_i(d, c))$$

MEM Summary

Advantages

- Teoretically well founded
- Enables combination of random context features
- Better probabilistic models than MLE (no smoothing needed)
- General approach (features, events and classes)
- Disadvantages
 - Implicit probabilistic model (joint or conditional probability distribution obtained from model parameters).

ME Models are a particular case of Log-Linear models

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling Building ME Models

Outline

Statistical Models for NI P

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models

- Why modeling
- Prediction & Similarity Models

Working example

- Smoothing & Estimator Combination
- - Overview
 - Building ME Models

Log-Linear Models

$$\mathsf{P}(\mathsf{y} \mid \mathsf{x}; \mathbf{w}) = \frac{\exp\left(\mathbf{w} \cdot \mathbf{f}(\mathsf{x}, \mathsf{y})\right)}{\sum_{\mathsf{y}} \exp\left(\mathbf{w} \cdot \mathbf{f}(\mathsf{x}, \mathsf{y})\right)}$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models where

- f(x, y) is a feature vector representing x and y
- w are the parameters of the model
- $\blacksquare \ \mathbf{w} \cdot \mathbf{f}(x,y)$ is a score for x and y
- Z(x) = ∑y exp (w ⋅ f(x, y)) is a normalizer (sums over all possible values y for x); it's sometimes called the *partition function*

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models

Features, Indicator Features

 $\blacksquare~\mathbf{f}(x,y)$ is a vector of d features representing x and y

 $(\ \mathbf{f_1}(x,y),\ldots,\mathbf{f_j}(x,y),\ldots,\mathbf{f_d}(x,y)\)$

- What's in a feature $f_j(x, y)$?
 - Anything we can compute using x and y
 - Anything that is informative for (or against) x belonging to class y
 - Indicator features: binary-valued features looking at a single simple property

$$\begin{split} \mathbf{f}_{j}(c,b) &= \left\{ \begin{array}{ll} 1 & \text{if } \text{prefix}(c) = Mr \text{ and } b = \text{no} \\ 0 & \text{otherwise} \end{array} \right. \\ \mathbf{f}_{k}(c,b) &= \left\{ \begin{array}{ll} 1 & \text{if } \text{uppercase}(\text{next}(c)) \text{ and } b = \text{yes} \\ 0 & \text{otherwise} \end{array} \right. \end{split}$$

Features, Parameters, Inner Products

$$\mathsf{P}(\mathsf{y} \mid \mathsf{x}; \mathbf{w}) = \frac{\exp\left(\mathbf{w} \cdot \mathbf{f}(\mathsf{x}, \mathsf{y})\right)}{\sum_{\mathsf{y}} \exp\left(\mathbf{w} \cdot \mathbf{f}(\mathsf{x}, \mathsf{y})\right)}$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models • $f(x, y) \in \mathbb{R}^d$ is a feature vector with d features • $w \in \mathbb{R}^d$ is a parameter vector, with d parameters

Inner products (a.k.a. dot products)

$$\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y}) = \sum_{i=1}^{d} \mathbf{w}_{i} \mathbf{f}_{i}(\mathbf{x}, \mathbf{y})$$

Log-linear Models

$$\mathsf{P}(y \mid x; \mathbf{w}) = \frac{\exp\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right)}{\sum_{y} \exp\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right)}$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models where

- f(x, y) is a feature vector representing x and y
 - Arbitrary features of x and y are allowed
 - They are provided for the application in turn
- w are the parameters of the model
- Two problems:
 - How to make predictions using P(y | x)
 - How to estimate the parameters w?

Log-linear Models: Name

• Let's take the log of the conditional probability:

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models

$$\log P(y \mid x; \mathbf{w}) = \log \frac{\exp \left(\mathbf{w} \cdot \mathbf{f}(x, y)\right)}{\sum_{y} \exp \left(\mathbf{w} \cdot \mathbf{f}(x, y)\right)}$$
$$= \mathbf{w} \cdot \mathbf{f}(x, y) - \log \sum_{y} \exp \left(\mathbf{w} \cdot \mathbf{f}(x, y)\right)$$
$$= \mathbf{w} \cdot \mathbf{f}(x, y) - \log Z(x)$$

• Partition function: $Z(x) = \sum_{y} \exp(\mathbf{w} \cdot \mathbf{f}(x, y))$

 \blacksquare log Z(x) is a constant for a fixed x

In the log space, computations are linear

Log-linear Models: Making Predictions

■ Given x, what y in {1, ..., L} is most appropriate?

$$\begin{aligned} \mathsf{best}(\mathbf{x}) &= \operatorname*{argmax}_{\mathbf{y} \in \{1, \dots, L\}} \mathsf{P}(\mathbf{y} \mid \mathbf{x}; \mathbf{w}) \\ &= \operatorname*{argmax}_{\mathbf{y} \in \{1, \dots, L\}} \frac{\mathsf{exp}\left(\mathbf{w} \cdot \mathbf{f}(\mathbf{x}, \mathbf{y})\right)}{\mathsf{Z}(\mathbf{x})} \end{aligned}$$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-linear Models: Making Predictions

■ Given x, what y in {1, ..., L} is most appropriate?

 $best(x) = \underset{y \in \{1, \dots, L\}}{\operatorname{argmax}} P(y \mid x; \mathbf{w})$ $= \underset{y \in \{1, \dots, L\}}{\operatorname{argmax}} \frac{\exp(\mathbf{w} \cdot \mathbf{f}(x, y))}{Z(x)}$ $= \underset{y \in \{1, \dots, L\}}{\operatorname{argmax}} \exp(\mathbf{w} \cdot \mathbf{f}(x, y))$ $= \underset{y \in \{1, \dots, L\}}{\operatorname{argmax}} \mathbf{w} \cdot \mathbf{f}(x, y)$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-linear Models: Making Predictions

■ Given x, what y in {1, . . . , L} is most appropriate?

 $best(x) = \underset{y \in \{1, \dots, L\}}{\operatorname{argmax}} P(y \mid x; w)$ $= \underset{y \in \{1, \dots, L\}}{\operatorname{argmax}} \frac{\exp(w \cdot f(x, y))}{Z(x)}$ $= \underset{y \in \{1, \dots, L\}}{\operatorname{argmax}} \exp(w \cdot f(x, y))$ $= \underset{u \in \{1, \dots, L\}}{\operatorname{argmax}} w \cdot f(x, y)$

Predictions only require simple inner products (linear)No need to exponentiate!

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-linear Models: Computing Probabilities

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models

$$\mathsf{P}(y \mid x; \mathbf{w}) = \frac{\mathsf{exp}\left(\mathbf{w} \cdot \mathbf{f}(x, y)\right)}{\mathsf{Z}(x)}$$

- Sometimes we will be interested in computing P(y | x)
 It can be used as a measure of confidence, e.g. P(yes | c) = 0.51 versus P(yes | c) = 0.99
- We need to compute:

$$\mathsf{Z}(x) = \sum_{\mathsf{y} = \{1, \dots, L\}} \exp\left(\mathbf{w} \cdot \mathbf{f}(x, \mathsf{y})\right)$$

Fast as long as L is not too large

Parameter Estimation in Log-linear Models

How to estimate model parameters w given a training set:

$$\left\{ (x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), \dots, (x^{(m)}, y^{(m)}) \right\}$$

Let's define the conditional log-likelihood of the data:

$$L(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} \log \mathsf{P}(\boldsymbol{y}^{(k)} | \boldsymbol{x}^{(k)}; \mathbf{w})$$

- L(w) measures how well w explains the data. A good value for w will give a high value for P(y^(k)|x^(k); w) for all k = 1...m.
- We want w that maximizes L(w)

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Parameter Estimation in Log-Linear Models

We pose it as an optimization problemFind:

$$\mathbf{w}^* = \operatorname*{argmax}_{\mathbf{w} \in \mathbb{R}^d} L(\mathbf{w})$$

where

- But low-frequency features may end up having large weights (i.e. overfitting)
- We need a regularization factor that penalizes solutions with a large norm (similar to norm-minimization in SVM):

$$L'(\mathbf{w}) = \frac{1}{m} \sum_{k=1}^{m} \log \mathsf{P}(\boldsymbol{y}^{(k)} | \boldsymbol{x}^{(k)}; \mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||^2$$

 where λ is a parameter to control the trade-off between fitting the data and model complexity. Tuned experimentally.

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Parameter Estimation in Log-Linear Models

So we want to find:

 \mathbf{w}^{*}

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

$$= \operatorname{argmax}_{\mathbf{w} \in \mathbb{R}^{d}} L'(\mathbf{w})$$

$$= \operatorname{argmax}_{\mathbf{w} \in \mathbb{R}^{d}} \left(\frac{1}{m} \sum_{k=1}^{m} \log P(\mathbf{y}^{(k)} | \mathbf{x}^{(k)}; \mathbf{w}) - \frac{\lambda}{2} ||\mathbf{w}||^{2} \right)$$

- In general there is no analytical solution to this optimization
- ... but it is a convex function ⇒ We use iterative techniques, i.e. gradient-based optimization
- Very fast algorithms exist (e.g. LBFGS)

Parameter Estimation in Log-Linear Models : Gradient step

- Initialize w = 0
- Repeat

• Compute gradient $\delta = (\delta_1, \dots, \delta_d)$, where:

$$\delta_j = \frac{\partial L'(\mathbf{w})}{\partial \mathbf{w}_j} \quad \forall j = 1 \dots d$$

$$\beta^* = \operatorname*{argmax}_{\beta \in \mathbb{R}} L'(\mathbf{w} + \beta \delta)$$

Move w in the direction of the gradient

$$\mathbf{w} \leftarrow \mathbf{w} + \beta^* \delta$$

• until convergence $(\|\delta\| < \varepsilon)$

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-linear Models: Computing the Gradient

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models

$$\begin{split} \frac{\partial L'(\mathbf{w})}{\partial \mathbf{w}_j} &= \frac{1}{m} \sum_{k=1}^m \mathbf{f}_j(x^{(k)}, y^{(k)}) \\ &- \sum_{k=1}^m \sum_{y \in \{1, \dots, L\}} \mathsf{P}(y | x^{(k)}; \mathbf{w}) \ \mathbf{f}_j(x^{(k)}, y) \\ &- \lambda \mathbf{w}_j \end{split}$$

- First term: observed mean feature value
- Second term: expected feature value under current w
- In the optimal, observed = expected

Maximum log-likelihood log-linear models correspond to Maximum Entropy models

Example: Identifying Sentence Boundaries

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Log-Linear Models The president lives in Washington, D.C. The presidents met in Washington D.C. in 2010. Mr. Wayne is young. Mr. Wayne is a Ph.D. I got 98.5%! What?

Goal: given a text, identify tokens that end a sentence

- Candidate characters: . ! ?
- Candidate tokens: tokens containing candidate characters
- Given a candidate token in a *context* decide whether it ends a sentence or not

Example: Sentence Boundaries

■ Candidate: punctuation sign + context

c = < sign, prefix, suffix, previous, next >
 Assume access to annotated data:

b	sign	prefix	suffix	prev	next
no		D D D C	С.	Washington,	The
no	•	Mr		2010.	Wayne

- Let's take a probabilistic approach:
 - P(yes | c): conditional probability of c being end of sentence
 - P(no | c): conditional probability of c not being e.o.s.
 - Obviously, $\mathsf{P}(\texttt{yes} \mid c) + \mathsf{P}(\texttt{no} \mid c) = 1$
 - Predict yes if P(yes | c) > 0.5
- How to model P(yes | c) and P(no | c)?

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Example system: Identifying Sentence Boundaries (Reynar and Ratnaparkhi '97)

- Candidate: punctuation sign + context
 - c = < sign, prefix, suffix, previous, next >
- **Goal**: estimate P(yes | c) and P(no | c)
- Feature templates:
 - The prefix
 - 2 The suffix
 - 3 The word previous
 - 4 The word next
 - **5** Whether prefix or suffix are in ABBREVIATIONS
 - ABBREVIATIONS: list of all training tokens that contain a

 and are *not* sentence boundaries
 - **6** Whether previous or next are in ABBREVIATIONS
- Actual features are generated by applying each template to each training example

Statistical Models for NLP

Maximum Likelihood Estimation (MLE)

Maximum Entropy Modeling

Example system: Identifying Sentence Boundaries (Reynar and Ratnaparkhi '97) FEATURE TEMPLATES 1 The prefix 2 The suffix 3 The word previous 4 The word next Statistical Models for 5 Whether prefix or suffix are in ABBREVIATIONS 6 Whether previous or next are in ABBREVIATIONS Maximum < b=no punc=. pref=Mr suff= prev=2010. next=Wayne > Likelihood Estimation GENERATED FEATURES Maximum $\mathbf{f}_1(\mathbf{c}, \mathbf{b}) = \begin{cases} 1 & \text{if } \mathsf{pref}(\mathbf{c}) = \mathsf{Mr} \\ & \text{and } \mathbf{b} = \mathsf{no} \\ 0 & \text{otherwise} \end{cases} \quad \mathbf{f}_4(\mathbf{c}, \mathbf{b}) = \begin{cases} 1 & \text{if } \mathsf{next}(\mathbf{c}) = \mathsf{Wayne} \\ & \text{and } \mathbf{b} = \mathsf{no} \\ 0 & \text{otherwise} \end{cases}$ Modeling Log-Linear $f_{2}(c,b) = \begin{cases} 1 & \text{if suff}(c) = \texttt{NULL} \\ & \text{and } b = \texttt{no} \\ 0 & \text{otherwise} \end{cases} \quad f_{5}(c,b) = \begin{cases} 1 & \text{if } (\texttt{abbr}(\texttt{pref}(c)) \text{ or } \texttt{abbr}(\texttt{suff}(c))) \\ & \text{and } b = \texttt{no} \\ 0 & \text{otherwise} \end{cases}$ $f_3(c,b) = \begin{cases} 1 & \text{if } prev(c) = 2010. \\ & \text{and } b = no \\ 0 & \text{otherwise} \end{cases} \quad f_6(c,b) = \begin{cases} 1 & \text{if } (abbr(prev(c)) \text{ or } abbr(next(c))) \\ & \text{and } b = no \\ 0 & \text{otherwise} \end{cases}$

NI P

(MLE)

Entropy

Models

Example System: Identifying Sentence Boundaries (Reynar and Ratnaparkhi '97)

	training sentences	test accuracy
Statistical Models for	500	96.5%
NLP	1000	97.3%
Maximum Likelihood	2000	97.3%
Estimation	4000	97.6%
(Maximum	8000	97.6%
Entropy	16000	97.8%
l og-l inear	39441	98.0%
Models		

Corpus: Wall Street Journal, English