
Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Master in Artificial Intelligence

Advanced Human Language Technologies

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Outline

1 Neural Networks NERC

2 General Structure

3 Detailed Structure
Learner
Classifier
Required functions

4 Core task

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Session 2 - NERC using neural networks

Assignment

Write a python program that parses all XML files in the folder
given as argument and recognizes and classifies drug names.
The program must use a neural network approach.
$ python3 ./ml-NER.py data/Devel/

DDI-DrugBank.d278.s0|0-9|Enoxaparin|drug

DDI-DrugBank.d278.s0|93-108|pharmacokinetics|group

DDI-DrugBank.d278.s0|113-124|eptifibatide|drug

DDI-MedLine.d88.s0|15-30|chlordiazepoxide|drug

DDI-MedLine.d88.s0|33-43|amphetamine|drug

DDI-MedLine.d88.s0|49-55|cocaine|drug

DDI-MedLine.d88.s1|82-95|benzodiazepine|drug

...

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Outline

1 Neural Networks NERC

2 General Structure

3 Detailed Structure
Learner
Classifier
Required functions

4 Core task

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

General Structure

The general structure is basically the same than for the
traditional ML approach:

Two programs: one learner and one classifier.

The learner loads the training (Train) and validation
(Devel) data, formats/encodes it appropiately, and feeds
the model with the data plus its ground truth.

The classifier loads the test data, formats/encodes it in
the same way that was used in training, and feeds it to the
model to get a prediction.

In the case of NN, we don’t need to extract features (though
we do need some encoding)

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Outline

1 Neural Networks NERC

2 General Structure

3 Detailed Structure
Learner
Classifier
Required functions

4 Core task

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Learner

Core task

Outline

1 Neural Networks NERC

2 General Structure

3 Detailed Structure
Learner
Classifier
Required functions

4 Core task

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Learner

Core task

Learner - Main program

1 def learn(traindir , validationdir , modelname) :

2 ’’’

3 learns a NN model using traindir as training data , and validationdir

4 as validation data. Saves learnt model in a file named modelname

5 ’’’

6 # load train and validation data in a suitable form

7 traindata = load_data(traindir)

8 valdata = load_data(validationdir)

9
10 # create indexes from training data

11 max_len = 100

12 idx = create_indexs(traindata , max_len)

13
14 # build network

15 model = build_network(idx)

16
17 # encode datasets

18 Xtrain = encode_words(traindata , idx)

19 Ytrain = encode_tags(traindata , idx)

20 Xval = encode_words(valdata , idx)

21 Yval = encode_tags(valdata , idx)

22
23 # train model

24 model.fit(Xtrain , Ytrain , validation_data =(Xval ,Yval))

25
26 # save model and indexs , for later use in prediction

27 save_model_and_indexs(model , idx , modelname)

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Classifier

Core task

Outline

1 Neural Networks NERC

2 General Structure

3 Detailed Structure
Learner
Classifier
Required functions

4 Core task

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Classifier

Core task

Classifier - Main program

1 def predict(modelname , datadir , outfile) :

2 ’’’

3 Loads a NN model from file ’modelname ’ and uses it to extract drugs

4 in datadir. Saves results to ’outfile ’ in the appropriate format.

5 ’’’

6
7 # load model and associated encoding data

8 model , idx = load_model_and_indexs(modelname)

9 # load data to annotate

10 testdata = load_data(datadir)

11
12 # encode dataset

13 X = encode_words(testdata , idx)

14
15 # tag sentences in dataset

16 Y = model.predict(X)

17 # get most likely tag for each word

18 Y = [[idx[’tags’][np.argmax(y)] f o r y i n s] f o r s i n Y]

19
20 # extract entities and dump them to output file

21 output_entities(testdata , Y, outfile)

22
23 # evaluate using official evaluator.

24 evaluation(datadir ,outfile)

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Required functions

Core task

Outline

1 Neural Networks NERC

2 General Structure

3 Detailed Structure
Learner
Classifier
Required functions

4 Core task

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Required functions

Core task

Required functions - load data

1 def load_data(datadir)

Used by: Learner, Classifier

Input: Receives a directory containing XML files.

Output: Parses XML files in given directory, tokenizes each
sentence, extracts ground truth BIO tags for each token, and
returns the dataset as a dictionary. Dictionary keys are the
sentence id, and values are the list of token tuples (word, start,
end, ground truth).

Example:
>>> load data(’data/Train’)

{’DDI-DrugBank.d370.s0’: [(’as’, 0, 1, ’O’), (’differin’, 3, 10, ’B-brand’),

(’gel’, 12, 14, ’O’), ..., (’with’, 343, 346, ’O’),

(’caution’, 348, 354, ’O’), (’.’, 355, 355, ’O’)],

’DDI-DrugBank.d370.s1’: [(’particular’, 0, 9, ’O’), (’caution’, 11, 17, ’O’),

(’should’, 19, 24, ’O’), ...,(’differin’, 130, 137, ’B-brand’),

(’gel’, 139, 141, ’O’), (’.’, 142, 142, ’O’)],

...

}

Use XML parsing and tokenization functions from previous exercises

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Required functions

Core task

Required functions - create indexs

1 def create_indexs(datadir , max_length)

Used by: Learner

Input: Receives a dataset produced by load data, and the maximum
length in a sentence

Output: Creates a set of words seen in the data and a set of BIO
tags. Enumerates those sets, assigning a unique integer to each
element. Returns these mappings in a single dictionary, with an
additional entry for the given max length value.

Example:
>>> create indexs(traindata)

{’words’: {’<PAD>’:0, ’<UNK>’:1, ’11-day’:2, ’murine’:3, ’criteria’:4,

’stroke’:5, ... ’carbidopa-levodopa’:8510, ’generation’:8511,

’terfenadine*’: 8512 }
’tags’: {’<PAD>’:0, ’B-group’:1, ’B-drug n’:2, ’I-drug n’:3, ’O’:4,

’I-group’:5, ’B-drug’:6, ’I-drug’:7, ’B-brand’:8, ’I-brand’:9}
’maxlen’ : 100 }

Add a <PAD> code to both ’words’ and ’tags’ indexes, with value 0. Add also an

<UNK> code to ’words’ with value 1. The coding of the rest of the words or tags is

arbitrary.

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Required functions

Core task

Required functions - build network

1 def build_network(idx) :

2 ’’’

3 Used by: Learner

4 Input: Receives the index dictionary with the encondings of words and

tags , and the maximum length of sentences.

5 Output: Returns a compiled Keras neural network

6 ’’’

7 # sizes

8 n_words = l e n (idx[’words’])
9 n_tags = l e n (idx[’tags’])

10 max_len = idx[’maxlen ’]

11
12 # create network layers

13 inp = Input(shape=(max_len ,))

14 ## ... add missing layers here ... #

15 out = # final output layer

16
17 # create and compile model

18 model = Model(inp ,out)

19 model. compi le () # set appropriate parameters (optimizer , loss , etc)

20
21 r e t u r n model

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Required functions

Core task

Required functions - build network

1 def build_network(idx) :

LSTMs are useful for sequence tagging tasks such as NER.

You will need to add one Embedding layer after the input, that
is where the created indexes will become handy.

You can base your model in these examples: [1],[2],[3],[4],[5],[6]
Note: some instructions may require to be adapted, depending
on your Keras version.
Note: you don’t need to follow the whole example, only the
network construction part.

https://www.aitimejournal.com/@akshay.chavan/complete-tutorial-on-named-entity-recognition-ner-using-python-and-keras
https://medium.com/@rohit.sharma_7010/a-complete-tutorial-for-named-entity-recognition-and-extraction-in-natural-language-processing-71322b6fb090
https://github.com/mxhofer/Named-Entity-Recognition-BidirectionalLSTM-CNN-CoNLL/blob/master/nn_CoNLL.ipynb
https://towardsdatascience.com/named-entity-recognition-ner-meeting-industrys-requirement-by-applying-state-of-the-art-deep-698d2b3b4ede
https://github.com/yagotome/lstm-ner
https://www.depends-on-the-definition.com/sequence-tagging-lstm-crf/

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Required functions

Core task

Required functions - encode words

1 def encode_words(dataset , idx) :

Used by: Learner, Classifier

Input: Receives a dataset produced by load data, and the
index dictionary produced by create indexs

Output: Returns the dataset as a list of sentences. Each
sentence is a list of integers, corresponding to the code of each
word in the sentence. If the word is not in the index, the code
for <UNK> is used. If the sentence is shorter than max len it is
padded with the code for <PAD>.

Example:
>>> encode words(traindata,idx)

[[6882 1049 4911 ... 0 0 0]
[2290 7548 8069 ... 0 0 0]
...

[5964 5183 3519 ... 0 0 0]
[2002 6582 7518 ... 0 0 0]]

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Required functions

Core task

Required functions - encode tags

1 def encode_tags(dataset , idx) :

Used by: Learner

Input: Receives a dataset produced by load data, and the index
dictionary produced by create indexs

Output: Returns the dataset as a list of sentences. Each sentence is
a list of integers, corresponding to the code of the BIO tag for each
word. If the sentence is shorter than max len it is padded with the
code for <PAD>.

Example:
>>> encode tags(traindata,idx)

[[[6] [9] [6] ... [0] [0] [0]]
[[6] [6] [6] ... [0] [0] [0]]
...

[[6] [8] [6] ... [0] [0] [0]]
[[6] [6] [6] ... [0] [0] [0]]]

Note: The shape of the produced list may need to be adjusted depending
on the architecture of your network and the kind of output layer you use.

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Required functions

Core task

Required functions - Model saving and loading

1 def save_model_and_indexs(model , idx , filename) :

Used by: Learner

Input: Receives a trained model, an index dictionary, and a string.

Output: Stores the model in a file named filename.nn, and the
indexs in a file named filename.idx

1 def load_model_and_indexs(filename) :

Used by: Classifier

Input: Loads a model from filename.nn, and the indexs from
filename.idx.

Output: Returns the loaded model and indexs

Note: Use Keras model.save and keras.models.load model functions to
save/load the model.

Note: Use your preferred method (pickle, plain text, etc) to save/load the index

dictionary.

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Required functions

Core task

Required functions - output entities

1 def output_entities(dataset , preds , outfilename)

Used by: Classifier

Input: Receives a dataset produced by load data, and the
corresponding tags predicted by the model.

Output: Prints the detected entities in file outfilename in the
appropriate format for the evaluator: one line per entity, fields
separated by ’|’, field order: id, offset, name, type.

Example:
>>> output entities(dataset, preds, filename)

DDI-DrugBank.d283.s4|14-35|bile acid sequestrants|group

DDI-DrugBank.d283.s4|99-104|tricor|group

DDI-DrugBank.d283.s5|22-33|cyclosporine|drug

DDI-DrugBank.d283.s5|196-208|fibrate drugs|group

DDI-DrugBank.d283.s4|14-35|bile acid sequestrants|group

DDI-DrugBank.d283.s5|220-225|tricor|group

...

Note: Most of this function can be reused from NER-ML exercise.

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Required functions

Core task

Required functions - evaluation

1 def evaluation(datadir , outfile)

Used by: Classifier

Input: Receives a directory with ground truth data, and a file with
entities extracted by the model

Output: Runs the official evaluator and gets the results

Note: Reuse this function from previous exercises

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Outline

1 Neural Networks NERC

2 General Structure

3 Detailed Structure
Learner
Classifier
Required functions

4 Core task

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Build a good NN-based drug NERC

Strategy: Experiment with different NN architectures and
possibilities.
Some elements you can play with:

Embedding dimension

Number of LSTM units

Used optimizer

Number and kind of layers

Adding a CRF layer after the LSTM

Using lowercased and/or non lowercased word embeddings

Initialitzing embeddings with available pretrained model

Using extra input (e.g. suffix embeddings, prefix embeddings,
PoS embbedings, ...)

...

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Build a good NN-based drug NERC

Warnings:

Neural Network training uses randomization, so different runs of
the same program will produce different results. For repeatable
results, use a random seed.

During training, Keras reports accuracy on training set and on
validation set. Those values are usually over 90%. However, this
is due to the fact that most of the words have tag “O”
(non-drug). 90% accuracies correspond to F1 values around
25%. To get a reasonable F1, accuracy must reach about 97%.
To precisely evaluate how your model is doing, do not rely on
reported accuracy: run the classifier on the Development set
and use the evaluator.

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Exercise Goals

Goal 5:
Get an overall F1 score of at least 0.70 on Devel dataset.

(65% is acceptable for a lower grade)

Advanced
Human

Language
Technologies

Neural
Networks
NERC

General
Structure

Detailed
Structure

Core task

Deliverables

Write one report (max about 5 pages) describing:

Used architecture

Performed experiments, tried/discarded/selected options.

The report must include:

Code for the build network function

Output of the evaluator on Devel and Test datasets.

The report must be a PDF file, or a Jupyter notebook (no need
that it is are executable, use it only as a presentation support)

	Neural Networks NERC
	General Structure
	Detailed Structure
	Learner
	Classifier
	Required functions

	Core task

