
Advanced
Human

Language
Technologies

DDI Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Master in Artificial Intelligence

Advanced Human Language Technologies

Advanced
Human

Language
Technologies

DDI Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Outline

1 DDI Baseline

2 General Structure

3 Resources

4 Detailed Structure

5 Core task

6 Evaluating Results

Advanced
Human

Language
Technologies

DDI Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Session 3 - DDI baseline

Assignment

Write a python program that parses all XML files in the folder
given as argument and classifies drug-drug interactions between
pairs of drugs. The program must use simple heuristic rules to
carry out the task.
$ python3 ./baseline-DDI.py data/Devel/

DDI-DrugBank.d278.s0|DDI-DrugBank.d278.s0.e0|DDI-DrugBank.d278.s0.e1|0|null

DDI-MedLine.d88.s0|DDI-MedLine.d88.s0.e0|DDI-MedLine.d88.s0.e1|0|null

DDI-MedLine.d88.s0|DDI-MedLine.d88.s0.e0|DDI-MedLine.d88.s0.e2|0|null

DDI-MedLine.d88.s0|DDI-MedLine.d88.s0.e1|DDI-MedLine.d88.s0.e2|0|null

DDI-DrugBank.d398.s0|DDI-DrugBank.d398.s0.e0|DDI-DrugBank.d398.s0.e1|1|effect

DDI-DrugBank.d398.s0|DDI-DrugBank.d398.s0.e0|DDI-DrugBank.d398.s0.e2|1|effect

DDI-DrugBank.d398.s0|DDI-DrugBank.d398.s0.e2|DDI-DrugBank.d398.s0.e3|0|null

DDI-DrugBank.d398.s1|DDI-DrugBank.d398.s1.e0|DDI-DrugBank.d398.s1.e1|0|null

DDI-DrugBank.d211.s2|DDI-DrugBank.d211.s2.e0|DDI-DrugBank.d211.s2.e5|1|mechanism

DDI-DrugBank.d211.s2|DDI-DrugBank.d211.s2.e1|DDI-DrugBank.d211.s2.e2|0|null

...

Advanced
Human

Language
Technologies

DDI Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Outline

1 DDI Baseline

2 General Structure

3 Resources

4 Detailed Structure

5 Core task

6 Evaluating Results

Advanced
Human

Language
Technologies

DDI Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

General Structure - Main function

process each file in directory

for f in listdir(inputdir) :

parse XML file, obtaining a DOM tree

tree = parse(datadir + "/" + f)

process each sentence in the file

sentences = tree.getElementsByTagName("sentence")

for s in sentences :

sid = s.attributes["id"].value # get sentence id

stext = s.attributes["text"].value # get sentence text

load sentence entities into a dictionary

entities = {}
ents = s.getElementsByTagName("entity")

for e in ents :

id = e.attributes["id"].value

offs = e.attributes["charOffset"].value.split("-")

entities[id] = offs

Tokenize, tag, and parse sentence

analysis = analyze(stext)

for each pair in the sentence, decide whether it is DDI and its type

pairs = s.getElementsByTagName("pair")

for p in pairs:

id e1 = p.attributes["e1"].value

id e2 = p.attributes["e2"].value

(is ddi,ddi type) = check interaction(analysis, entities, id e1, id e2)

print("|".join([sid, id e1 id e2, is ddi, ddi type]), file=outf)

get performance score

evaluate(inputdir,outputfile)

Advanced
Human

Language
Technologies

DDI Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Outline

1 DDI Baseline

2 General Structure

3 Resources

4 Detailed Structure

5 Core task

6 Evaluating Results

Advanced
Human

Language
Technologies

DDI Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Resources

You will need to use a tokenizer, a part-of-speech tagger, a
dependency parser.
We recommend Stanford CoreNLP dependency parser, which
can be called via nltk, and integrates all three steps. (You’ll
need to add token spans, though):

1 Download and uncompress Stanford CoreNLP.

2 Launch a CoreNLP server:
cd stanford-corenlp-full-2018-10-05

java -mx4g -cp "*" edu.stanford.nlp.pipeline.StanfordCoreNLPServer

3 In your python program:
import nltk CoreNLP module (just once)

from nltk.parse.corenlp import CoreNLPDependencyParser

connect to your CoreNLP server (just once)

my parser = CoreNLPDependencyParser(url="http://localhost:9000")

parse text (as many times as needed)

mytree, = my parser.raw parse(mytext)

https://stanfordnlp.github.io/CoreNLP/download.html

Advanced
Human

Language
Technologies

DDI Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Outline

1 DDI Baseline

2 General Structure

3 Resources

4 Detailed Structure

5 Core task

6 Evaluating Results

Advanced
Human

Language
Technologies

DDI Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Functions - Analyze text

def analyze(s) :

Input: Receives a sentence text s, and sends it to
CoreNLP to obtain the tokens, tags, and dependency tree.
It also adds the start/end offsets to each token

Output: Returns the nltk DependencyGraph object
produced by CoreNLP, enriched with token offsets.

Example:
>>> analyze("Caution should be exercised when combining resorcinol or salicylic acid

with DIFFERIN Gel")

{0:{’head’:None,’lemma’:None,’rel’:None,’tag’:’TOP’,’word’:None},
1:{’word’:’Caution’,’head’:4,’lemma’:’caution’,’rel’:’nsubjpass’,’tag’:’NN’,’start’:0,’end’:6},
2:{’word’:’should’,’head’:4,’lemma’:’should’,’rel’:’aux’,’tag’:’MD’,’start’:8,’end’:13},
3:{’word’:’be’,’head’:4,’lemma’:’be’,’rel’:’auxpass’,’tag’:’VB’,’start’:15,’end’:16},
4:{’word’:’exercised’,’head’:0,’lemma’:’exercise’,’rel’:’ROOT’,’tag’:’VBN’,’start’:18,’end’:26},
5:{’word’:’when’,’head’:6,’lemma’:’when’,’rel’:’advmod’,’tag’:’WRB’,’start’:28,’end’:31},
6:{’word’:’combining’,’head’:4,’lemma’:’combine’,’rel’:’advcl’,’tag’:’VBG’,’start’:33,’end’:41},
7:{’word’:’resorcinol’,’head’:6,’lemma’:’resorcinol’,’rel’:’dobj’,’tag’:’NN’,’start’:43,’end’:52},
8:{’word’:’or’,’head’:7,’lemma’:’or’,’rel’:’cc’,’tag’:’CC’,’start’:54,’end’:55},
9:{’word’:’salicylic’,’head’:10,’lemma’:’salicylic’,’rel’:’amod’,’tag’:’JJ’,’start’:57,’end’:65},
10:{’word’:’acid’,’head’:7,’lemma’:’acid’,’rel’:’conj’,’tag’:’NN’,’start’:67,’end’:70},
11:{’word’:’with’,’head’:13,’lemma’:’with’,’rel’:’case’,’tag’:’IN’,’start’:72,’end’:75},
12:{’word’:’DIFFERIN’,’head’:13,’lemma’:’DIFFERIN’,’rel’:’compound’,’tag’:’NNP’,’start’:77,’end’:84},
13:{’word’:’Gel’,’head’:6,’lemma’:’gel’,’rel’:’nmod’,’tag’:’NN’,’start’:86,’end’:88},
14:{’word’:’.’,’head’:4,’lemma’:’.’,’rel’:’punct’,’tag’:’.’,’start’:89’,’end’:89}}

https://www.nltk.org/_modules/nltk/parse/dependencygraph.html

Advanced
Human

Language
Technologies

DDI Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Functions - Analyze text

* NN MD VB VBN WRB VBG NN CC JJ NN IN NNP NN .
Caution should be exercised when combining resorcinol or salicylic acid with DIFFERIN Gel

root

nsubjpass

aux

auxpass advmod

advcl

dobj cc amodj

conj

case

compound

nmod

Advanced
Human

Language
Technologies

DDI Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Functions - Check for Drug-Drug Interactions

def check interaction(analysis,entities,e1,e2) :

Input: Receives a DependencyGraph object with all
sentence information, a list of all entities in the sentence
(id and offsets), and the ids of the two entities to be
checked.

Output: Returns a 0/1 value indicating whether the
sentence states an interaction between entities e1 and e2,
and the type of interaction (null if there is none).

Advanced
Human

Language
Technologies

DDI Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Functions - Evaluation

def evaluate(inputdir, outputfile) :

Input: Receives a data directory and the filename for the
results to evaluate. inputdir is the folder containing
original XML (with the ground truth). outputfile is the
file name with the entities produced by your system.

Output: Prints statistics about the predicted entities in
the given output file.

Code:
os.system("java -jar eval/evaluateDDI.jar "

+ inputdir + " " + outputfile)

Note: outputfile must match the pattern: task9.2 NAME NUMBER.txt

(where NAME may be any string and NUMBER any natural number).
You can use this to encode the program version that produced the file.

Advanced
Human

Language
Technologies

DDI Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Outline

1 DDI Baseline

2 General Structure

3 Resources

4 Detailed Structure

5 Core task

6 Evaluating Results

Advanced
Human

Language
Technologies

DDI Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Detecting interactions - Choosing rules

Function check interaction will implement our rule-based
interaction detector.
Strategy to follow:

Examine the train data set and try to infer general rules that are
right in most cases, even if they seldom apply (high precision,
low recall).

Look at the text data directly (less useful)
Write small scripts that perform some kind of data
exploration to find out features that distinguish drug
names (more useful)

Advanced
Human

Language
Technologies

DDI Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Detecting interactions - Some hints

Example observations that may lead to some rules:

Pairs with an interaction of type effect often have clue words
like administer, potentiate, prevent, etc. between e1 and e2.

Pairs with an interaction of type mechanism often have clue
words like reduce, increase, decrease, etc. between e1 and e2.

Pairs with an interaction of type int often have clue words like
interact, interaction, etc. between e1 and e2.

Checking for the clue word position (before e1, between e1 and
e2, after e2) is a pretty naive heuristics. Better results may be
acheved if properties of the dependency tree are used (e.g. e1 is
under e2, both e1 and e2 are under the same verb, e1 is
[under] the subject of certain verbs (enhance,reduce,. . .), etc.)

Advanced
Human

Language
Technologies

DDI Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Outline

1 DDI Baseline

2 General Structure

3 Resources

4 Detailed Structure

5 Core task

6 Evaluating Results

Advanced
Human

Language
Technologies

DDI Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Evaluating Results

After each change or new rule added, you must check whether it
improves the performance of the system. We will evaluate
performance using SemEval-2013-Task9 official evaluator.
Evaluation goals:

Find out whether the added rule is useful or damaging

Find out the weaknesses of our system to decide the target of
new rules

Advanced
Human

Language
Technologies

DDI Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Rule-based Systems Development Methodology

1 Start with a simple set of rules.

2 Use Train dataset to get insights about possible rules:

Extract statistics or data analysis from Train dataset to
find patterns that may be good rules.
Run the rules on the Train dataset and check system
errors and performance statistics to get hints of what
needs improvement.

3 Create one (or a few) new rules

4 Run the new set of rules on the Devel dataset. Record the
score and save the rules that produced it.

5 If the score is better, keep the new rules. If it is worse, back off
to best rule set so far. Go to step 2 (or stop when the score is
good enough or when no improving rules are found)

6 Once a satisfactory set of rules has been established, apply them
to Test dataset, and record the score.

Advanced
Human

Language
Technologies

DDI Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Rule-based Systems Development Methodology

NEVER look at the Devel or Test dataset.

Train dataset is used extract information that can be
generalized to create new rules.

Devel dataset is used only to obtain a score and decide
whether newly added rules are useful or not.

Test dataset is used only to obtain a final score on unseen
data.

Advanced
Human

Language
Technologies

DDI Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Exercise Goals

Goal 1:
Get an overall F1 score of at least 0.15 on Devel dataset.

Advanced
Human

Language
Technologies

DDI Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Deliverables

Prepare a report containing:

For Goal 1:

Final version of analyze function (and any other
subsidiary function used by it).

Final version of check interaction function (and any
other subsidiary function used by it).

Evaluator output for this version on Devel and Test
datasets.

All code must be properly commented. Self-contained Jupyter
notebooks are acceptable.

	DDI Baseline
	General Structure
	Resources
	Detailed Structure
	Core task
	Evaluating Results

