
Advanced
Human

Language
Technologies

NERC
Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Master in Artificial Intelligence

Advanced Human Language Technologies

Advanced
Human

Language
Technologies

NERC
Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Outline

1 NERC Baseline

2 General Structure

3 Resources

4 Detailed Structure

5 Core task

6 Evaluating Results

Advanced
Human

Language
Technologies

NERC
Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Session 1 - NERC baseline

Assignment

Write a python program that parses all XML files in the folder
given as argument and recognizes and classifies drug names.
The program must use simple heuristic rules to carry out the
task.
$ python3 ./baseline-NER.py data/Devel/

DDI-DrugBank.d278.s0|0-9|Enoxaparin|drug

DDI-DrugBank.d278.s0|93-108|pharmacokinetics|group

DDI-DrugBank.d278.s0|113-124|eptifibatide|drug

DDI-MedLine.d88.s0|15-30|chlordiazepoxide|drug

DDI-MedLine.d88.s0|33-43|amphetamine|drug

DDI-MedLine.d88.s0|49-55|cocaine|drug

DDI-MedLine.d88.s1|82-95|benzodiazepine|drug

...

Advanced
Human

Language
Technologies

NERC
Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Outline

1 NERC Baseline

2 General Structure

3 Resources

4 Detailed Structure

5 Core task

6 Evaluating Results

Advanced
Human

Language
Technologies

NERC
Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

General Structure - Main function

process each file in directory

for f in listdir(inputdir) :

parse XML file, obtaining a DOM tree

tree = parse(datadir + "/" + f)

process each sentence in the file

sentences = tree.getElementsByTagName("sentence")

for s in sentences :

sid = s.attributes["id"].value # get sentence id

stext = s.attributes["text"].value # get sentence text

tokens = tokenize(stext) # tokenize text

extract entities from tokenized sentence text

entities = extract entities(tokens)

print extracted sentence entities

in the format requested for evaluation

output entities(sid, entities, outputfile)

get performance score

evaluate(inputdir,outputfile)

Advanced
Human

Language
Technologies

NERC
Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Outline

1 NERC Baseline

2 General Structure

3 Resources

4 Detailed Structure

5 Core task

6 Evaluating Results

Advanced
Human

Language
Technologies

NERC
Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Resources

You will need to use:

An XML parser: we recommend xml.dom.minidom

(https://docs.python.org/3.7/library/xml.dom.
minidom.html)

A tokenizer for English text: We recommend
nltk.tokenize (check
https://www.nltk.org/install.html if you don’t
have it installed)

https://docs.python.org/3.7/library/xml.dom.minidom.html
https://docs.python.org/3.7/library/xml.dom.minidom.html

Advanced
Human

Language
Technologies

NERC
Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Outline

1 NERC Baseline

2 General Structure

3 Resources

4 Detailed Structure

5 Core task

6 Evaluating Results

Advanced
Human

Language
Technologies

NERC
Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Functions - Tokenize text

def tokenize(s) :

Input: Receives a sentence text s, calls nltk.tokenize to
split it in tokens, and adds to each token its start/end
offset in the original sentence.

Output: Returns a list of tuples (word, offsetFrom,

offsetTo).

Example:
>>> tokenize("Ascorbic acid, aspirin, and the common

cold.")

[("Ascorbic",0,7), ("acid",9,12), (",",13,13),

("aspirin",15,21), (",",22,22), ("and",24,26),

("the",28,30), ("common",32,37), ("cold",39,42),

(".",43,43)]

Advanced
Human

Language
Technologies

NERC
Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Functions - Extract entities

def extract entities(s) :

Input: Receives a tokenized sentence s (list of triples
(word, offsetFrom, offsetTo).

Output: Returns a list of entities. Each entity is a
dictionary with the keys name, offset, and type.

Example:
>>> extract entities([("Ascorbic",0,7), ("acid",9,12),

(",",13,13), ("aspirin",15,21), (",",22,22),

("and",24,26), ("the",28,30), ("common",32,37),

("cold",39,42), (".",43,43)])
[{"name":"Ascorbic acid", "offset":"0-12",

"type":"drug"}, {"name":"aspirin", "offset":"15-21",

"type":"brand"}]

Advanced
Human

Language
Technologies

NERC
Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Functions - Output entities

def output entities(id,ents,outf) :

Input: Receives a sentence id, a list of extracted entities
(i.e .a list of dictionaries with keys name, offset, and
type), and an open output file object.

Output: Prints on outf the entities in the right format:
one line per entity, fields separated by ’|’, field order: id,
offset, name, type.

Example:
>>> output entities("DDI-DrugBank.d553.s0",

[{"name":"Ascorbic acid", "offset":"0-12",

"type":"drug"}, {"name":"aspirin", "offset":"15-21",

"type":"brand"}], sys.stdout)

DDI-DrugBank.d553.s0|9-12|Ascorbic acid|drug

DDI-DrugBank.d553.s0|15-21|aspirin|brand

Advanced
Human

Language
Technologies

NERC
Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Functions - Evaluation

def evaluate(inputdir, outputfile) :

Input: Receives a data directory and the filename for the
results to evaluate. inputdir is the folder containing
original XML (with the ground truth). outputfile is the
file name with the entities produced by your system
(created by output entities).

Output: Prints statistics about the predicted entities in
the given output file.

Code:
os.system("java -jar eval/evaluateNER.jar "

+ inputdir + " " + outputfile)

Note: outputfile must match the pattern: task9.1 NAME NUMBER.txt

(where NAME may be any string and NUMBER any natural number).
You can use this to encode the program version that produced the file.

Advanced
Human

Language
Technologies

NERC
Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Outline

1 NERC Baseline

2 General Structure

3 Resources

4 Detailed Structure

5 Core task

6 Evaluating Results

Advanced
Human

Language
Technologies

NERC
Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Extracting entities - Choosing rules

Function extract entities will implement our rule-based extractor.
Strategy to follow:

Examine the train data set and try to infer general rules that are
right in most cases, even if they seldom apply (high precision,
low recall).

Look at the text data directly (less useful)
Write small scripts that perform some kind of data
exploration to find out features that distinguish drug
names (more useful)

Example observations that may lead to some rules:

Tokens fully capitalized (e.g. KERASTICK, DILAUDID,
LEVSIN) are usually drug names. Also, two out of three of
them are of type brand.
Non-capitalized words that are drugs often have particular
suffixes (e.g. -azole, -idine, -amine, -mycin, etc). Words
with these endings are typically drug names and most
frequently of type drug.

Advanced
Human

Language
Technologies

NERC
Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Extracting entities - Multi-token entities

Many drug names in DDI corpus are multi-token drug names
(e.g. beta blockers, calcium channel antagonists, angiotensin
converting enzyme inhibitors, etc).

So far, we check each token to decide whether it is an entity or
not, so, we miss multi-token drug names.

Improve your function extract entities to glue toghether in
a single entity consecutive tokens that may form a unique drug.

Advanced
Human

Language
Technologies

NERC
Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Outline

1 NERC Baseline

2 General Structure

3 Resources

4 Detailed Structure

5 Core task

6 Evaluating Results

Advanced
Human

Language
Technologies

NERC
Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Evaluating Results

After each change or new rule added, you must check whether it
improves the performance of the system. We will evaluate
performance using SemEval-2013-Task9 official evaluator.
Evaluation goals:

Find out whether the added rule is useful or damaging

Find out the weaknesses of our system to decide the target of
new rules

Advanced
Human

Language
Technologies

NERC
Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Rule-based Systems Development Methodology

1 Start with a simple set of rules.

2 Use Train dataset to get insights about possible rules:

Extract statistics or data analysis from Train dataset to
find patterns that may be good rules.
Run the rules on the Train dataset and check system
errors and performance statistics to get hints of what
needs improvement.

3 Create one (or a few) new rules

4 Run the new set of rules on the Devel dataset. Record the
score and save the rules that produced it.

5 If the score is better, keep the new rules. If it is worse, back off
to best rule set so far. Go to step 2 (or stop when the score is
good enough or when no improving rules are found)

6 Once a satisfactory set of rules has been established, apply them
to Test dataset, and record the score.

Advanced
Human

Language
Technologies

NERC
Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Rule-based Systems Development Methodology

NEVER look at the Devel or Test dataset.

Train dataset is used extract information that can be
generalized to create new rules.

Devel dataset is used only to obtain a score and decide
whether newly added rules are useful or not.

Test dataset is used only to obtain a final score on unseen
data.

Advanced
Human

Language
Technologies

NERC
Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Exercise Goals

Goal 1:
Get an overall F1 score of at least 0.5 on Devel dataset using
only information from the training dataset.

Goal 2:
Get an overall F1 score of at least 0.6 on Devel dataset using
information from external knowledge sources.

Advanced
Human

Language
Technologies

NERC
Baseline

General
Structure

Resources

Detailed
Structure

Core task

Evaluating
Results

Deliverables

Prepare a report containing:

For Goal 1 (Rule-based, no external knowledge):

Final version of extract entities function (and any
other subsidiary function used by it).

Evaluator output for this version on Devel and Test
datasets.

For Goal 2 (Rule-based, using external knowledge):

Final version of extract entities function (and any
other subsidiary function used by it).

Evaluator output for this version on Devel and Test
datasets.

All code must be properly commented. Self-contained Jupyter
notebooks are acceptable.

	NERC Baseline
	General Structure
	Resources
	Detailed Structure
	Core task
	Evaluating Results

