
Challenges in Satisfiability Modulo Theories

Robert Nieuwenhuis, Albert Oliveras,
Enric Rodŕıguez-Carbonell, and Albert Rubio?

Abstract. Here we give a short overview of the DPLL(T) approach to
Satisfiability Modulo Theories (SMT), which is at the basis of current
state-of-the-art SMT systems. After that, we provide a documented list
of theoretical and practical current challenges related to SMT, including
some new ideas to exploit SAT techniques in Constraint Programming.

1 Introduction

Propositional satisfiability checkers (SAT solvers) are currently being applied in
more and more contexts, including hardware and software verification, in Op-
erations Research (planning, scheduling), as well as in Biology, Linguistics and
Medicine. Most SAT solvers are based on the Davis-Putnam-Logemann-Loveland
(DPLL) procedure [DP60,DLL62]. The performance of DPLL-based SAT solvers
has improved spectacularly in the last years, due to better implementation
techniques and conceptual enhancements such as backjumping, conflict-driven
lemma learning and restarts [MSS99,MMZ+01,ES03]. However, some practical
problems are more naturally expressed in logics that are more expressive than
propositional logic.

For example, for timed automata, a good choice is difference logic, where
formulas contain atoms of the form a−b ≤ k, which are interpreted with respect
to a background theory T of the integers, rationals or reals. Similarly, for the
verification of pipelined microprocessors it is convenient to consider a logic of
Equality with Uninterpreted Functions (EUF), where the background theory T
specifies a congruence [BD94]. To mention just one other example, the conditions
arising from program verification usually involve arrays, lists and other data
structures, so it becomes very natural to consider satisfiability problems modulo
the theory T of these data structures. In such applications, problems may contain
thousands of clauses like

p ∨ ¬q ∨ a=f(b− c) ∨ read(s, f(b− c))=d ∨ a− g(c) ≤7
containing purely propositional atoms as well as atoms over (combined) theories.
This is known as the Satisfiability Modulo Theories (SMT) problem for a theory
T : given a formula F , determine whether F is T -satisfiable, i.e., whether there
exists a model of T that is also a model of F .

SMT has become an extremely active area of research. A rapidly growing
library of benchmarks for SMT with a formal syntax and semantics exists [RT03],
? Technical Univ. of Catalonia, Barcelona. All authors partially supported by Spanish

Min. of Educ. and Science through the LogicTools project (TIN2004-03382) and Intel
Corp. Research Grant: “SMT Solvers for High-Level Hardware Verification”.

2

as well as a yearly SMT competition (both SMT-LIB and SMT-COMP are easily
found on the web).

The DPLL(T) approach to SMT is based on a general DPLL(X) engine,
whose parameter X can be instantiated with specialized solvers Solver

T
for given

theories T , thus producing a system DPLL(T). Once the DPLL(X) engine has
been implemented, new theories can be dealt with by simply plugging in new the-
ory solvers. These solvers must only be able to deal with conjunctions of theory
literals and conform to a minimal and simple set of additional requirements.

In Sections 2, 3 and 4 of this paper, by means of a rewrite-rule-based frame-
work called Abstract DPLL we first give a brief overview of DPLL, SMT, and
the DPLL(T) approach to SMT (we refer to [NOT06] for all details and refer-
ences). In Section 5 we describe a number of theoretical and practical challenges
in SMT. Extensions for handling new theories and applications, including op-
timization and constraint programming are discussed, as well as for first-order
theorem proving. Other challenges involve the design of efficient data structures
and algorithms for implementing certain key parts of SMT solvers. All of them
are closely related to the area of rewriting.

2 The DPLL Procedure

Let P be a fixed finite set of propositional symbols. If p ∈ P , then p and ¬p
are literals of P . The negation of a literal l, written ¬l, denotes ¬p if l is p, and
p if l is ¬p. A clause is a disjunction of literals l1 ∨ . . . ∨ ln. A unit clause is
a clause consisting of a single literal. A (finite, non-empty, CNF) formula is a
conjunction of one or more clauses C1∧. . .∧Cn. When it leads to no ambiguities,
we sometimes also write such a formula in set notation {C1, . . . , Cn} or simply
replace ∧ connectives by commas.

A (partial truth) assignment M is a set of literals such that {p,¬p} ⊆ M
for no p. A literal l is true in M if l ∈ M , it is false in M if ¬l ∈ M , and l
is undefined in M otherwise. M is total over P if no literal of P is undefined
in M . A clause C is true in M if at least one of its literals is true in M . It is
false in M if all its literals are false in M , and it is undefined in M otherwise. A
formula F is true in M , or satisfied by M , denoted M |= F , if all its clauses are
true in M . In that case, M is called a model of F . If F has no models then it is
called unsatisfiable. If F and F ′ are formulas, we write F |= F ′ if F ′ is true in
all models of F . Then we say that F ′ is entailed by F , or is a logical consequence
of F .

In what follows, (possibly subscripted or primed) lowercase l always denotes
literals. Similarly C and D always denote clauses, F and G denote formulas, and
M and N are assignments. If C is a clause l1 ∨ . . . ∨ ln, we sometimes write ¬C
to denote the formula ¬l1 ∧ . . . ∧ ¬ln.

Here a DPLL procedure is modeled by a transition relation over states. A
state is either FailState or a pair M || F , where F is a finite set of clauses and
M is a sequence of literals that is seen as a partial assignment. Some literals l
in M will be annotated as being decision literals; these are the ones added to

3

M by the Decide rule given below, and are sometimes written ld. The transition
relation is defined by means of rules.

Definition 1. The DPLL system with Backtrack consists of the four rules:

UnitPropagate :

M || F, C ∨ l =⇒ M l || F, C ∨ l if
{

M |= ¬C
l is undefined in M

Decide :

M || F =⇒ M ld || F if
{

l or ¬l occurs in a clause of F
l is undefined in M

Fail :

M || F, C =⇒ FailState if
{

M |= ¬C
M contains no decision literals

Backtrack :

M ld N || F, C =⇒ M ¬l || F, C if
{

M ld N |= ¬C
N contains no decision literals

One can use these rules for deciding the satisfiability of an input CNF F by
simply generating an arbitrary derivation ∅ || F =⇒ . . . =⇒ Sn, where Sn is
irreducible by the rules. Such derivations are always finite, and

(i) F is unsatisfiable if, and only if, the final state Sn is FailState, and
(ii) if Sn is of the form M || F then M is a model of F .

These rules speak for themselves, providing a classical depth-first search with
backtracking, where the Decide rule represents a case split: an undefined literal l
is chosen from F , and added to M . The literal is annotated as a decision literal,
to denote that, if M ld cannot be extended to a model of F , then (by Backtrack)
still the other possibility M ¬l must be explored. In the following, if M is a
sequence of the form M0 l1 M1 . . . lk Mk, where the li are all the decision literals
in M , then the literals of each li Mi are said to belong to decision level i.

Example 2. In the following derivation, to improve readability we have denoted
atoms by natural numbers, negation by overlining, and written decision literals
in bold font:

∅ || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒ (Decide)
1 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒ (UnitPropagate)

1 2 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒ (UnitPropagate)
1 2 3 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒ (UnitPropagate)

1 2 3 4 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒ (Backtrack)
1 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒ (UnitPropagate)

1 4 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒ (Decide)
1 4 3 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 =⇒ (UnitPropagate)

1 4 3 2 || 1∨2, 2∨3, 1∨3∨4, 2∨3∨4, 1∨4 Final state:
model found. ut

4

In modern DPLL-based SAT solvers instead of Backtrack a more general
Backjump rule is considered, of which Backtrack is a particular case.

Definition 3. The Backjump rule is defined as follows:

M ld N || F, C =⇒ M l′ || F, C if

M ld N |= ¬C, and there is
some clause C ′ ∨ l′ such that:

F,C |= C ′ ∨ l′ and M |= ¬C ′,
l′ is undefined in M , and
l′ or ¬l′ occurs in F

We call the clause C ′ ∨ l′ a backjump clause.

Example 4. The aim of this Backjump rule is to generalize backtracking by a
better analysis of why the so-called conflicting clause C is false. Standard back-
tracking reverses the last decision, and adds it (as a non-decision literal) to the
previous decision level. Backjumping generalizes this by adding a new literal to
a possibly lower decision level. Consider:

∅ || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (Decide)
1 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (UnitPropagate)

1 2 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (Decide)
1 2 3 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (UnitPropagate)

1 2 3 4 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (Decide)
1 2 3 4 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (UnitPropagate)

1 2 3 4 5 6 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ (Backjump)
1 2 5 || 1∨2, 3∨4, 5∨6, 6∨5∨2 =⇒ . . .

Before the Backjump step, the clause 6∨5∨2 is conflicting: it is false in 1 2 3 4 5 6.
The reason for its falsity is the literal 2 together with the decision 5 and its unit
propagation 6. Therefore, one can infer that 2 is incompatible with the decision
5. Indeed, the backjump clause 2 ∨ 5 is a logical consequence of the last two
clauses. It allows us to return to the first decision level, adding there, as a unit
propagation, the literal 5 (which plays the role of l′ in the Backjump rule). ut

Note that in the previous example an application of Backtrack instead of
Backjump would have given a state with first component 1 2 3 4 5, even though
the decision level 3 4 is unrelated with the reasons for the falsity of 6 ∨ 5 ∨ 2.
Moreover, intuitively, the search state 1 2 5 reached after Backjump is more
advanced than 1 2 3 4 5. This notion of “being more advanced” is formalized in
Theorem 8 below.

The following example shows how Backjump can be applied in practice, by
finding an adequate backjump clause.

5

Example 5. Consider a state M || F , where, among other clauses, F contains:

9∨6∨7∨8 8∨7∨5 6∨8∨4 4∨1 4∨5∨2 5∨7∨3 1∨2∨3

and M is of the form: . . . 6 . . . 7 . . .9 8 5 4 1 2 3. It is easy to observe how
by six applications of UnitPropagate this state has been reached after the last
decision 9. For example, 8 is implied by 9, 6, and 7, due to the leftmost clause
9 ∨ 6 ∨ 7 ∨ 8. The ordered sequence of propagated literals is stored, each one of
them together with the clause that caused it. In this state M || F , the clause
1∨ 2∨ 3 is conflicting, since M contains 1, 2 and 3. Now one can trace back the
reasons for this conflicting clause. For example, 3 was implied by 5 and 7, due to
the clause 5 ∨ 7 ∨ 3. The literal 5 was in turn implied by 8 and 7, and so on. In
this way, working backwards from the conflicting clause, and in the reverse order
in which each literal was propagated, we get the following (conflict) resolution
proof:

8∨7∨5
6∨8∨4

4∨1
4∨5∨2

5∨7∨3 1∨2∨3
5∨7∨1∨2

4∨5∨7∨1
5∨7∨4

6∨8∨7∨5
8∨7∨6

The process stops once it generates a clause with only one atom of the current
decision level, in our example, the literal 8 in the clause 8 ∨ 7 ∨ 6. This process
is equivalent to the implication-graph-based conflict analysis, where this literal
is called the First Unique Implication Point (1UIP), see [MSS99,MMZ+01]. The
clause obtained is a backjump clause C ∨ l′ where the 1UIP is the literal l′. ut

In most modern DPLL implementations, the backjump clause is always added
to the clause set as a learned clause (conflict-driven clause learning). In the
previous example, learning the lemma 8 ∨ 7 ∨ 6 will allow the application of
UnitPropagate to any state where M contains the negation of two of its literals,
hence preventing any conflict caused by having the negation of all three. Indeed,
reaching such similar conflicts frequently happens in industrial problems having
some regular structure, and learning such lemmas is known to be very effective.
Since a lemma is aimed at preventing future similar conflicts, when such conflicts
are not very likely to be found again the lemma can be removed. In practice this
is done if its activity (e.g., the number of times it is involved in a conflict) has
become low.

Definition 6. The rules of Learn and Forget are the following ones:

Learn :

M || F =⇒ M || F, C if
{

all atoms of C occur in F
F |= C

Forget :
M || F, C =⇒ M || F if

{
F |= C

6

State-of-the-art SAT-solvers [MMZ+01,ES03] essentially apply these rules
using efficient implementation techniques for UnitPropagate (e.g., watching two
literals for unit propagation [MMZ+01]), and activity-based heuristics for select-
ing the decision literal for Decide: split on literals that occur in recent lemmas
and conflicts. In addition, the DPLL procedure may periodically be restarted
to escape from bad search behaviors. The rationale behind this is that upon
each Restart (i.e., M || F =⇒ ∅ || F), the newly learned lemmas will lead the
heuristics for Decide to behave differently, and hopefully cause the procedure to
explore the search space in a more compact way. We have the following results
for the DPLL rules introduced so far (see [NOT06] for all details):

Theorem 7. If ∅ || F =⇒∗ S where S is irreducible w.r.t. Decide, Backjump
and Fail, then (i) S is FailState if, and only if, F is unsatisfiable, and (ii) if S
is of the form M || F ′ then M is a model of F .

Theorem 8. Any derivation ∅ || F =⇒ S1 =⇒ . . . is finite if it contains only
finitely many consecutive Learn and Forget steps and Restart is applied only with
increasing periodicity.

3 Satisfiability Modulo Theories

Now let the set P over which formulas are built be a fixed finite set of ground
(i.e., variable-free) first-order atoms (instead of propositional symbols as before).
A theory T is a set of closed first-order formulas that is satisfiable in the first-
order sense. A formula F is T -satisfiable or T -consistent if F ∧ T is satisfiable
in the first-order sense. If M is a T -consistent partial assignment and F is a
formula such that M |= F , i.e., M is a (propositional) model of F , then we say
that M is a T -model of F . The SMT problem for a theory T is the problem
of determining, given a formula F , whether F is T -satisfiable, or, equivalently,
whether F has a T -model. Note that, as usual in SMT, here we only consider the
SMT problem for ground (and hence quantifier-free) CNF formulas F . Also note
that F may contain constants that are free in T , which, as far as satisfiability is
concerned, can equivalently be seen as existentially quantified variables. We will
consider here only theories T such that the T -satisfiability of conjunctions of
such ground literals is decidable, and a decision procedure for doing so is called
a T -solver. If F and G are formulas, then F entails G in T , written F |=T G, if
F ∧ ¬G is T -inconsistent.

The eager approach to SMT is based on sophisticated satisfiability-preserving
translations from SMT into SAT. But on many practical problems the translation
or the SAT solver run out of time or memory. Alternatively, translating into DNF
and using a T -solver for deciding the satisfiability of conjunctions of theory
literals is also too inefficient due to the exponential blowup of the DNF.

Therefore, the lazy approach tries to combine specialized T -solvers with state-
of-the-art SAT solvers for dealing with the boolean structure of the formulas. It
initially considers each atom as a propositional symbol, i.e., it “forgets” about

7

the theory T . If a SAT solver reports propositional unsatisfiability, then F is
also T -unsatisfiable. If it returns a propositional model of F , then this model (a
conjunction of literals) is checked by a T -solver. If it is T -satisfiable then it is
a T -model of F . Otherwise, the T -solver builds a ground clause, called a theory
lemma, a clause C such that ∅ |=T C, precluding that model. This lemma is
added to F and the SAT solver is started again. This process is repeated until
the SAT solver finds a T -satisfiable model or returns unsatisfiable. The lazy
approach is quite flexible, by combining any SAT solver with any T -solver. See
[NOT06] for a more detailed comparison of approaches and references.

Example 9. Assume we are deciding the satisfiability of a large EUF formula,
i.e., the background theory T is equality, and assume that the model M found
by the SAT solver contains, among many others, the literals: b = c, f(b) = c,
a 6= g(b), and g(f(c)) = a. Then the T -solver detects that M is not a T -model,
since b = c ∧ f(b) = c ∧ g(f(c)) = a |=T a = g(b). Therefore, the
lazy procedure has to be restarted after the corresponding theory lemma has
been added to the clause set. In principle, one can take as theory lemma simply
the negation of M , that is, the disjunction of the negations of all the literals in
M . However, this clause may therefore have thousands of literals, and the lazy
approach will behave much more efficiently if the T -solver is able to generate a
small explanation of the T -inconsistency of M , which in this example could be
the clause b 6=c ∨ f(b) 6=c ∨ g(f(c)) 6=a ∨ a=g(b). ut

3.1 DPLL Modulo Theories

We now adapt the abstract DPLL framework for the propositional case presented
in the previous section. Here Learn, Forget and Backjump are slightly modified in
order to work modulo theories: in these rules, entailment between formulas now
becomes entailment in T :

Definition 10. The rules T -Learn, T -Forget and T -Backjump are:

T -Learn :

M || F =⇒ M || F, C if
{

every atom of C occurs in F or in M
F |=T C

T -Forget :

M || F, C =⇒ M || F if
{

F |=T C

T -Backjump :

M ld N || F, C =⇒ M l′ || F, C if

M ld N |= ¬C, and there is
some clause C ′ ∨ l′ such that:

F,C |=T C ′ ∨ l′ and M |= ¬C ′,
l′ is undefined in M , and
l′ or ¬l′ occurs in F or in M ld N

8

The naive lazy approach to SMT is modeled as follows using the rules. Each
time a state M || F is reached that is irreducible with respect to Decide, Fail
and T -Backjump, M can be T -consistent or not. If it is, then M is indeed a
T -model of F . If it is not, then there exists a subset {l1, . . . , ln} of M such that
∅ |=T ¬l1∨. . .∨¬ln. By one T -Learn step, this theory lemma ¬l1∨. . .∨¬ln can
be learned and then Restart can be applied. If these theory lemmas are never
removed by the T -Forget rule, this strategy is terminating, sound and complete
in a similar sense as in the previous section.

Several important enhancements of the lazy approach can now easily be
modeled using the rules:

Incremental T -solver. The T -consistency of the model can be checked incre-
mentally, while the model is being built by the DPLL procedure, i.e., without
delaying the check until a propositional model has been found, thus saving use-
less work. Assume a state M || F has been reached such that M is T -inconsistent.
Then, as in the naive lazy approach, there exists a subset {l1, . . . , ln} of M such
that ∅ |=T ¬l1∨. . .∨¬ln. This theory lemma is then learned, reaching the state
M || F, ¬l1∨. . .∨¬ln. As in the previous case, then Restart can be applied.

Incremental T -solver and on-line SAT solver. When a T -inconsistency is
detected by the incremental T -solver, the DPLL procedure can simply backtrack
to the last point where the assignment was still T -consistent, instead of restarting
from scratch. As in the previous case, if a T -inconsistency is detected, a state
M || F, ¬l1∨. . .∨¬ln is reached. But now the procedure repairs the T -inconsistency
of the partial model by exploiting the fact that ¬l1∨. . .∨¬ln is a conflicting clause,
and hence either Fail or T -Backjump applies.

Theory propagation. In the approach presented so far, the T -solver pro-
vides information only after a T -inconsistent partial assignment has been gen-
erated. In this sense, the T -solver is used only to validate the search a posteri-
ori, not to guide it a priori. In order to overcome this limitation, the T -solver
can also be used in a given DPLL state M || F to detect literals l occurring
in F such that M |=T l, allowing the DPLL procedure to move to the state
M l || F . This is called theory propagation. It requires the following additional
rule Theory Propagate:

M || F =⇒ M l || F if

M |=T l
l or ¬l occurs in F
l is undefined in M

Exhaustive Theory Propagation. For some theories it even pays off, for every
state M || F , to eagerly detect and propagate all literals l occurring in F such
that M |=T l . Then, in every state M || F the model M will be T -consistent,
and hence the T -solver will never (need to) detect any T -inconsistencies. It is
modeled simply by assuming that Theory Propagate is applied eagerly.

Similar correctness, termination, and completeness results apply as given in
the previous section for the propositional case (see [NOT06] for details).

9

4 The DPLL(T) approach

DPLL(T) is based on a general DPLL engine, called DPLL(X), combined with
a module Solver

T
that can handle conjunctions of literals in T . This is similar

to the CLP (X) scheme for constraint logic programming: a clean and modular,
but efficient, use of specialized solvers within a general-purpose engine. DPLL(T)
combines the advantages of the eager and lazy approaches to SMT. As soon as
the theory starts playing a significant role, DPLL(T) is very efficient (see the
SMT-COMP results), and it has the flexibility of the lazy approaches, by simply
plugging in other solvers that conform to a minimal interface.

Here we describe the DPLL(T) approach without exhaustive theory prop-
agation (see [NO05a] for an exhaustive approach for difference logic). For the
initial setup of DPLL(T), Solver

T
reads the input CNF, stores the list of all

literals occurring in it, and hands it over to DPLL(X), who treats it as a purely
propositional CNF. After that, DPLL(T) implements the rules as follows:

• Each time DPLL(X) communicates to Solver
T

that another literal l is added
to the partial model M (e.g., due to UnitPropagate or to Decide), Solver

T

answers indicating whether M is still T -consistent. If not, Solver
T

returns a
(preferably small) explanation why, that is, a subset {l1, . . . , ln} of M that
becomes T -inconsistent by adding l to it. DPLL(X) then handles ¬l1∨. . .∨¬ln
as a conflicting clause, applying T -Backjump or Fail.

• DPLL(X) can also ask Solver
T

to return a (possibly incomplete) list of lit-
erals that are T -consequences, to which it then applies Theory Propagate.

• DPLL(X) applies Fail or T -Backjump if after UnitPropagate a conflict is
detected. For T -Backjump, the backjump clause is built as in Example 5, but
with an important difference: a literal l can now be in M not only by Decide
or by UnitPropagate, but also due to an application of Theory Propagate.
In the last case, the conflict resolution process requires that Solver

T
must

be able to also give explanations of theory propagations, that is, to recover
a (preferably small) subset of literals {l1, . . . , ln} of M that T -entailed l.
DPLL(X) then treats l in the resolution process as if ¬l1∨. . .∨¬ln ∨ l had
caused a unit propagation of l.

• At each T -Backjump application, T -Learn learns the backjump clause (which
is a T -consequence of the current formula). DPLL(X) also tells Solver

T
how

many literals of the partial interpretation have been unassigned in the back-
jump, which allows Solver

T
to undo them.

• DPLL(X) applies Decide only if none of Theory Propagate, UnitPropagate,
Fail or T -Backjump is applicable. An activity-based heuristic for choosing
the decision literal as in propositional DPLL is used.

• In a typical DPLL(T) implementation, DPLL(X) applies Restart when cer-
tain system parameters reach some prescribed limits, such as the number
of conflicts or lemmas, the number of new units derived, etc. T -Forget can
be applied, e.g., after each restart, removing part of the lemmas according
to their activity (number of times involved in a conflict, etc.). Usually the
newest lemmas are not removed.

10

5 Challenges

We now describe a number of theoretical and practical challenges in SMT.
First we consider extensions for improving the solvers for some of the most im-

portant theories: equality, linear arithmetic, and bitvectors. This involves ques-
tions of both theoretical and practical nature.

After that, we discuss some challenges arising in the context of the exten-
sion of SMT for handling formulas with universal quantifiers, i.e., for first-order
theorem proving.

Finally we discuss new ideas for extending SMT to other application ar-
eas including optimization and constraint programming. This also involves the
development of solvers for new theories.

5.1 Challenges for improving current theory solvers

Let us first discuss T -solvers for EUF logic, where the theory is just equal-
ity (a congruence). As for any T -solver, its requirements are as explained in
the previous section: each time an additional literal comes in, it must check
whether the conjunction remains T -consistent, and, if not, give an explanation
(a T -inconsistent subset of the literals); it must also be able to find theory prop-
agations and, when demanded, give explanations of these too; and it must be
capable of backtracking, i.e., undoing (dis)equalities.

Positive equality literals can be propagated efficiently by congruence closure
(CC) [DST80]. In [NO07] an incremental, backtrackable CC algorithm is given
which can also efficiently retrieve explanations from CC, which is non-trivial.

Challenge 1: This challenge was first discussed at this conference in 2005
[NO05b]. It is widely understood that small explanations tend to behave better
in practice. Finding for CC an explanation with the minimum number of literals
is NP-hard (Ashish Tiwari, personal communication). Hence minimality w.r.t. ⊆
is considered. The explanations produced in [NO07] may, in a small percentage
of cases, contain redundant equations. How to get irredundant ones, or small(er)
ones in some other sense? Studying this may produce useful new insights, al-
though it may only have a limited practical impact on the performance of SMT
solvers.

Challenge 2: Determine the exact complexity of CC. The aforementioned CC
algorithms are O(n log n), but it is still unknown whether this is optimal. Some
researchers conjecture that something like O(n α(n, n)), as in Union-Find, might
be possible for CC, and hence also for the ground word problem.

Challenge 3: The development of proof-producing SMT solvers is an impor-
tant research topic. How to do efficient CC proof mining? For more details on
this challenge, see [ST05], where Stump and Tan (two years ago at RTA) gave
an elegant rewrite-based approach for equivalence closure; see also [SL06], an
ingredient for its extension to CC.

11

Together with EUF logic, so far the most important classes of T -solvers are
those for (fragments of) linear arithmetic over the integer or real numbers (see
for instance the list of logics in SMT-LIB).

Challenge 4: It is well-known that, for many problems arising from the real
world, a non-negligible percentage of the literals in linear arithmetic actually
falls into difference logic1 (see also [BBC+05]). This observation cries out for
techniques for linear constraint solving that are “difference-logic-aware”. In this
direction, promising results have already been accomplished in [DdM06b], thanks
to, among others, a simplex procedure with a particular treatment of bound
constraints, i.e., of the form a ≤ k or a ≥ k, which in some cases is even faster
than specialized tools for difference logic. However, for dense difference-logic
problems, such as those coming from scheduling, there is room for improvement
[DdM06a].

Challenge 5: There is practical evidence that a good way to handle equalities
(respectively, disequalities) is by splitting these constraints as conjunctions (re-
spectively, disjunctions) of inequalities. For instance, in the case of the integers,
the satisfiability of a conjunction of difference logic disequalities and inequali-
ties is NP-complete, whereas by restricting to inequalities the problem becomes
polynomial; thus, splitting allows one to pass the NP-hardness of the solver
to the boolean engine, which is designed to be efficient in handling the search
space, as explained in previous sections. In the case of linear real arithmetic,
in order to detect inconsistencies with disequalities, it is necessary to detect all
implicit equalities implied by the constraints in the assignment, which may en-
tangle a costly overhead; state-of-the-art solvers confirm this fact experimentally
[DdM06b]. Therefore, boolean splittings can be exploited to improve efficiency.
A natural problem is thus whether there exist new better ways of using the
boolean engine in order to simplify the theories and so get faster solvers.

Challenge 6: So far, all SMT tools for full linear arithmetic employ infinite-
precision numbers to guarantee the soundness of the results (since most of them
are applied in verification applications). Although there exist sophisticated nu-
merical libraries for this purpose, e.g., GMP2, the involved overhead must not
be neglected. A challenge would be to employ non-precise arithmetic so as to ob-
tain more efficient solvers, as done in the context of Operations Research [ILO].
Is there any clever way of using an efficient non-precise off-the-shelf solver, and
then only do a few checks with infinite-precision to guarantee soundness? A
possibility could also be to develop solvers based on interior-point algorithms
[Ter96,RTV97], which can only be implemented efficiently by means of floating-
point arithmetic.

Finally, one of the most challenging theories in SMT, mainly due to its appli-
cation to hardware verification, is the one of bitvectors. Elements of this domain
can be viewed as arrays of bits, to which bitwise logical operators can be ap-

1 See eecs.berkeley.edu/~sseshia/research/uclid.html.
2 See http://gmplib.org/.

12

plied; but they can also be seen as integers, requiring support for the elementary
arithmetic operations.

This inherent duality is also reflected on the existing techniques. On the one
hand, translating the problem into propositional logic (known as bit-blasting) is
well-suited for problems where bitwise operators dominate. On the other hand,
when the problem has a prevailing arithmetic component, encoding it in linear
integer arithmetic is the method of choice.

Challenge 7: Unfortunately, when there is no significant dominance none of the
current methods is satisfactory. The challenge is to obtain hybrid procedures that
combine the benefits of both approaches, e.g., by bit-blasting only very lazily.

Challenge 8: Are there any fragments of the theory of bitvectors that can be
handled more efficiently, but are still useful for certain practical applications?

5.2 Challenges for SMT with quantifiers

SMT is typically considered to be the problem of checking the satisfiability of
a ground first-order formula modulo a background theory T . If a T -solver for
this particular theory is available, no quantifier reasoning is necessary at all.
However, for several reasons, this is sometimes a too optimistic setting:

– In some applications, the ground fragment is not expressive enough and one
needs to introduce first-order quantifiers in the formula. This is the case, just
to give an example, in proof obligations arising from software verification
where loop invariants may contain quantifiers.

– It is not always the case that a T -solver for the theory under consideration
is available. In this case, a possible solution is to work with a finite axiom-
atization of T (if it exists), and apply generic first-order theorem proving
techniques such as resolution or paramodulation.

Hence, it is necessary to develop techniques and tools that support quanti-
fiers. Although some initial work has already been carried out, we believe there
is still a lot of space for improvement.

Challenge 9: For dealing with non-ground formulas, the underlying idea of the
existing techniques is based on Herbrand’s theorem. That is, the unsatisfiabil-
ity of a formula is to be detected by generating an unsatisfiable set of ground
instances. In order to only generate a small but still sufficient set of instances,
one first considers the congruence E generated by all equalities between ground
terms in the current partial model. Then, given a non-ground term t occurring
in the formula, its relevant ground instances tσ are those such that tσ =E s for
some ground term s ∈ E.

For given t, s, and E, checking whether such a σ exists is called the E-
matching problem of t with s. It is well-known to be NP-hard even for fixed s
and E: if E is the congruence generated by the 10 ground equations and(0, 0)=
0, and(0, 1) = 0, . . . representing the truth tables of and, or and not, then

13

a propositional formula (a term with variables built over and, or and not) is
satisfiable if, and only if, it E-matches with 1.

The idea of using E-matching for generating a sufficient yet small set of
ground instances was first used in the Simplify theorem prover [DNS96] and
it has recently been adapted in other SMT solvers such as Yices [DdM06a] or
CVC3 [BT07]. A challenging task, partially studied in [dMB07], is to develop
efficient data structures and algorithms that support all necessary operations for
E-matching in the context of an SMT solver.

Challenge 10: As already mentioned, the generation of suitable instances is
done via E-matching. Since some function and predicate symbols have a prede-
fined semantics given by the theory T , it would be worth considering at least part
of this semantics when matching terms. For example, could one use the fact that,
when working modulo the theory of linear arithmetic, the function symbol + is
associative and commutative and thus generate instances using AC-matching?

Challenge 11: Despite the well-known severe theoretical limitations, it would be
interesting to identify fragments and theories for which refutational completeness
can be obtained. Even more, by using appropriate redundancy techniques, would
it be possible to detect satisfiability in some particular cases?

5.3 SMT for Constraint Programming (CP) and Optimization

In CP (in a broad sense), relations between variables over given domains can be
stated in the form of constraints, and the aim is to find values for these vari-
ables that satisfy these constraints and/or to optimize some objective function.
CP modeling and solving techniques are being applied to problems in a large
and broad variety of fields in engineering, (hardware and software) verification,
timetabling, traffic and logistics, or finance, among others.

Today it is becoming clearer that SAT and CP techniques share many tech-
nological similarities and applications (see the “CP 2006 Workshop on the In-
tegration of SAT and CP techniques”). SAT techniques, when applicable, have
the advantage of being very efficient, robust, and highly automatic. On the other
hand, the low-level language of propositional logic makes modeling tedious and
difficult, and produces non-compact SAT problems, even with extensions such as
(weighted) MAX-SAT or pseudo-Boolean constraints that can express optimiza-
tion. In CP, elegant general formalisms facilitate modeling, and sophisticated
special-purpose filtering and propagation algorithms exist for a large diversity of
expressive global constraints. But CP implementations are frequently sensitive
to variations in the input problem, and tend to need tuning by hand to find good
heuristics.

Our aim here is to outline several ideas for using SMT, and in particular,
our DPLL(T) approach, to combine SAT and CP techniques, hopefully getting
the advantages of both and the drawbacks of none.

14

One lesson most SAT and CP researchers have learned is that techniques that
work well on artificial or random problems may not do so on real-world problems,
and vice versa3. In the SAT world, this is not surprising, since lemma learning
is crucial for exploiting the “structure” of real-world problems, a structure that
does not exist in random problems. Indeed, on real-world SAT problems, the
complete DPLL procedure outperforms incomplete local search methods even for
satisfiable problems (see www.satcompetition.org). We now compare complete
systematic search methods for SAT and CP on four basic aspects.

Backtracking, backjumping and lemmas:
SAT: Conflict analysis techniques allow one to backjump, and at the same time
provide the lemmas (in the form of new clauses, i.e., in the same input language!)
for preventing similar conflicts in the future.
CP: Techniques for going beyond chronological backtracking exist, as well as
notions of lemmas (nogoods) for pruning portions of the search space that are
known to contain no solutions, but frequently the generality and diversity of the
language makes this too difficult. Also the complexity of the constraint filtering
and propagation algorithms frequently impedes it, since a notion of explanation is
required for a precise conflict analysis (as we have seen), and there is no uniform
representation language for nogoods in CP, and no uniform conflict analysis and
backjump technique (these aspects are highly implementation-dependent).

Heuristics:
SAT: One single, robust, general-purpose heuristic is used, based on literal ac-
tivity (roughly, split on the literal with the highest number of recent occurrences
in conflicts and lemmas). One can see this as “working off” locally one constraint
“cluster” at a time, and, while doing this, extracting lemmas from it, which are
kept only while they are active (i.e., useful in pruning the search).
CP: Typical heuristics are based on the first-fail principle (e.g., minimum do-
main). In practice, tuning is usually needed to find a good heuristic for a given
problem, or problem instance. On industrial SAT problems such heuristics be-
have poorly, consecutively visiting rather unrelated points in the search space,
and thus also making it difficult to keep enough useful active lemmas.

Propagation/pruning:
SAT: Essentially, only unit propagation is used. Other techniques such as 2-
literal-clause reasoning are usually found too expensive.
CP: Sophisticated techniques for propagating and filtering many types of con-
straints (aimed at important applications) have been developed, maintaining
different degrees of (arc, bound, etc.) consistency.

Data structures:
SAT: Refined data structures exist for unit propagation (two-watched literals),
clause representation, and bookkeeping for the heuristics.
3 But still, many experiments of CP techniques for real-world applications are being

carried out on artificial problems, and problems are sometimes called “non-artificial”
because they are translations of, e.g., graph problems which were random or hand-
crafted!

15

CP: Again, the generality and diversity of the language makes it hard to develop
such data structures. Even for the simple language of propositional CNF, it has
taken years of research in SAT solving to reach the current state of the art.

Challenge 12: Develop an SMT system with the advantages of one of CP’s
sophisticated global constraint propagation algorithms and the robustness and
efficiency of SAT’s backjumping, lemmas and heuristics. The idea is to express
the global constraints as a theory. For instance, we are currently working on the
following system.

Example 11. Consider the typical (academic) CP problem of Quasi-Group
Completion (QGC, also known as Latin squares). It is im-
portant in practice because it appears hidden in many real-
world (e.g., scheduling) problems. The question is whether
an n×n table like this one can be completed such that each
row and column contains the numbers 1 . . . n (in this case
n = 5):

3 4
3 4 5
4 5
5

Currently a good (possibly the best) technique for QGC is the so-called 3-D
encoding into SAT [KRA+01], where a propositional variable xijk means “row i
column j has value k”, and the following clauses are given:

1. At least one k per [i, j]: clauses like xij1 ∨ . . . ∨ xijn, and
at most one k per [i, j]: 2-literal clauses like ¬xij1 ∨ ¬xij2.

2. The analogous clauses for exactly one j per [i, k] and one i per [j, k].
3. One unit clause per filled-in value, e.g., x313.

With this encoding, in our 5x5 example, DPLL’s UnitPropagate infers no value.
But alldifferent constraint filtering on the first three columns and the first
row v11, v12, v13, v14, v15 reveals that v11 and v12 consume values 1 and 2 and
hence v13 must be 3.

Consider an SMT system using this 3-D encoding and where T is the theory
of alldifferent. As usual in SMT, the T -solver knows what the xijk’s mean.
From time to time, one can invoke the T -solver for doing Theory Propagate, but
one should apply cheap SAT rules first: UnitPropagate, Backjump, etc. In this
case, the T -solver does incremental filtering [Rég94] but must be able to produce
explanations. In our example, the theory-propagated literal x133 (meaning v13 =
3) is entailed by { ¬x113 ¬x114 . . . ¬x135 }. ut

In this way, the specialized filtering algorithms only need to be extended for
generating explanations, but the remaining machinery can be used as it is in
DPLL(T): one uniform language (clauses) for expressing no-goods, the conflict
analysis mechanism, etc. SAT’s heuristics and unit propagation mechanisms will
do what they are good at, which is carrying out the actual search, i.e., the
labeling. Learned lemmas help transferring knowledge from the theory to the
DPLL(X) engine, which handles it efficiently.

16

Challenge 13: In the previous example we have considered the alldifferent
constraint. Develop explanation-generating T -solvers for other typical global con-
straints.

Challenge 14: In the previous example, we used a complete underlying encoding
into SAT of the QGC problem. Try to exploit the same ideas, but using the
boolean part of SMT only for an incomplete encoding.

Challenge 15: In [NO06] we have shown how to model in SMT optimization
problems (Max-SAT and Max-SMT) by expressing as an (increasingly stronger)
theory T the best solution so far in a branch-and-bound search. How can lower
bounds be more effectively applied in that framework?

6 Concluding remark

We hope that the reader has become challenged and motivated for helping de-
velop this exciting research area and/or for applying SMT techniques and tools.

References

[BBC+05] Marco Bozzano, Roberto Bruttomesso, Alessandro Cimatti, Tommi Junt-
tila, Peter van Rossum, Stephan Schulz, and Roberto Sebastiani. System
description: MathSAT 3. In Robert Nieuwenhuis, editor, Proceedings of
the 20th Conference on Automated Deduction, LNCS 3632, pages 315–321,
Tallinn, Estonia, 2005. Springer.

[BD94] J. R. Burch and D. L. Dill. Automatic verification of pipelined microproces-
sor control. In Procs. 6th Int. Conf. Computer Aided Verification (CAV),
LNCS 818, pages 68–80, 1994.

[BT07] C. Barrett and C. Tinelli. CVC3. In Computer Aided Verification, 19th
International Conference, (CAV). Springer LNCS, 2007. To appear.

[DdM06a] B. Dutertre and L. de Moura. The YICES SMT Solver, 2006.
http://yices.csl.sri.com/tool-paper.pdf.

[DdM06b] Bruno Dutertre and Leonardo Mendonça de Moura. A fast linear-arithmetic
solver for DPLL(T). In Int. Conf. Computer Aided Verification (CAV),
pages 81–94. Springer LNCS 4144, 2006.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine pro-
gram for theorem-proving. Comm. of the ACM, 5(7):394–397, 1962.

[dMB07] L. de Moura and N. Bjorner. Efficient E-matching for SMT Solvers. In xx,
2007. Submitted.

[DNS96] D. L. Detlefs, G. Nelson, and J. Saxe. Simplify: the ESC theorem prover.
Technical report, Compaq, December 1996.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7:201–215, 1960.

[DST80] Peter J. Downey, Ravi Sethi, and Robert E. Tarjan. Variations on the
common subexpressions problem. J. of the Association for Computing Ma-
chinery, 27(4):758–771, 1980.

[ES03] Niklas Eén and Niklas Sörensson. An Extensible SAT-solver. In Proceed-
ings of the Sixth International Conference on Theory and Applications of
Satisfiability Testing (SAT), pages 502–518, 2003.

17

[ILO] ILOG. ”ilog cplex”. http://www.ilog.com/products/cplex.
[KRA+01] Henry A. Kautz, Yongshao Ruan, Dimitris Achlioptas, Carla P. Gomes,

Bart Selman, and Mark E. Stickel. Balance and Filtering in Structured Sat-
isfiable Problems. In Bernhard Nebel, editor, 17th International Joint Con-
ference on Artificial Intelligence, IJCAI’01, pages 351–358. Morgan Kauf-
mann, 2001.

[MMZ+01] Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and
Sharad Malik. Chaff: Engineering an Efficient SAT Solver. In Proc. 38th
Design Automation Conference (DAC’01), 2001.

[MSS99] Joao Marques-Silva and Karem A. Sakallah. GRASP: A search algorithm
for propositional satisfiability. IEEE Trans. Comput., 48(5):506–521, may
1999.

[NO05a] Robert Nieuwenhuis and Albert Oliveras. DPLL(T) with Exhaustive The-
ory Propagation and its Application to Difference Logic. In 17th Int. Conf.
on Computer Aided Verification, (CAV), Springer LNCS 3576, pages 321–
334, 2005.

[NO05b] Robert Nieuwenhuis and Albert Oliveras. Proof-Producing Congruence
Closure. In 16th Int. Conf. on Term Rewriting and Applications (RTA),
Springer LNCS 3467, pages 453–468, 2005.

[NO06] Robert Nieuwenhuis and Albert Oliveras. On sat modulo theories and
optimization problems. In Theory and Applications of Satisfiability Testing
(SAT), LNCS 4121,, pages 156–169, 2006.

[NO07] Robert Nieuwenhuis and Albert Oliveras. Fast congruence closure and ex-
tensions. Information and Computation, 205(4):557–580, April 2007.

[NOT06] Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving SAT
and SAT Modulo Theories: from an Abstract Davis-Putnam-Logemann-
Loveland Procedure to DPLL(T). Journal of the ACM, 53(6):937–977,
November 2006.

[Rég94] J-C. Régin. A filtering algorithm for constraints of difference in CSPs. In
Proceedings of 12th National Conference on AI (AAAI’94), volume 1, pages
362–367, Seattle, July 31 - August 4 1994.

[RT03] Silvio Ranise and Cesare Tinelli. The SMT-LIB Format: An Initial Pro-
posal. In Proceedings of the 1st Workshop on Pragmatics of Decision Pro-
cedures in Automated Reasoning, Miami, 2003.

[RTV97] C. Roos, T. Terlaky, and J. P. Vial. Theory and Algorithms for Linear
Optimization: An Interior Point +Approach. Wiley, 1997.

[SL06] Aaron Stump and Bernd Löchner. Knuth-bendix completion of theories of
commuting group endomorphisms. Inf. Process. Lett., 98(5):195–198, 2006.

[ST05] Aaron Stump and Li-Yang Tan. The algebra of equality proofs. In 16th Int.
Conf. on Term Rewriting and Applications (RTA), Springer LNCS 3467,
pages 469–483, 2005.

[Ter96] T. Terlaky, editor. Interior Point Methods of Mathematical Programming,
volume 5 of Applied Optimization. Kluwer Academic Publishers, 1996.

