
Splitting on Demand in SAT Modulo Theories

Clark Barrett?, Robert Nieuwenhuis??, Albert Oliveras??, and Cesare Tinelli? ? ?

Abstract. Lazy algorithms for Satisfiability Modulo Theories (SMT)
combine a generic DPLL-based SAT engine with a theory solver for
the given theory T that can decide the T -consistency of conjunctions

of ground literals. For many theories of interest, theory solvers need to
reason by performing internal case splits. Here we argue that it is more
convenient to delegate these case splits to the DPLL engine instead. This
can be done on demand for solvers that can encode their internal case
splits into one or more clauses, possibly including new constants and
literals. It results in drastically simpler theory solvers, and can lead, we
believe, to more efficient overall systems. We present this in an improved
version of DPLL(T), a general SMT architecture for the lazy approach,
and formalize and prove it correct in an extension of Abstract DPLL

Modulo Theories, a framework for modeling and reasoning about lazy
algorithms for SMT. A remarkable additional feature of the architec-
ture, also discussed in the paper, is that it naturally includes an efficient
Nelson-Oppen-like combination of multiple theories and their solvers.

1 Introduction

The performance of propositional SAT solvers based on the Davis-Putnam-
Logemann-Loveland (DPLL) procedure [8, 7] has importantly improved during
the last years, and DPLL-based solvers are becoming the tool of choice for at-
tacking more and more practical problems. The DPLL procedure has also been
adapted for handling problems in more expressive logics, and, in particular, for
the SAT Modulo Theories (SMT) problem: deciding the satisfiability of ground
first-order formulas with respect to background theories such as the integer or
real numbers, or arrays. SMT problems frequently arise in formal hardware and
software verification applications, where typical formulas consist of very large
sets of clauses like:

p ∨ ¬q ∨ a=f(b − c) ∨ read(s, f(b−c))=d ∨ a−g(c)≤7

with propositional atoms as well as atoms over (combined) theories like the
integers, arrays, or Equality with Uninterpreted Functions (EUF). SMT has
become a very active area of research, and efficient SMT solvers exist that can
handle (combinations of) many such theories T . Currently most SMT solvers
follow the so-called lazy approach to SMT, combining (i) theory solvers that can

? New York University, www.cs.nyu.edu/~barrett.
?? Technical Univ. of Catalonia, Barcelona, www.lsi.upc.edu/~roberto|~oliveras.

Partially supported by Spanish Ministry of Educ. and Science through the LogicTools
project (TIN2004-03382, both authors), and FPU grant AP2002-3533 (Oliveras).

? ? ? Univ. of Iowa, www.cs.uiowa.edu/~tinelli. Partially supp. by NSF grant 0237422.

2

handle conjunctions of literals over the given theory T , with (ii) DPLL engines
for dealing with the boolean structure of the formulas.

DPLL(T) is a general SMT architecture for the lazy approach [9]. It consists
of a DPLL(X) engine, whose parameter X can be instantiated with a T -solver
Solver

T
, thus producing a DPLL(T) system. The DPLL(X) engine always con-

siders the problem as a purely propositional one. For example, if the theory
T is EUF, at some point DPLL(X) might consider a partial assignment con-
taining, among many others, the four literals a = b, f(a) = c, f(b)= d,
and c 6= d without noticing its T -inconsistency, because it just considers such
literals as propositional (syntactic) objects. But Solver

T
continuously analyzes

the partial model that DPLL(X) is building (a conjunction of literals). It can
warn DPLL(X) about this T -inconsistency, and generate a clause, called a the-
ory lemma, a 6=b ∨ f(a) 6=c ∨ f(b) 6=d ∨ c=d, that can be used by DPLL(X)
for backjumping. Solver

T
sometimes also does theory propagation: as soon as,

e.g., a=b, f(a)=c, and f(b)=d become true, it can notify DPLL(X) about
T -consequences like c=d that occur in the input formula. The modular DPLL(T)
architecture is flexible, and, compared with other SMT techniques, DPLL(T) is
also very efficient and has good scaling properties: the BarcelogicTools imple-
mentation of DPLL(T) won all the four divisions it entered at the 2005 SMT
Competition [1].

Here we propose an improved version of the DPLL(T) architecture, to ratio-
nalize and simplify the construction of lazy SMT systems where Solver

T
does

reasoning by cases. We present it formally by means of a corresponding extension
of Abstract DPLL Modulo Theories, a uniform, declarative framework introduced
in [11] for modeling and reasoning about lazy SMT procedures.

Example 1. Consider the equation read(write(A, i, v), j) = read(A, j) in the
theory of arrays. It holds in two situations: when the indices i and j are distinct,
or when they are equal but the write(A, i, v) changes nothing, i.e., the value
of array A at position i is already v. Deciding the T -consistency of a large
conjunction of equations and disequations over arrays essentially requires Solver

T

to do an analysis of many Boolean combinations of such cases. In the extension
of DPLL(T) we propose here, Solver

T
can delegate all such case splittings to the

DPLL(X) engine, e.g., it can demand DPLL(X) to split on atoms like i=j, by
sending it a theory lemma (i.e., a ground clause valid in the theory) that encodes
the split—for instance, a clause like read(write(A, i, v), j) 6= read(A, j) ∨ i 6=
j ∨ read(A, i) = v. ut

The main novelty, and complication, versus the previous version of DPLL(T)
is that the lemma may contain atoms that do not occur in the input formula.
Sometimes even new constant symbols may be introduced. For example, in (frag-
ments of) set theory [6], a set disequality s 6= s′ may be handled by the theory
solver by reducing it to the disjunction (a ∈ s∧a /∈ s′) ∨ (a /∈ s∧a ∈ s′), where
a is a fresh Skolem constant. Centralizing all case splitting into the engine avoids
the duplication of this functionality and drastically simplifies the implementation
of Solver

T
, which now needs no case-splitting infrastructure. Roughly, the solver’s

3

only requirement becomes that it must be able to detect T -inconsistencies once
all case splits it has requested have been done. This sort of architecture is likely
to also produce performance gains, since the engine is already specialized in rea-
soning efficiently over disjunctions, and because its heuristics are not sabotaged,
so to speak, by the internal splitting done by the theory solver.

The second main contribution of this paper is that the extension can easily
and efficiently accommodate theories T defined as the union of several component
theories T1, . . . , Tn. This gives rise to a DPLL(T1, . . . , Tn) architecture.

Example 2. Let T be the union of two disjoint theories T1 and T2 where T1 is
EUF and T2 is (some fragment of) arithmetic, two of the most common theories
in SMT. Let F be the conjunction a=b ∧ f(a)−c ≤ 3 ∧ f(b)−c ≥ 4
over the combined signature of T1 and T2. Introducing new constants c1 and c2,
F can be purified, into an equisatisfiable conjunction of the T1-pure formula F1

and the T2-pure formula F2 below:

a=b ∧ c1=f(a) ∧ c2=f(b) c1−c≤3 ∧ c2−c≥4 .

In general, an arrangement A for such pure conjunctions F1 . . . Fn is a con-
junction saying, for every two constants shared between at least two different
Fi’s, whether the constants are equal or distinct. A general combination result
underpinning the Nelson-Oppen method [10] states that for stably infinite and
signature disjoint Ti’s, F is T -consistent if, and only if, for some arrangement A
each Fi∧A is Ti-consistent (see, e.g., [13] for precise definitions and details). This
can be decided by the respective Ti-solvers. In this example, F is T -inconsistent
since F1 ∧ c1 6=c2 is T1-inconsistent and F2 ∧ c1=c2 is T2-inconsistent.

In practice, it is useful if each Ti-solver is able to generate all clauses c1=
c′1∨ . . .∨ck=c′k over the shared constants that are Ti-entailed by the conjunction
Fi. For convex Ti, these entailed clauses are in fact always unit. It is not difficult
to see that, if these two properties hold for all Ti, we only have to consider one
arrangement: the one where every two constants not equated in a propagated
equality are distinct. But usually the situation is less ideal. If some Ti is non-
convex, it is necessary to do case splitting over the Ti-entailed non-unit clauses,
and if some Ti-solver has limited (or too expensive) generation capabilities, the
possible arrangements need to be (partially) guessed and tried.

By centralizing case splitting into the DPLL(X) and extending it to equal-
ities over shared constants we can use the engine to efficiently enumerate the
arrangements on demand, that is, as requested by the individual theory solvers.
In the resulting DPLL(T1, . . . , Tn) architecture, again the engine must handle
literals not in the input clause—in this case, (dis)equalities between shared vari-
ables. ut

Section 2 of this paper introduces and formally proves the correctness of the
Extended Abstract DPLL Modulo Theories framework that can accommodate
and formalize these approaches. Section 3 illustrates how to use the framework
to avoid internal case splits in a very general class of theory solvers. Section 4
is on the application of the framework to DPLL(T1, . . . , Tn). Finally Section 5
concludes.

4

Related work. Some of the ideas formalized in this paper on centralizing case
splits in the Boolean engine are implemented in the system CVC [4]. But apart
from a brief note in Clark Barrett’s PhD Thesis [3], we are not aware of any
other description of them in the literature. Bozzano et al. propose in [5] to use
the Boolean engine in multi-theory SMT systems to do case splitting over the
(potentially large) space of all possible arrangements. Besides allowing case splits
on a more expressive language (i.e., not restricted to just the shared equalities),
our approach further develops the ideas of [5] by proposing a formal framework
for the flexible combination of guessing (by the engine) and deduction (by the
solvers) of partial arrangements.

2 Extended Abstract DPLL Modulo Theories

Abstract DPLL Modulo Theories [11] is a framework for modeling and reasoning
about DPLL-based SAT and SMT systems in terms of simple transition rules
and rule application strategies. The framework facilitates the understanding and
the comparison of different approaches as well as the proving of their correctness.
In this section, we briefly describe the framework (see [11] for a more thorough
description of the framework) and then extend it so that it can be used to
formalize our new version of DPLL(T) and, more generally, SMT approaches
where new atoms and new symbols are introduced.

2.1 Abstract DPLL Modulo Theories

As usual in SMT, given a background theory T (a set of closed first-order formu-
las), we will only consider the SMT problem for ground (and hence quantifier-
free) CNF formulas F . Such formulas may contain free constants, i.e., constant
symbols not in the signature of T , which, as far as satisfiability is concerned,
can be equivalently seen as existential variables. Other than free constants, all
other predicate and function symbols in the formulas will instead come from
the signature of T . From now on, we will assume that all formulas satisfy these
restrictions.

The formalism we describe is based on a set of states together with a binary
relation =⇒ (called the transition relation) over these states, defined by means
of transition rules. Starting with a state containing an input formula F , one
can use the rules to generate a finite sequence of states, where the final state
indicates whether or not F is T -consistent.

A state is either the distinguished state FailState (denoting T -unsatisfiability)
or a pair of the form M || F , where M is a sequence of literals, with ∅ denot-
ing the empty sequence, and F is a formula in conjunctive normal form (CNF),
i.e., a finite set of disjunctions of literals. We additionally require that M never
contains both a literal and its negation and that each literal in M is annotated
as either a decision literal (indicated by ld) or not. Frequently, we will refer to
M as a partial assignment or consider M just as a set or conjunction of literals,
ignoring both the annotations and the order of its elements.

5

In what follows, a possibly subscripted or primed lowercase l always denotes
a literal. Similarly C and D always denote clauses (disjunctions of literals), F
and G denote conjunctions of clauses, and M and N denote partial assignments.

We write M |= F to indicate that M propositionally satisfies F . If C is a
clause l1 ∨ . . .∨ ln, we sometimes write ¬C to denote the formula ¬l1 ∧ . . .∧¬ln.
We say that C is conflicting in a state M || F, C if M |= ¬C.

A formula F is called T -(in)consistent if F ∧ T is (un)satisfiable in the first-
order sense. We say that M is a T -model of F if M |= F and M , seen as a
conjunction of literals, is T -consistent. It is not difficult to see that F is T -
consistent if, and only if, it has a T -model. If F and G are formulas, then F
entails G in T , written F |=T G, if F ∧ ¬G is T -inconsistent. If F |=T G and
G |=T F , we say that F and G are T -equivalent. A theory lemma is a clause C
such that ∅ |=T C.

We start with the transition system first presented in [11].

Definition 1. Abstract DPLL Modulo Theories consists of the following rules:

UnitPropagate :

M || F, C ∨ l =⇒ M l || F, C ∨ l if

{
M |= ¬C
l is undefined in M

Decide :

M || F =⇒ M ld || F if

{
l or ¬l occurs in a clause of F
l is undefined in M

Fail :

M || F, C =⇒ FailState if

{
M |= ¬C
M contains no decision literals

Restart :

M || F =⇒ ∅ || F

T -Learn :

M || F =⇒ M || F, C if

{
each atom of C occurs in F or in M
F |=T C

T -Forget :

M || F, C =⇒ M || F if
{

F |=T C

T -Backjump :

M ld N || F, C =⇒ M l′ || F, C if

M ld N |= ¬C, and there is
some clause C′ ∨ l′ such that:

F, C |=T C′ ∨ l′ and M |= ¬C′,
l′ is undefined in M , and
l′ or ¬l′ occurs in F or in M ld N

T-Propagate :

M || F =⇒ M l || F if

M |=T l
l or ¬l occurs in F
l is undefined in M

6

The Basic DPLL Modulo Theories system consists of the rules Decide, Fail,
UnitPropagate, T-Propagate and T -Backjump. We denote the transition relation
defined by these rules by =⇒B. We denote the transition relation defined by all
the rules by =⇒FT.

For a transition relation =⇒, we denote by =⇒∗ the reflexive-transitive clo-
sure of =⇒. We call any sequence of the form S0 =⇒ S1, S1 =⇒ S2, . . . a
derivation, and denote it by S0 =⇒ S1 =⇒ S2 =⇒ We call any subsequence
of a derivation a subderivation. If S =⇒ S′ we say that there is a transition from
S to S′. A state S is final with respect to =⇒ if there are no transitions from S.

The relevant derivations in the Abstract DPLL Modulo Theories system are
those that start with a state of the form ∅ || F , where F is a formula to be
checked for T -consistency, and end in a state that is final with respect to =⇒B.

2.2 The Extended Abstract DPLL Modulo Theories System

Any realization of the Abstract DPLL Modulo Theories framework, in addition
to implementing the rules and a terminating strategy, must be able to determine
the T -consistency of M when a final state M || F is reached. For this purpose,
one typically assumes the existence of Solver

T
which can do precisely that.

However, for some important theories, determining the T -consistency of a
conjunction of literals requires additional internal case splitting. In order to
simplify Solver

T
and centralize the case splitting in the DPLL engine, it is de-

sirable to relax the requirement on Solver
T

by allowing it to demand that the
DPLL engine do additional case splits before determining the T -consistency of
the partial assignment. For flexibility—and because it is needed by actual theo-
ries of interest—the theory solver should be able to demand case splits not only
on literals that do not appear in M or F , but also on literals that may introduce
new constant symbols not appearing in M or F .

It is not hard to see, however, that allowing this kind of flexibility poses a
potential problem for termination of the procedure. We can overcome this diffi-
culty as follows. As a purely theoretical construction, we assume that, for each
given (finite) input formula F , a finite set of literals L(F) exists that contains all
literals on which the theory solver may demand case splits when starting with a
conjunction of literals from F . For example, for the theory of arrays L(F) could
contain atoms of the form i= j, where i and j are array indices occurring in F .
This technical requirement poses no limitations on any of the practically useful
theory solver procedures we are aware of (see Section 3). Also, for the proofs
here there is no need to construct the set L(F). It is enough to know that it
exists. Formally, we require the following.

Definition 2. L is a suitable literal-generating function if for every finite set
of literals L:

1. L maps L to a new finite set of literals L′ such that L ⊆ L′.
2. For each atomic formula α, α ∈ L(L) iff ¬α ∈ L(L).
3. If L′ is a set of literals and L ⊆ L′, then, L(L) ⊆ L(L′) (monotonicity).

7

4. L(L(L)) = L(L) (idempotence).

For convenience, given a formula F , we denote by L(F) the result of applying L
to the set of all literals appearing in F .

The introduction of new constant symbols poses potential problems not only
for termination, but also for soundness. One property of the transition relation
=⇒FT is that whenever ∅ || F =⇒∗

FT M || F ′, the formulas F and F ′ are
T -equivalent. This will no longer be true if we allow the introduction of new
constant symbols. However, it is sufficient to simply ensure T -equisatisfiability
of F and F ′. To this end, we introduce the following definition.

Definition 3. Given a formula F and a formula G, we define γF (G) as follows:

1. Let G′ be the formula obtained by replacing each constant symbol in G that
does not appear in F with a fresh variable.

2. Let v be the set of all fresh variables introduced in the previous step.
3. Then, γF (G) = ∃ v. G′.

Now we can give a new transition rule called Extended T-Learn which replaces
T -Learn and allows for the desired additional flexibility.

Definition 4. The Extended DPLL Modulo Theories system, denoted as =⇒XT,
consists of the rules of Basic DPLL Modulo Theories, together with the rules
Restart, T -Forget and the rule Extended T-Learn below:

Extended T-Learn

M || F =⇒ M || F, C if

{
each atom of C occurs in F or in L(M)
F |=T γF (C)

The key observation is that an implementation using Extended T-Learn has
more flexibility when a state M || F is reached which is final with respect to =⇒B.
Whereas before it would have been necessary to determine the T -consistency of
M when such a state was reached, the Extended T-Learn rule allows the possi-
bility of delaying a response by demanding that additional case splits (on new
literals appearing in the clause C) be done first. As we will show below, the
properties of L ensure that the response cannot be delayed indefinitely.

2.3 Correctness of Extended Abstract DPLL Modulo Theories

A decision procedure for SMT can be obtained by generating a derivation using
=⇒XT with a particular strategy. As with =⇒FT, the aim of a derivation is to
compute a state S such that: (i) S is final with respect to the rules of Basic DPLL
Modulo Theories and (ii) if S is of the form M || F then M is T -consistent. We
start by stating some invariants.1

Lemma 1. If ∅ || F =⇒∗

XT M || G then the following hold.

1 Because of space constraints we must refer the reader to [2] for the proofs of all the
results in this section.

8

1. All the literals in M and all the literals in G are in L(F).
2. M contains no literal more than once and is indeed an assignment, i.e., it

contains no pair of literals of the form p and ¬p.
3. G |=T F and for some H, F |=T γH(G).
4. If M is of the form M0 l1 M1 . . . ln Mn, where l1, . . . , ln are all the decision

literals of M , then G, l1, . . . , li |=T Mi for all i in 0 . . . n.

Theorem 1 (Termination of =⇒XT). Every derivation Der of the form
∅ || F = S0 =⇒XT S1 =⇒XT . . . is finite if the following two conditions hold:

1. Der has no infinite subderivations consisting of only Extended T-Learn and
T -Forget steps.

2. For every subderivation of Der of the form
Si−1 =⇒XT Si =⇒XT . . . =⇒XT Sj =⇒XT . . . =⇒XT Sk where the only
three Restart steps are the ones producing Si, Sj, and Sk, either:
– there are more Basic DPLL Modulo Theories steps in Sj =⇒XT . . . =⇒XT

Sk than in Si =⇒XT . . . =⇒XT Sj, or
– in Sj =⇒XT . . . =⇒XT Sk a new clause is learned that is not forgotten

in Der.

Lemma 2. If ∅ || F =⇒∗

XT M || F ′ and there is some conflicting clause in
M || F ′, i.e., M |= ¬C for some clause C in F ′, then either Fail or T -Backjump

applies to M || F ′.

Property 1. If ∅ || F =⇒∗

XT M || F ′ and M is T -inconsistent, then either there
is a conflicting clause in M || F ′, or else Extended T-Learn applies to M || F ′,
generating a clause enabling some Basic DPLL Modulo Theories step.

Even if it is very easy to generate non-terminating derivations for =⇒XT,
Theorem 1 defines a very general strategy for avoiding that. Lemma 2 and Prop-
erty 1 show that, for a state of the form M || F , if there is some literal of F
undefined in M , or there is some conflicting clause, or M is T -inconsistent, then
a rule of Basic DPLL Modulo Theories is always applicable, possibly after a sin-
gle Extended T-Learn step. Together with Theorem 1 (Termination), this shows
how to compute a state to which the following main theorem is applicable.

Theorem 2. Let Der be a derivation ∅ || F =⇒∗

XT S , where S is (i) final
with respect to Basic DPLL Modulo Theories, and (ii) if S is of the form M || F ′

then M is T -consistent. Then

1. S is FailState if, and only if, F is T -inconsistent.

2. If S is of the form M || F ′ then M is a T -model of F .

For a given theory T , Theorems 1 and 2 show how to obtain a decision
procedure for the T -consistency of formulas as long as we have a theory solver
and can prove the existence of a suitable literal-generating function L so that,
for every state of the form M || F that is final with respect to =⇒B, it is always
possible to: (i) determine that M is T -inconsistent; (ii) determine that M is
T -consistent; or (iii) generate a new clause via Extended T-Learn that enables
some Basic DPLL Modulo Theories step.

9

3 Avoiding case splitting within theory solvers

In this section we show how rule-based theory solvers can be used in the context
of Extended DPLL Modulo Theories. We show how the Extended T-Learn rule
allows such solvers to avoid any internal case splitting, and we explain why, for
these types of solvers, the existence of L is reasonable. Recall that theory solvers
only need to deal with conjunctions of literals, here represented as sets of literals.

3.1 Rule-based Theory Solvers

A large class of theory solvers can be defined using inference rules which describe
how to take a set of literals and transform it in some way to get new sets of literals
(or ⊥, indicating T -inconsistency). Consider a theory T . For our purposes, let
us assume that an inference rule has one of the following two formats:

Γ, ∆
⊥

Γ, ∆
Γ, ∆1 Γ, ∆2 · · · Γ, ∆n

We call rules of the first kind refuting rules and rules of the second kind progress
rules. Γ, ∆ and ∆i are meta-variables representing sets of literals. Typically, ∆
has side-conditions or is a schema, while Γ can represent any set of literals.
Progress rules describe a local change based on a small number of literals (i.e.
the ones in ∆), while all of the other literals are unchanged (i.e. the ones in Γ).

A refuting rule is sound iff any legal instance δ of ∆ is T -inconsistent. A
progress rule is sound if whenever ∆, ∆1, . . . , ∆n are instantiated with δ, δ1, . . . , δn

respectively, δ is T -consistent iff
∨n

i=1
δi is T -consistent. We say that a set Φ of

literals is (ir)reducible with respect to a set of derivation rules R if (n)one of
the rules in R applies to it, i.e., if (no)some subset of Φ is a legal instance of ∆
in a rule of R. A strategy is a function that, given a reducible set of literals Φ,
chooses a rule from R to apply.

Given a set of rules R and a strategy S, a derivation tree for a set of literals
Φ is a finite tree with root Φ such that for each internal node E of the tree, E is
reducible and its children are the conclusions of the rule selected by S for E. A
refutation tree (for Φ) is a derivation tree all of whose leaves are ⊥. A derivation
is a sequence of derivation trees starting with the single-node tree containing Φ,
where each tree is derived from the previous one by the application of a rule from
R to one of its leaves. A refutation is a finite derivation ending with a refutation
tree. A strategy S is terminating if every derivation using S is finite. A strategy
S is complete if whenever Φ is T -inconsistent, S produces a refutation for Φ.

It is not hard to see that a set R of sound inference rules together with a
terminating and complete strategy S provide a decision procedure for the T -
consistency of sets of ground literals. In fact, all decision procedures typically
associated with applications of Satisfiability Modulo Theories can be described in
this way. We will now describe how such decision procedures can be incorporated
into the Extended Abstract DPLL Modulo Theories formalism.

10

3.2 Integration with Rule-based Theory Solvers

Recall that the original DPLL Modulo Theories framework requires that for
every state M || F that is is final with respect to Basic DPLL Modulo Theories,
the theory solver can determine the T -consistency of M . Given a set of sound
inference rules and a terminating and complete strategy, M can be checked for T -
consistency simply by generating the derivation starting with M and determining
whether it results in a refutation tree or not.

Note that this process may require a large derivation tree with many branches.
The purpose of the Extended T-Learn rule is to allow the theory solver to avoid
having to do any splitting itself. This can be accomplished as follows. Given a
state M || F which is final with respect to Basic DPLL Modulo Theories, the
theory solver begins applying rules starting with M . However, this time, as soon
as a splitting rule is encountered (a progress rule with n > 1), the theory solver
halts and uses Extended T-Learn to return a clause representing the case split.
The theory solver is then suspended until another final state M ′ || F ′ is reached.

The obvious remaining question is how to capture the case split with a learned
clause. As we show in [2], one way to do this that will work for any rule-based
theory solver is to encode the number of possible case splits using Boolean con-
stants. In practice, however, it is usually possible and desirable to encode split-
ting rules more directly. For example, a progress rule of the form seen in the
previous subsection (where n > 1) corresponds to the following formula schema:
¬(∆) ∨

∨n

i=1
∆i. Any instance of this schema can be converted into CNF and

the resulting clauses sent to the DPLL engine via Extended T-Learn. For this to
work, one additional requirement is that the rules be refining. We say that an
inference rule is refining if it is a refuting rule or if whenever ∆, ∆1, . . . , ∆n are
instantiated with δ, δ1, . . . , δn respectively, δ |=T γδ(

∨n

i=1
δi). This is essentially

a stronger version of soundness. It requires that any model of the premise can
be refined into a model of some of the consequents. It is necessary in order to
satisfy the side conditions of Extended T-Learn.

We must also check that an appropriate literal-generating function L exists.
Assume we are given a set of rules R and a terminating strategy S. First, define
D to be a function which, given a set Φ of literals returns all literals that may
appear along any branch of the derivation tree with any subset of Φ at its root.
And let N be a function which, given a set Φ of literals, returns all literals
that can be formed from the atomic formulas in Φ. Now, we define a series
of functions Li as follows. Let L0 be the identity function and for i > 0, let
Li(Φ) = N (D(Li−1(Φ))). If for some k > 0, Lk = Lk+1, then we say that R is
literal-bounded under S, and define L = Lk.

Property 2. If R is a set of sound refining rules for a theory T , S is a strategy
for R that is terminating and complete, and R is literal-bounded under S, then
R can be integrated with the Extended DPLL Modulo Theories framework.

Proof. We first show that L satisfies Definition 2. It is easy to see that Proper-
ties 1 and 2 in the definition are satisfied. Because D(Φ) considers derivations

11

starting with any subset of Φ, Property 3 must also be satisfied. Finally, because
L is a fixed point of Li, it must be idempotent.

Now, we must show that whenever a state M || F is reached that is final with
respect to Basic DPLL Modulo Theories, the theory solver can do one of the
following: determine that M is T -consistent; determine that M is T -inconsistent;
or introduce a new clause via Extended T-Learn that enables some Basic DPLL
Modulo Theories step.

Given a state M || F , we simply apply rules from R to M according to strat-
egy S. If ⊥ is derived, then by soundness, M is T -inconsistent. If an irreducible
set of literals is derived, then by completeness, M must be T -consistent. If a split-
ting rule is reached, and Γ, ∆, ∆1, . . . , ∆n are instantiated with φ, δ, δ1, . . . , δn

respectively, there are three possibilities:

1. For all i, M |= ¬δi. In this case, we apply Extended T-Learn to learn ¬(δ) ∨∨n

i=1
δi, which will result in one or more clauses that are conflicting in M ,

thus enabling either Fail or T -Backjump by Lemma 2.

2. For some i, M |= δi, or else δi is undefined in M and M |= ¬δj for every
j 6= i. In either case, no split is necessary and we simply proceed by applying
rules of R to φ, δi.

3. The final case is when at least two of the δi are undefined in M . Then we
apply Extended T-Learn to learn ¬(δ)∨

∨n

i=1
δi which is guaranteed to contain

at least one clause that is not satisfied by M , thus enabling Decide. ut

Example 3. The theory of arrays is a well-known theory used in Satisfiability
Modulo Theories that requires case splitting. One (sound and refining) rule-
based decision procedure for this theory is given in [12]. A careful examination
of the decision procedure reveals the following: (i) each term can be categorized
as an array term, an index term, a value term, or a set term; (ii) no new array
terms are ever introduced by the inference rules; (iii) at most one new index
term for every pair of array terms is introduced; (iv) set terms are made up of
some finite number of index terms; (v) the only new value terms introduced are
of the form read(a, i) where a is an array term and i is an index term. It follows
that the total number of possible terms that can be generated starting with any
finite set of literals is finite. Because there are only a finite number of predicates,
it then follows that this set of rules is literal-bounded. ut

4 Application to Satisfiability Modulo Multiple Theories

In this section we focus on background theories T that are actually the union of
two or more component theories T1, . . . , Tn, each equipped with its own solver.

We first show how to obtain an Abstract DPLL Modulo Theories transition
system for the combined theory T as a refinement of the system XT described
in Section 2 using only the solvers of the theories Ti. Then we show how to refine
the new DPLL(T) architecture into a DPLL(T1, . . . , Tn) architecture in which
each Ti-solver is directly integrated into the DPLL(X1, . . . , Xn) engine.

12

We will work here in the context of first-order logic with equality. For the rest
of the section we fix n > 1 stably infinite theories2 T1, . . . , Tn with respective,
mutually disjoint signatures Σ1, . . . , Σn. We will consider the theory T = T1 ∪
· · ·∪Tn with signature Σ = Σ1∪· · ·∪Σn. We are interested in the T -satisfiability
of ground formulas over the signature Σ extended with an infinite set K of free
constants. For any signature Ω we will denote by Ω(K) the signature Ω ∪ K.
We say that a ground clause or literal is (i-)pure if it has signature Σi(K)
where i ∈ {1, . . . , n}. Given a CNF formula F of signature Σ(K), by abstracting
subterms with fresh constants from K, it is possible to convert F in linear time
into an equisatisfiable CNF formula, all of whose atoms are pure. See [13], for
instance, for details on this purification procedure. From now on then, we will
limit ourselves with no loss of generality to pure formulas.

Following the Nelson-Oppen combination method, the various solvers will
cooperate by exchanging entailed equalities over shared constants. Let L be a
set of pure literals over the signature Σ(K). We say that a constant k ∈ K is
an (ij-)shared constant of L if it occurs in an i-pure and a j-pure literal of L
for some distinct i and j. For i = 1, . . . , n, we denote by Li the set of all the
Σi(K)-literals of L and by Si(L) the set of all equalities between distinct ij-
shared constants of L for every j 6= i. Note that for every j 6= i, Lj ∩Li contains
at most equalities or the negation of equalities from Si(L). An arrangement for
L is a set containing for each equality e ∈

⋃
i Si(L) either e or ¬e (but not both),

and nothing else.
The extended Abstract DPLL Modulo theories framework can be refined

to take into account that T is a combined theory by imposing the following
additional requirements on the XT system.

Refinement 1. We consider only derivations starting with states of the form
∅ || F , where each atom of F is a pure Σ(K)-atom.

Refinement 2. We consider only applications M || F =⇒ M l || F of T-Propagate

and applications M || F =⇒ M || F, C of Extended T-Learn where l and each
literal of C are pure.

Refinement 1 and 2 maintain the invariant that all the literals occurring in
a state are pure, and so can be fed to the corresponding local solvers. Given
these minimal requirements, it will be sufficient for T-Propagate to propagate
only literals l that are i-pure for some i = 1, . . . , n and such that and M i |=Ti

l, where the entailment M i |=Ti
l is determined by the Ti-solver. Similarly,

Extended T-Learn will rely on the local solvers only to learn Ti-lemmas, i.e., i-pure
clauses C such that ∅ |=Ti

γF (C). Note that we do allow lemmas C consisting
of pure literals from different theories and such that F |=T γF (C), as lemmas of
this sort can be computed even if one only has local solvers (consider for example
the backjump clauses generated by standard conflict analysis mechanisms).

Refinement 3. The suitable literal-generating function L maps every finite set
L of pure Σ(K)-literals to a finite set of pure Σ(K)-literals including

⋃
i Si(L).

2 A theory T is stably infinite if every T -consistent quantifier-free formula F over T ’s
signature is satisfiable in an infinite model of T .

13

To use the various solvers together in a refutationally complete way for T -
consistency, it is necessary to make them agree on an arrangement. To do this
efficiently, they should be able to share the entailed (disjunctions) of equalities
of shared constants. Refinement 3 then essentially states that theory lemmas can
include shared equalities.

4.1 From DPLL(T) to DPLL(T1, . . . , Tn)

Assuming the previous refinements at the abstract level, we now show in con-
crete how the DPLL(T) architecture can be specialized to use the various local
solvers directly and to facilitate cooperation among them. Here we define a local
requirement on each Ti-solver that does not even need refutational complete-
ness for Ti-consistency. If M is an assignment consisting of pure literals and
i ∈ {1, . . . , n}, we call (default) completion of M i and denote by M̂ i the small-
est extension of M i falsifying every shared equation for M i that is undefined in
M , that is, M̂ i = M i ∪ {¬e | e ∈ Si(M), e undefined in M}.

Requirement 1. For each i = 1, . . . , n, if the solver for Ti, given a state M || F ,

cannot determine that M̂ i is Ti-consistent, then it must either:

1. identify a Ti-inconsistent subset of M i or
2. produce an i-pure clause C such that ∅ |=Ti

γF (C) and C contains at least
one literal of L(M) undefined in M .

Note that, according to this last requirement, if a solver cannot determine the
Ti-consistency of the completion M̂ i, it must be either because it has determined
that a subset of M̂ i (possibly of M i alone) is in fact inconsistent, or that it needs
more information about some of the undefined literals of L(M) first. However,
once every literal of L(M) is defined in M , including the equalities in Si(M),
the solver must be able to tell whether M i is Ti-consistent or not. The latter
is a minimal requirement for any solver to be used in a Nelson-Oppen style
combination procedure.

Usually, however, it is desirable for Nelson-Oppen solvers to also be able to
compute (disjunctions of) shared equalities entailed by a given set of literals, so
that only these equalities can be propagated to the other solvers, and guessing
is minimized (for instance, if one solver communicates that a is equal to either
b or c, then the other solvers do not have to consider cases where a is equal to
some fourth constant). Here we include that possibility, as illustrated by this
example.

Assume for simplicity that for every M , L(M) is no more than
⋃

i Si(M),
which entails that each Ti-solver is refutationally complete for Ti-consistency.
Then consider an assignment M where Mi is Ti-consistent, for some i, and let
e1, . . . , en be equalities in Si(M) undefined in M such that l1, . . . , lm |=

∨
k ek

for some {l1, . . . , lm} ⊆ M i. In this case M̂ i is clearly Ti-inconsistent. However,
since M i is by itself consistent, by Requirement 1 the Ti-solver must return a
lemma containing one undefined literal of L(M). Now, if the solver can in fact
compute the clause l1, . . . , lm |=

∨
k ek, that clause will be the ideal lemma to

14

return. Otherwise, it is enough for the solver to return any lemma that contains
at least one shared equality. Intuitively, this marks a progress in the computation
because eventually that shared equality will become defined (for instance, by an
application of Decide), reducing the number of undefined literals in L(M).

Requirement 1 and the earlier refinements are enough to guarantee that we
can use the local Ti-solvers directly—as opposed to building a solver for the
combined theory T—to generate derivations satisfying Theorem 2. The first
thing we need for Theorem 2 is easy to see : it is always possible to derive from a
state ∅ || F a final state S with respect to Basic DPLL Modulo Theories (=⇒B),
The second thing we need is that whenever the final state S has the form M || F ′,
the assignment M is T -consistent. Although none of the local solvers is able to
determine by itself whether M is T -consistent, it can do that in cooperation with
the other solvers, thanks to Requirement 1 and the Nelson-Oppen combination
result in [13]. It is then not difficult to show that, under the assumptions in this
section, the following property holds (see [2] for a detailed proof).

Property 3. Every derivation of the form ∅ || F =⇒∗

XT M || G where M || G
is final wrt. Basic DPLL Modulo Theories can be extended in finitely many
steps using the solvers for T1, . . . , Tn to a derivation of the form ∅ || F =⇒∗

XT

M || G =⇒∗

XT S where S is either FailState or a state M ′ || G′ with a T -consistent
M ′.

4.2 Convex theories

We mentioned in Section 1 that the Nelson-Oppen method is particularly efficient
if (i) the component theories Ti are all convex, i.e., such that for all sets L of
ground Σi(K)-literals and all sets E of ground K-equalities, L |=Ti

∨
e∈E e iff

L |=Ti
e for some e ∈ E and (ii) the Ti solvers are able to compute Ti-entailed

shared equalities. In that case, no expensive case splits over shared equalities are
needed, and the equality propagation process can be stopped as soon as there
are no more entailed shared equalities. This situation can be neatly modeled
in our framework if we slightly revise the precondition of the T-Propagate rule
on the state M || F to allow the propagation of entailed equalities occurring in⋃

i S(M) in addition to the literals occurring (possibly negated) in F .3 It is not
difficult to see that this extension preserves all the properties of the framework.

When only some of the component theories are convex, an even better exten-
sion is to allow the propagation of entailed shared disequalities as well, because
this too, even if not strictly needed, may ease the lemma generation burden of
the solvers for the non-convex theories. With these extensions then, we can have
solvers for convex theories use only T-Propagate to propagate entailed shared
(dis)equalities to the other solvers, and solvers for non-convex theories use a flex-
ible combination of T-Propagate, to propagate single shared (dis)equalities and
Extended T-Learn, to propagate proper disjunctions of shared (dis)equalities.

3 Note that an equality between shared constants need not occur in F .

15

5 Conclusions and further work

We have proposed a new version of DPLL(T) in which theory solvers can delegate
all case splits to the DPLL engine. This can be done on demand for solvers that
can encode their internal case splits into one or more clauses, possibly including
new constants and literals. It results in drastically simpler theory solvers, and
can lead, we believe, to more efficient overall systems. We have formalized this in
an extension of Abstract DPLL and proved it correct. As one anonymous referee
once put it: “this is worth emphasizing in an area notorious for gaps between
published algorithms and their actual implementations.”

We have also introduced an efficient, we believe, DPLL(T1, . . . , Tn) architec-
ture for combined theories, which also fits naturally into the extended Abstract
DPLL framework. We think that the new insights gained by this formalization
will help us and others when incorporating these ideas into our respective SMT
solvers.

Future work involves the definition of theory-dependent splitting heuristics,
and the ways in which the Ti-solvers should communicate with the engine about
these heuristics.

References

1. C. Barrett, L. de Moura, and A. Stump. SMT-COMP: Satisfiability Modulo The-
ories Competition. In CAV’05, LNCS 3576, pages 20–23. Springer, 2005.

2. C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Splitting on demand in
satisfiability modulo theories. Technical report. University of Iowa, 2006. Available
at ftp://ftp.cs.uiowa.edu/pub/tinelli/papers/BarNOT-RR-06.pdf.

3. C. W. Barrett. Checking Validity of Quantifier-Free Formulas in Combinations of

First-Order Theories. PhD thesis, Stanford University, 2003.
4. C. Barrett, D. Dill, and A. Stump. Checking satisfiability of first-order formulas by

incremental translation into SAT. In CAV’02, LNCS 2404, pages 236–249, 2002.
5. M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, S. Ranise, P. van Rossum,

and R. Sebastiani. Efficient theory combination via boolean search. Information

and Computation. To appear. Cf. conference paper at CAV’05.
6. D. Cantone and C. G. Zarba. A new fast tableau-based decision procedure for

an unquantified fragment of set theory. In Automated Deduction in Classical and

Non-Classical Logics, LNCS 1761, pages 127–137. Springer, 2000.
7. M. Davis, G. Logemann, and D. Loveland. A machine program for theorem-

proving. Comm. of the ACM, 5(7):394–397, 1962.
8. M. Davis and H. Putnam. A computing procedure for quantification theory. Jour-

nal of the ACM, 7:201–215, 1960.
9. H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T):

Fast Decision Procedures. In CAV’04, LNCS 3114, pages 175–188. Springer, 2004.
10. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.

ACM Trans. Program. Lang. Syst., 1(2):245–257, 1979.
11. R. Nieuwenhuis, A. Oliveras, and C. Tinelli. Abstract DPLL and Abstract DPLL

Modulo Theories. In LPAR’04, LNAI 3452, pages 36–50. Springer, 2005.
12. A. Stump, C. W. Barrett, D. L. Dill, and J. R. Levitt. A decision procedure for an

extensional theory of arrays. In LICS’01, pages 29–37. IEEE Computer Society.

16

13. C. Tinelli and M. T. Harandi. A new correctness proof of the Nelson–Oppen com-
bination procedure. In FroCoS’96, pages 103–120. Kluwer Academic Publishers.

