
Congruence Closure with Integer Offsets

Robert Nieuwenhuis? and Albert Oliveras??

Technical University of Catalonia
Jordi Girona 1

08034 Barcelona, Spain
{roberto,oliveras}@lsi.upc.es

Abstract. Congruence closure algorithms for deduction in ground equa-
tional theories are ubiquitous in many (semi-)decision procedures used
for verification and automated deduction. They are also frequently used
in practical contexts where some interpreted function symbols are present.
In particular, for the verification of pipelined microprocessors, in many
cases it suffices to be able to deal with integer offsets, that is, instead of
only having ground terms t built over free symbols, all (sub)terms can
be of the form t + k for arbitrary integer values k.
In this paper we first give a different very simple and clean formulation for
the standard congruence closure algorithm which we believe is of interest
on itself. It builds on ideas from the abstract algorithms of [Kap97,BT00],
but it is easily shown to run in the best known time, O(n log n), like the
classical algorithms [DST80,NO80,Sho84].
After that, we show how this algorithm can be smoothly extended to
deal with integer offsets without increasing this asymptotic complexity.

1 Introduction

Many applications of verification and automated deduction benefit from (semi)-
decision procedures for particular theories. For example, in circuit verification
one can consider abstractions that forget about the meaning of certain inter-
preted functions, and then decide the satisfiability of formulae in the so-called
logic of equality with uninterpreted functions (EUF) [BD94]. EUF formulae are
boolean formulae over atoms that are (dis)equalities between terms without vari-
ables. For example, the EUF formula:

f(a, b)=f(c, d) ∨ a 6=c ∨ b 6=d

is a tautology, and

(f(f(a)) 6=b ∨ f(f(f(b))) 6=b) ∧ f(a) = a ∧ a = b

is unsatisfiable.
? Both authors partially supported by the spanish CICYT project Maverish ref.
TIC2001-2476-C03-01.

?? Supported by a FPU grant, ref.AP2002-3533, from the Spanish Secretaŕıa de Estado
de Educación y Universidades.

Deciding the satisfiablity of EUF formulae also has applications for proving
satisfiability in first-order logic with equality: checking whether a model of cardi-
nality k exists roughly amounts to instantiating in all possible ways with k new
constants and deciding the satisfiability of the resulting ground EUF formula.

Due to the arbitrary boolean part of the formula, the EUF satisfiability prob-
lem is obviously NP-hard, and its membership in NP is also easily shown. Cur-
rrently, most implementations dealing with EUF and its extensions are based on
translations into propositional SAT. However, we are working on a general pro-
cedure for EUF, and several extensions of it, without translating into SAT. Our
algorithm is based on the Davis-Putnam-Logemann-Loveland (DPLL) procedure
[DP60,DLL62], but where the information coming from the current interpreta-
tion is eagerly propagated by incremental constraint solvers. The idea is that
these constraint solvers can be plugged in into a general DPLL(X) scheme, very
much in the flavour of the constraint logic programming scheme CLP (X). In
the case of EUF, which can be seen as DPLL(=), the solver roughly amounts
to a congruence closure procedure (extended for dealing with backtracking and
disequalities), which finds the new equalities that follow from the given ones.

In this paper we concentrate on congruence closure for positive equations.
Nowadays well-known congruence closure algorithms were already given in the
early 1980s by Downey, Sethi, and Tarjan, [DST80] and also by Nelson and
Oppen [NO80]; see also Shostak’s method for the combination of decision proce-
dures [Sho84]. However, for two main reasons, these early versions of congruence
closure are not very convenient for our purposes.

First, they are formulated on graphs, and, in order to obtain the best known
worst-case complexity bound, O(n log n), rather involved manipulations are
needed; for example, a transformation to graphs of outdegree 2 is applied, see
[DST80]. Since our DPLL procedure will call the congruence closure module a
large number of times, and since we will extend our procedure to richer logics,
we prefer to replace this transformation by another cleaner one, at the formula
representation level, and which is done once and for all, already on the input
formula given to our DPLL(=) procedure. Our key idea for this is to Curryfy,
like in the implementation of functional languages; as far as we know, this had
not been done before for congruence closure; as a result, there will be only one
binary “apply” function symbol (denoted here by a dot ·) and constants. For
example, Curryfying f(a, g(b), b) gives ·(·(·(f, a), ·(g, b)), b). This idea makes the
algorithms surprisingly simple and clean and hence easier to extend and to reason
about.

Second, like in the more abstract congruence closure approaches, such as the
ones of [Kap97,BT00], we introduce new constant symbols c for giving names
to non-constant subterms t; such t are then replaced everywhere by c and the
equation t = c is added. As we will see, then, in combination with Curryfication,
one can obtain the same efficiency as in more sophisticated directed acyclic
graph (DAG) implementations by appropriately indexing the new constants like
c, which play the role of the pointers to the (shared) subterms like t in the DAG

approaches. For example, we flatten the equation

·(·(·(f, a), ·(g, b)), b) = b

by replacing it by

{ ·(f, a) = c, ·(g, b) = d, ·(c, d) = e, ·(e, b) = b }

As a consequence of this transformation, which is again done once and for all on
the initial problem that is input to our DPLL procedure, we can assume that
our congruence closure module receives as input only equations between two
constants or between a constant and a “·” applied to two constants1.
Congruence closure algorithms are also frequently used in practical contexts

where some interpreted function symbols are present. In particular, for the verifi-
cation of pipelined and/or superscalar microprocessors, in many cases it suffices
to be able to deal with integer offsets, that is, instead of only having ground
terms t built over free symbols in the equations, all (sub)terms can be of the
form t+k for arbitrary integer values k. This has been done in the logic handled
by Bryant et al. [BLS02], where predecessor and successor symbols occur.

The remainder of this paper is structured as follows. Section 2 introduces the
basic notions and notations. After Section 3, where the two initial transforma-
tions are formalized, in Section 4 we give our extremely simple formulation of the
congruence closure algorithm, and we prove its correctness and its O(n log n)
runtime and linear space requirements. In Section 5, we give evidence for an ad-
ditional advantage of this clean algorithm, by showing that it can be extended in
very a smooth way for dealing with integer offsets, while maintaining the same
time and space requirements. Finally, in Section 6 we conclude and outline our
plans for future work in this project.

2 Basic notions and notations

Let F be a (finite) set of function symbols with an arity function arity :F → IN .
Function symbols f with arity(f) = n are called n-ary symbols (when n = 1,
one says unary and when n = 2, binary). If arity(f) = 0, then f is a constant
symbol. The set of ground terms over F , denoted by T (F), is the smallest set
containing all constant symbols such that f(t1, . . . , tn) is in T (F) whenever
f ∈ F , arity(f) = n, and t1, . . . , tn ∈ T (F).
By |s| we denote the size (number of symbols) of a ground term s: we have

|a| = 1 if a is a constant symbol and |f(t1, . . . , tn)| = 1 + |t1| + . . . + |tn|. The
depth of a term s is denoted by depth(s) and is defined: depth(a) = 1 if a is a
constant symbol and depth(f(t1, . . . , tn)) = 1 +max(depth(t1), . . . , depth(tn)).
An equivalence relation is a reflexive, symmetric, and transitive binary rela-

tion. A relation = on T (F) ismonotonic if f(s1, . . . , sn) = f(t1, . . . , tn) whenever

1 In fact, after this, the atoms in our EUF formula will be (dis)equalities between
constants: all function symbols are hidden inside the congruence closure module.

f is an n-ary function symbol in F and si = ti for all i in 1 . . . n. A congruence
relation is a monotonic equivalence relation.
A ground equation is an (unordered) pair of ground terms (s, t), denoted

by s = t. Given a set of ground equations E built over F , we denoted by E∗

the congruence generated by E: the smallest congruence relation = over T (F)
containing E. We sometimes write E |= s = t to denote the fact that s = t

belongs to E∗, and if E′ is a set of equations, we write E |= E ′ to denote that
E |= s = t for all s = t in E′, and we write E ≡ E′ to denote that E |= E′ and
E′ |= E.

3 Initial Transformations

3.1 Transformation into Curry terms

Consider a new signature F ′ obtained from the original F by introducing a new
binary function symbol “·”, and converting all other symbols into constants.
Then the Curry form of a term t in T (F) is a term Curry(t) in T (F ′) defined
as follows:
Curry(c) = c, if c is a constant symbol, and
Curry(f(t1...tn)) = ·(. . . · (·(f,Curry(t1)),Curry(t2)), . . . ,Curry(tn))
For example, the Curry form of f(a, g(b), c)) is ·(·(·(f, a), ·(g, b)), c). Similarly,
we consider the Curry transformation on equations, where Curry(s = t) is
Curry(s) = Curry(t), and on sets of equations: Curry(E) = {Curry(e) | e ∈ E}.
We make the following simple observations:

Proposition 1. Let t be a term. Then |Curry(t)| ≤ 2|t|, i.e., the Curry trans-
formations only produces a linear growth of the input.

Proposition 2. Let E be a set of ground equations over F and let s = t be an
equation over F . Then Curry(E) |= Curry(s = t) if, and only if, E |= s = t.

3.2 The flattening transformation into terms of depth at most 2

Consider the following transformation step on E:

E ⇒ E′ ∪ {c = t} (Constant introduction and replacement)

where c is a new constant symbol not occurring anywhere in E and E ′ is obtained
by replacing all occurrences of t in E by c. We have the following:

Proposition 3. Let E0 be a set of equations, let s = t be an equation, (both built
over F ′), and let E be obtained by applying zero or more constant introduction
and replacement steps on E0.

Then E0 |= s = t if, and only if, E |= s = t.
Furthermore, if a and b are constants not occurring in E and in s = t, then

E |= s = t if, and only if, E ∪ {s = a, t = b} |= a = b.
By applying a linear number of constant introduction and replacement steps

to E0 an E can be obtained such that all equations of E have a constant side, E

has depth at most 2, and |E| ≤ 2|E0|.

4 Congruence Closure

In the following, (possibly primed or indexed) lowercase letters a, b, c, d, . . . de-
note constant symbols. The procedure receives as input a set of equations E of
the form a = b or of the form ·(a, b) = c, and we assume that no term ·(a, b)
occurs more than once in the input (i.e., after flattening no different constant
names exist for the same term).

The procedure halts when it has computed the congruence generated by the
input equations, after which it can output (in linear time) the list of congruence
classes. It can also answer in constant time queries asking whether two terms
(constants or terms ·(a, b)) belong to the same class. In fact, the procedure
produces a convergent term rewrite system by which any term t rewrites into
its unique normal form in time linear in |t| (see Subsection 4.2); hence this
allows one to decide in time O(|s| + |t|) whether two arbitrary terms s and t

belong to the same class (note that it is irrelevant whether s and t are built over
the original signature or the Curryfied one, since the translation is linear too).
This is possible without any post-processing because, unlike other congruence
closure algorithms, our procedure does not rely on the well-known union-find
data structure (by which equalities between constants cannot always be decided
in constant time).

The procedure uses the following five simple data structures, which include
the equivalence class representation, where (as usual) each class has a single
distinguished representative constant:

1. Pending unions: a list of pairs of constants yet to be merged.

2. The Representative table: an array indexed by constants, containing for each
constant its current representative.

3. The Class lists: for each representative, the list of all constants in its class.

4. The Lookup table: for each input term ·(a, b),
Lookup(Representative(a),Representative(b)) returns in constant time a con-
stant c such that ·(a, b) is equivalent to c, and returns ⊥ if there is no such
c.

5. The Use lists: for each representative a, the list of input equations ·(b, c) = d

such that a is the representative of b or c (or of both).

These data structures are initialized as expected: Pending contains the initial
equations of the form a = b, and for each initial equation ·(a, b) = c, it belongs
to UseList(a) and to UseList(b), and Lookup(a, b) is c (Lookup(a, b) is undefined
for all other pairs (a, b)). Representative and ClassList contain all constants as
their own representatives in one-element classes. In the following algorithm, a′

denotes Representative(a) for each constant a:

1. While Pending is non-empty Do
2. Remove an equation a = b from Pending
3. If a′ 6= b′ and, wlog., |ClassList(a′)| ≤ |ClassList(b′)| Then
4. For each c in ClassList(a′) Do
5. set Representative(c) to b′ and add c to ClassList(b′)
6. EndFor

7. For each ·(c, d) = e in UseList(a′) Do
8. If Lookup(c′, d′) is some f and f ′ 6= e′ Then

9. add e′ = f ′ to Pending
10. EndIf

11. set Lookup(c′, d′) to e′

12. add ·(c, d) = e to UseList(b′)
13. EndFor

14. EndIf

15. EndWhile

Example 1. Consider the following input and the set E0 obtained after curryfy-
ing and flattening it:

f(a) = g(b)
g(c) = h(f(c), g(a))

b = c

f(c) = g(a)
h(d, d) = g(b)

g(a) = d

=⇒

·(f, a) = e1

·(g, b) = e2

·(g, c) = e3

·(f, c) = e4

·(h, e4) = e5

·(g, a) = e6

·(e5, e6) = e7

·(h, d) = e8

·(e8, d) = e9

+

e1 = e2

e3 = e7

b = c

e4 = e6

e9 = e2

e6 = d

The following eight iterations take place:

1. Let the first equation to be removed from Pending be e1 = e2. We set
Representative(e1) to e2 (although since |e1| = |e2| = 1 we also had the
reverse choice); since UseList(e1) is empty, we can go the next iteration.

2. Now the equation e3 = e7 is picked from Pending , and (again we can choose)
set Representative(e3) to e7; UseList(e3) is also empty.

3. We pick b = c from Pending , set Representative(b) to c, and now need to
handle the single equation ·(g, b) = e2 in UseList(b): since Lookup(g′, b′) =
Lookup(g, c) = e3, and e′3 = e7 and e′2 = e2, the equation e7 = e2 is added
to Pending ; furthermore, Lookup(g, c) is set to e2, and ·(g, b) = e2 is added
to UseList(c).

4. e7 = e2 is handled (here, Pending is a stack) and Representative(e2) is set
to e7; UseList(e2) = ∅.

5. Pick e4 = e6 and set Representative(e4) to e6; the only equation in UseList(e4)
is ·(h, e4) = e5, which leads to no new equations.

6. Set Representative(e9) to e7.

7. Set Representative(d) to e6; UseList(d) = {·(h, d) = e8, ·(e8, d) = e9}, from
which, due to its first equation, e5 = e8 is added to Pending , because
Lookup(h′, d′) is Lookup(h, e6) = e5 and e5 and e8 are distinct represen-
tatives.

8. Set Representative(e5) to e8; UseList(e5) = {·(e5, e6) = e7}, and, since
Lookup(e′5, e

′
6) is Lookup(e8, e6) = e9, a new equality e7 = e9 follows, but

it is discarded because e′7 = e′9 = e7.

The final congruence (with representatives written in bold) is:
{ a } { c = b } { f } { g } { h }
{ e6 = e4 = d = ·(g, a) = ·(f, c) }
{ e7 = e1 = e2 = e3 = e9 = ·(f, a) = ·(g, b) = ·(g, c) = ·(e8, d) = ·(e5, e6) }
{ e8 = e5 = ·(h, e4) = ·(h, d) ; } ut

4.1 Runtime analysis

Theorem 1. The algorithm runs in O(n log n) time and in linear space.

Proof. The proof is simple and quite standard. The Lookup table can be im-
plemented by a hash table, or, if hashing is not considered appropriate, by a
two-dimensional array2. The time spent for maintaining the Representative data
structure that gives constant time access to representatives is amortized over the
whole algorithm: the loop at lines 4,5,6 is executed O(k log k) times, where k

(which is –usually much– smaller than the input size n) is the number of different
constants, namely each time one of the k constants changes its representative
(which cannot happen more than log k times, because the size of its class is
at least doubled each time and is upper bounded by k). The same happens for
the loop at lines 7-13: each one of the at most n input equations of the form
·(c, d) = e is treated when c or d changes its representative (which, as before,
cannot happen more than log k times). This in turn implies that O(n log k) new
equations are added to Pending at line 9. Altogether, we obtain an O(n log n)
runtime. Using hashing for the Lookup table, only linear space is used. Note
that the UseList(a′) in line 7 is no longer needed and its space can be re-used
(otherwise, this would require O(n log n) space). ut

4.2 Correctness

The aim of the algorithm is to compute the congruence generated by the input
equations, in the following standard form:

Definition 1. A set of equations E is in standard form if its equations are of
the form a = b or of the form ·(a, b) = c whose (respective) left hand sides a and
·(a, b) only occur once in E.

2 To avoid the quadratic initialization time of such a two-dimensional Lookup table,
one can store in each Lookup[a, b] an index k to an auxiliary array A, where A[k]
contains ·(a, b) = c, and with a counter max indicating that A contains correct (i.e.,
initialized) information for all k < max.

Intuitively, in such a standard E, the constants at the right hand sides and
below the “·” symbols are all representatives of their respective classes. In fact,
considering its equations (oriented from left to right) as rewrite rules, it is a con-
vergent term rewrite system (see [DP01]); by rewriting with it, deciding whether
an equation s = t is in the congruence can be done in time O(|s = t|).

Definition 2. Let E0 be a set of equations of the form a = b or of the form
·(a, b) = c. A standard congruence closure for E0 is a set of equations E in
standard form such that E0 ≡ E.

In the following, again a, b, c, . . . denote constant symbols, and their primed
versions a′, b′, c′, . . . denote their current representatives. The set of input equa-
tions of the algorithm is denoted by E0. For a given time line 1 of the algorithm
is executed, we denote by RepresentativeE the set of all non-trivial equations of
the form a = a′ and of the form ·(a′, b′) = c′ where a, b and c are constants in
E0 and c is Lookup(a′, b′).
We will prove that when our algorithm terminates, RepresentativeE is a

standard congruence closure for the input E0.

Lemma 1. Apart from the invariants of the data structures 2, 3, 4, and 5, the
following are invariants of the main loop of our algorithm, i.e., they hold each
time line 1. is executed:

Inv1: RepresentativeE is in standard form
Inv2: (RepresentativeE ∪ Pending)∗ = E∗

0

Proof. Invariant Inv1 always holds by definition of RepresentativeE . The invari-
ants of the data structures 2, 3, 4, and 5, as well as invariant Inv2 hold initially,
by the assumptions on E0. To see that they are also preserved by the loop, we
check lines 2, 5, 9, 11, and 12, which are the only ones that modify the data struc-
tures, and show that the congruence (RepresentativeE ∪Pending)∗ is changed by
no iteration: (i) each time an equation a = b is removed from Pending (line 2.),
line 5. ensures that this equality will belong to the next RepresentativeE , and
also preserves the invariants of the data structures 2 and 3; (ii) all e′ = f ′ that are
added to Pending (at line 9.) are in the previous (RepresentativeE ∪Pending)∗:
if e′ 6= f , this is because, say, c (the reasoning is the same for d) has changed its
representative from a′ to b′, and Lookup(a′, d′) and Lookup(b′, d′) were congruent
to e′ and f ′ repectively in the previous (RepresentativeE ∪Pending)∗. (iii) lines
11 and 12 ensure that Lookup(a′, b′) is defined for all input terms ·(a, b) and
that the use lists for each representative contain all needed equations, i.e., they
preserve the representation invariants 3 and 4. ut

Now the following result follows easily:

Theorem 2. When the algorithm terminates, RepresentativeE is a standard
congruence closure for the input E0.

Proof. The algorithm terminates when Pending is empty. Then, since by invari-
ant Inv2 (RepresentativeE ∪ Pending)∗ = E∗

0 , we have RepresentativeE
∗ = E∗

0 ;
since by invariant Inv1 RepresentativeE is in standard form, RepresentativeE is
a standard congruence closure for the input E0. ut

5 Integer offsets

In a recent paper by Bryant, Lahiri, and Seshia [BLS02] the logic of EUF is
extended in several ways. In particular, in some of their formulae coming from
the verification of pipelined microprocessors, the functions successor (s) and
predecessor (p) appear, and all terms are interpreted as integers.
In this section we deal with (conjunctions of positive, as before) input equa-

tions built over free symbols and successor and predecessor. To denote a (sub)term
t with k successor symbols s(. . . s(t) . . .), we write t+ k and similarly write t+ k

with negative k for p(. . . p(t) . . .). This is why we speak of terms with integer
offsets.

A difference with the standard congruence closure problem is that conjunc-
tions of positive equations with integer offsets can be unsatisfiable:

Example 2. The set { f(a) = c, f(b) = c+ 1, a = b } is unsatisfiable. ut

However, in spite of this difference, we will show that one can still obtain the
same time and space bounds as for the case with only free symbols. The main
idea is to extend the notion of equivalence relation for dealing with equivalences
up to offsets:

Example 3. Consider the three equations:

a+ 2 = b− 3
b− 5 = c+ 7

c = d− 4

which can equivalently
be written as:

a = b− 5
b = c+ 12
c = d− 4

Here all four constants are equivalent up to some offset. If we take b as the repre-
sentative of this class, we can write the other constants with their corresponding
offsets with respect to the representative b in a class list:

{ b = a+ 5 = c+ 12 = d+ 8}

thus storing an infinite set of congruence classes, namely the ones represented
by . . . , b− 1, b, b+ 1, . . . in finite space. ut

5.1 The initial transformations

The extension to integer offsets does not affect much the process of curryfication
and flattening. Curryfication is only modified by imposing that for any term t

and any integer k we have Curry(t + k) = Curry(t) + k and flattening is not
affected at all.

Example 4. The equation f(a + 1, g(b + 2), b − 2) = b − 1 in Curryfied form
becomes:

·(·(·(f, a+ 1), ·(g, b+ 2)), b− 2) = b− 1

which is flattened into:
·(f, a+ 1) = c

·(g, b+ 2) = d

·(c, d) = e

·(e, b− 2) = b− 1

ut

Note that, due to the fact that the first arguments of the “·” symbol do not
represent full (sub)terms of the original input, after the transformation they will
have no integer offsets.
Moreover, this property is preserved during the congruence closure process,

because the congruence closure process can only make them equal to other such
first-argument terms. This fact is illustrated by the following example.

Example 5. Consider the equations:

f(a, a, a) = c

f(b, b, b) = d

a = b

Curry
=⇒

·(·(·(f, a), a), a) = c

·(·(·(f, b), b), b) = d

a = b

flat
=⇒

·(f, a) = f1 ·(f, b) = f ′
1

·(f1, a) = f2 ·(f ′
1, b) = f ′

2

·(f2, a) = c ·(f ′
2, b) = d

a = b

Here f represents a non-existing 0-ary version of f , and f1 represents a term
f(a) with a unary version of f , which of course also does not exist in the input
equations; similarly, f2 is f(a, a) (a non-existing version of f with 2 arguments).
The same happens for f ′

1 and f ′
2. During the congruence closure process, when

a is merged with b, the unary versions of f and f ′ get merged as well, and also
the binary versions, as well as, finally, the 3-ary versions, represented by c and d.
But note that it is impossible that fi gets merged with fj or with f ′

j , for i 6= j.
Roughly speaking, there is a distinct sort for each arity. ut

Altogether, we can assume that no integer offsets will ever appear in the first
argument of a “·” symbol.

5.2 The algorithm for integer offsets

In the following, possibly subindexed k will represent concrete integers and
a, b, c, d, . . . will be constants. The input for our procedure will be a set of equa-
tions E of the form a = b+ k or of the form ·(a, b+ kb) = c+ kc, and we again
assume that no term ·(a, b+ k) occurs more than once in the input.
The procedure for dealing with integer offsets halts giving the congruence

generated by E whenever E is satisfiable. When it is not, it returns unsatisfiable.

The data structures used in this case are nearly the same as in the previous
section:

1. Pending unions: a list of equalities of the form a = b+k yet to be processed.
2. The Representative table: an array indexed by constants, containing for each
constant a, the pair (b, k) such that b is its representative constant, with
b = a+k.

3. The Class lists: for each representative, the list of all pairs (constant, offset)
in its class, as in Example 3.

4. The Lookup table: for each input term ·(a, b+kb), where Representative(a) =
(a′, 0) and Representative(b) = (b′, kb′) (that is, b is b′−kb′), the function
Lookup(a′, b′+(kb−kb′)) returns in constant time c+kc such that ·(a, b+kb)
is equivalent to c+kc, and returns ⊥ if there is no such c+kc.

5. The Use lists: for each representative a, the list of input equations ·(b, c+kc) =
d+kd such that a is the representative of b or c (or of both).

The initialization is as adapted as expected from the case without offsets. In
the following, for each constant a, as before we denote its representative constant
by a′, and now also we write r(a+ka) to denote the representative of such a sum,
i.e., r(a+ka) is a′+ka−k if Representative(a) = (a′, k). The algorithm is as
follows:

1. While Pending is non-empty Do
2. Remove a = b+k with representative a′ = b′+kb′ from Pending
3. If a′ 6= b′ and, wlog., |ClassList(a′)| ≤ |ClassList(b′)| Then
4. For each c+kc in ClassList(a

′) Do
5. set Representative(c) to (b′, kc−kb′) and add it to ClassList(b

′)
6. EndFor

7. For each ·(c, d+kd) = e+ke in UseList(a
′) Do

8. If Lookup(c′, r(d+kd)) is f+kf and r(f+kf) 6= r(e+ke) Then
9. add e = f+(kf−ke) to Pending
10. EndIf

11. set Lookup(c′, r(d+kd)) to r(e+ke)
12. add ·(c, d+kd) = e+ke to UseList(b

′)
13. EndFor

14. ElseIf a′ = b′ and kb′ 6= 0
15. return unsatifiable
16. EndIf

17. EndWhile

Theorem 3. The algorithm for congruence closure with integer offsets runs in
O(n log n) time and in linear space.

Proof. The proof is analogous to the one of Theorem 1. In this case the Lookup
table has to be implemented by a hash table, since the Lookup function now in
fact has three arguments (constant, constant, offset), unless one could in advance
determine the range of the offsets. ut

The notions of standard form and of standard congruence extend in the
expected way to integer offsets, and the corresponding result, analogous to The-
orem 2, follows along the same lines.

6 Conclusions

We have given a new congruence closure algorithm. Apart for being short, clean
and simple, it combines the efficiency of the classical algorithms [DST80,NO80]
[Sho84] with the elegance of the more modern abstract view, as expressed in the
frameworks of [Kap97,BT00,BTV]. These frameworks for abstract congruence
closure have led to new insights and new results for several problems in rewriting,
but only provide sub-obtimal (quadratic) time complexity results (although we
have recently learned that the algorithm of [BT00] can be extended with less
abstract and less simple control data in its inference rules in order to make it
run in O(n log n) time; in particular, this requires an on-the-fly ordering on
constants that forces congruence classes to be merged in the right order; this is
sketched in the journal version [BTV], to appear).
Possibly this work can be seen as a concrete implementation of some of these

abstract approaches, but for which a tighter and simpler complexity analysis has
become possible, essentially due to the initial Curryfication.
On the other hand, the existing algorithms for ground Knuth-Bendix comple-

tion (which implicitly also compute a congruence closure) are all rather involved,
and moreover either quadratic, like [PSK96], or are based on the previous use of
one of the classical congruence closure algorithms on graphs [Sny89].
We believe that our cleaner formulation of congruence closure will also be

useful for improving its explanation and understanding, and for applications and
extensions such as the ones we have mentioned. Regarding practical aspects, from
our first experiments our algorithm appears to be fast, in spite of the fact that
it is extremely easy to implement. We are currently working on the design and
a first implementation of the whole DPLL(=) procedure, including, of course,
the congruence closure module, as well as on its extension to EUF with integer
offsets. Further extensions to be studied include the presence of other interpreted
symbols, like associative and/or commutative ones.
In the paper by Bryant, Lahiri, and Seshia [BLS02] the logic with integer

offsets is also further extended with an ordering predicate >. But surprisingly,
already when only positive atoms s > t are added to the input E0, deciding the
satisfiability of such E0, which we call here the CC-Ineq problem (for congruence
closure with inequalities), becomes NP-complete:

Proposition 4. The CC-Ineq problem is NP-complete.

Proof. Here we only sketch NP-hardness. Given a graph G = (V,E) where V =
{a1, . . . , an} and E = {(b1, b

′
1), · · · , (bm, b′m)} and an integer k, the following

CC-Ineq formula FG is satisfiable if and only if G is k-colorable:

G(c+ 1, c+ 1) = G(c+ 2, c+ 2) = . . . = G(c+ k, c+ k) = true

c+ k + 1 > f(a1) > c

c+ k + 1 > f(a2) > c
...

...
...

c+ k + 1 > f(an) > c

true > G(f(b1), f(b
′
1))

true > G(f(b2), f(b
′
2))

...
...

true > G(f(bm), f(b
′
m))

Intuitively, f represents the colour of each vertex (k possibilites), and G is used
to express that no two adjacent vertices will have the same colour. ut

References

[BD94] J. R. Burch and D. L. Dill. Automatic verification of pipelined microprocessor
control. In Proc. 6th International Computer Aided Verification Conference,
pages 68–80, 1994.

[BLS02] R. Bryant, S. Lahiri, and S. Seshia. Modeling and verifying systems using a
logic of counter arithmetic with lambda expressions and uninterpreted func-
tions. In E. Brinksma and K. G. Larsen, editors, Procs. 14th Intl. Conference
on Computer Aided Verification (CAV), volume 2404 of Lecture Notes in Com-
puter Science. Springer-Verlag, July 27–31 2002.

[BT00] Leo Bachmair and Ashish Tiwari. Abstract congruence closure and special-
izations. In David McAllester, editor, Conference on Automated Deduction,
CADE ’2000, volume 1831 of Lecture Notes in Artificial Intelligence, pages
64–78, Pittsburgh, PA, June 2000. Springer-Verlag.

[BTV] Leo Bachmair, Ashish Tiwari, and Laurent Vigneron. Abstract congruence
closure. Journal of Automated Reasoning. To appear.

[DLL62] Martin Davis, George Logemann, and Donald Loveland. A machine program
for theorem-proving. Communications of the ACM, 5(7):394–397, July 1962.

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification
theory. Journal of the ACM, 7:201–215, 1960.

[DP01] Nachum Dershowitz and David Plaisted. Rewriting. In J.A. Robinson and
A. Voronkov, editors, Handbook of Automated Reasoning. Elsevier Science
Publishers and MIT Press, 2001.

[DST80] Peter J. Downey, Ravi Sethi, and Robert E. Tarjan. Variations on the com-
mon subexpressions problem. J. of the Association for Computing Machinery,
27(4):758–771, 1980.

[Kap97] Deepak Kapur. Shostak’s congruence closure as completion. In H. Comon,
editor, Proceedings of the 8th International Conference on Rewriting Tech-
niques and Applications, volume 1232 of Lecture Notes in Computer Science.
Springer-Verlag, 1997.

[NO80] Greg Nelson and Derek C. Oppen. Fast decision procedures bases on congru-
ence closure. Journal of the Association for Computing Machinery, 27(2):356–
364, April 1980.

[PSK96] David A. Plaisted and Andrea Sattler-Klein. Proof lengths for equational
completion. Information and Computation, 125(2):154–170, 15 March 1996.

[Sho84] Robert E. Shostak. Deciding combinations of theories. Journal of the ACM,
31(1):1–12, January 1984.

[Sny89] Wayne Snyder. An O(n log n) algorithm for generating reduced sets of ground
rewrite rules equivalent to a set of ground equations E. In N. Dershowitz,
editor, Rewriting Techniques and Applications, 3th International Conference,
LNCS. Springer-Verlag, 1989.

