Proving Termination of
Imperative Programs Using Max-SMT

Daniel Larraz, Albert Oliveras, Enric Rodriguez-Carbign&lbert Rubio
Universitat Politecnica de Catalunya, Barcelona, Spain

Abstract—We show how Max-SMT can be exploited in Moreover, by giving different weights to the constraintsves
constraint-based program termination proving. Thanks to &- set priorities and favor those invariants and (quasi-) iramk
pressing the generation of a ranking function as a Max-SMT functions that lead to the furthest progress.

optimization problem where constraints are assigned diffeent The techni has b imol ted | tot f
weights, quasi-ranking functions —functions that almost atisfy all € technique has been implemented In our prototype o

conditions for ensuring well-foundedness— are produced ia lack C++ analyzerCpplnv. Thanks to our tool, we have proved
of ranking functions. By means of trace partitioning, this dlows termination of a wide set of programs, which have been taken
our method to progress in the termination analysis where oter from the programming learning environmeditge.org [7]

approaches would get stuck. Moreover, Max-SMT makes it easy ; . ;
to combine the process of building the termination argumentvith and from benchmark suites in the literatule [8].

the usually necessary task of generating supporting invaants.
The method has been implemented in a prototype that has A. Related Work.

successfully been tested on a wide set of programs. As mentioned above, our method is based[dn [5]. Namely,
we have borrowed the core argument for termination proofs,
. INTRODUCTION which is based on iteratively discarding those transitithas

Proving termination is necessary to ensure total correstngannot be executed infinitely. However, we improve on the way
of programs. Still, termination bugs are difficult to traceda supporting invariants are generated. While [in [5] invatsan
are hardly notified: as they do not arise as system failurés lawe pre-computed in a process that is independent from the
as unresponsive behavior, when faced to them users tendetonination analysis and which turns out to be the bottlenec
restart their devices without reporting to software depefs. of the approach, we find lazily the invariants needed to ensur
Due to this, approaches for proving termination of impe>i that ranking functions meet their requirements.
programs have regained an increasing interest in the lasOur research also builds upoh! [6], where the constraint-
decade[[1]-H4]. based method[9] was first applied to termination. However, w

One of the major difficulties in these methods is that ofteextend this work in several aspects. First, in that approath
supporting invariantare needed. E.g., inl[5] linear invariantdinear programs with unnested loops can be handled, while we
are exhaustively computed before termination analysishén can deal with arbitrary control structures. Moreover/[ihtf&
same paper a heuristic approach is also presented, whigh aygneration of their lexicographic ranking functions regsia
requires a light-weight invariant generator by restrigtito higher-level loop that, before sending the constraint [@oito
single-variable ranking functions. Another solution isposed the solver, determines the precedence of the transitiottsein
in [6], where invariant generation is not performed eagerlgxicographic order. On the other hand, in our approach this
but on demand. By formulating both invariant and rankinguter loop is not needed. Finally, thanks to assigning wsigh
function synthesis as constraint problems, both can beedolto the constraints, unlike_ [6] we do not need to stipulate
simultaneously, so that only the necessary supportingiinvathe number of supporting invariants that will be needed a
ants for the targeted ranking functions —namtkdyjcographic priori, and hence our constraint problems are simpler.Heuyt
linear ranking functions need to be discovered. weights allow us to guide the solving engine in the search of

Based on[[b],[[6], we present a Max-SMT constraint-basegbpropriate ranking functions and invariants.
approach for proving termination. The crucial observaiion In [10], the lexicographic approach ofl [6] is extended so as
our method is that, albeit our goal is to show that trans&iono handle programs with complex control flow. However, their
cannot be executed infinitely by finding a ranking functiomethod still requires to search for the right ordering of the
or an invariant that disables them, if we only discover amansitions in order to obtain a successful terminatioropro
invariant, or an invariant and quasi-ranking functionthat Moreover, in this technique the procedures for synthegizin
almost fulfills all needed properties for well-foundedness ranking functions and auxiliary invariants do not shareugio
have made some progress: either we can renparé of a information, while in our proposal these mechanisms are
transition and/or we have improved our knowledge on théghtly coupled. Finally, in[[8] a method closely relateddors
behavior of the program. A natural way to implement this presented. Both approaches, which have been developed
idea is by considering that some of the constraintstemel independently, go in the same direction of achieving a bette
(the ones guaranteeing invariance) and otherssafe(those cooperation between the invariant and the ranking function
guaranteeing well-foundedness) in a Max-SMT frameworkyntheses. Still, a significant difference is that we canlaxp

functions in order to progress in the termination analysis. :Nﬂf o ‘U>) 0t = true
In addition to lexicographic ranking functions, there is a e

group of effective tools whose termination arguments are ly: Whi le (y<2) {

the quasi-ranking functions produced in the absence ofmgnk ' "t min() { a

based on Ramsey’s Theorem and the notiontrafsition Tt z- -

invariant [11]. Transition invariants are over-approximations } T 3
of the transitive closure of the transition relation resed y=rty O(ly) = false

to the reachable state space. The crucial observationti@tha .

transitive relation that iglisjunctively well-founded.e., thatis , . y>1, o/ =2—1, v =y, =z @
included in the union of well-founded relations, must belwel p.,: y<z, 2/=z+1, ¥y =y, Z=z-1 v
founded too. Hence, if one is able to find a transition invaria 7 : y=>2 2=z, Y =x+y, ==z

that is also disjunctively well-founded, the program must _ _ 3

be terminating. In[[12], this transition invariant is conted Fig. 1. Program and its transition system.

iteratively, starting from the empty relation, by discaner

unranked paths of the program thanks to a reachability checkan extension of SAT is thesatisfiability modulo theories

and using the approach ifl[3] for synthesizing new ranking\T) problem [L7]: to decide the satisfiability of a given

functions for them. On the other hand, in[13] the generadion g antifier-free first-order formula with respect to a backard

the disjunctively well-founded transition invariantisrf@med theory. Here we will consider the theorieslisfear arithmetic

bottom-up from innermost loops by identifying invariantan (Ay “where literals are linear inequalities, and the more

transitive relations among a set of templates that are risju general theory ofon-linear arithmetic (NA)where literals

tively well-founded by construction. Nested loops are thegye polynomial inequalities.

handled thanks to loop summarization. Our techniques san al apgther generalization of SAT is thMlax-SAT problem

be seen as producing a disjunctively well-founded tramsiti [L7]: it consists in, given aveightedformula F' where each

invariant, being the difference with respect to the presioy|aysec; has a weightv; (a positive number or infinity), to

approaches in the way new unranked paths are identified g the assignment such that the cost, i.e., the sum of the

how a termination argument is generated for them. weights of the falsified clauses, is minimized. Clauses with
Finally, a problem related to proving termination that haginjte weight are calledhard, while the rest are callegoft

recently raised interest in the area is that adnditional Equivalently, the problem can be seen as finding the model

termination:to synthesize automatically preconditions on thgf the hard clauses such that the sum of the weights of the

inputs that ensure program termination. In this contexfd8] tgsified soft clauses is minimized.

the authors consider what they cpditential ranking functions Finally, the problem ofMax-SMT [18] merges Max-SAT

which are functions over program states that are bounded Buly SMT, and is defined from SMT analogously to how Max-

not necessarily decreasing. The quasi-ranking functibas tsaT is derived from SAT. Namely, thélax-SMT problem

we consider here are more general, as for instance functiQgsists in, given a weighted formula, to find an assignment

that are decreasing but not bounded are also included. In [1at minimizes the sum of the weights of the falsified clauses
the problem of conditional termination is also considef@te i the background theory.

approach is based on disjunctively well-founded relatiasim

[12], but instead of identifying unranked program pathanis B. Transition Systems, Invariants and Ranking Functions

to a dual inclusion the authors partition the transitioratieh Henceforth we will model imperative programs by means

into those behaviors already proved to be terminating aoskth of transition systemsA transition systemS = (v,£,0,7)

whose status is still unknown. In our work we also proceegbnsists of a tuple ofariablesw, a set oflocations£, a map

by splitting the transition relation into a terminating pand © from locations to formulas characterizing the initial vedu

an unknown part. However, in [16] this division is achievedf the variables, and a set ¢fansitions7. Each transition

by means of a fixpoint computation, while our approach is € 7 is a triple (¢,¢, p), where/, ¢’ € L are thepre and

constraint-based. post locations respectively, and is the transition relation

a formula over the program variables and their primed

versionst’, which represent the values of the variables after

A. SMT and Max-SMT the transition. See Fi@l 1 for an example of a program togethe
Let P be a finite set opropositional variablesIf p € P, with a corresponding representation as a transition system

thenp and —p areliterals. The negationof a literal 7, written From now on we assume that variables takieger values

—l, denotes—p if [is p, andp if [is —p. A clauseis a and programs ardinear, i.e., the initial conditions® and

disjunction of literals. Apropositional formulas a conjunction transition relationsy are described as conjunctions of linear

of clauses. The problem pfopositional satisfiabilitfabbrevi- inequalities. Strict inequalities may be translated irdgo-strict

ated as SAT) consists in, given a formula, to determine wdretlones thanks to the integer type of the variables.

or not it is satisfiable i.e., if it has amodel an assignment of A stateis an assignment of a value to each of the variables

Boolean values to variables that satisfies the formula. in 7. A configurationis a pair(¢, o) consisting of a locatiord

Il. PRELIMINARIES

and a stater. A computationis a (possibly infinite) sequencecontained inC' traversingr, the value ofR strictly decreases,
of configurations(¢o, o9), (¢1,01), ... such thavy = ©(¢;), due to the strict decrease property. Now, let us assume that
and for each pair of consecutive configuratidiig o;) and there was a computation wheravas executed infinitely. Such
(¢iy1,0411), there exists a transition = (¢;,4;11,p) € T a computation would eventually visit only locations (.
such that(o;,0,1+1) | p. A configuration(?, o) is reachable Because of the previous observations, by evaluafinat the
if there exists a computation ending @t o). A transition states at which is executed we could construct an infinitely
system is said to béerminatingif all its computations are decreasing sequence of non-negative integers, a corttoadic
finite. The problem that we target in this work is, given a Finitely executable transitions can be safely removed from
transition system, to determine if it is terminating or not. the transition system as regards termination analysiss ifhi

A transition T = (¢,¢,p) is disabledif it can never be turn may break the SCC'’s into smaller pieces. If by applying
executed, i.e., if for all reachable configurati¢h o), there this reasoning recursively one can prove that all transstiare
does not exist any’ such that(o,0’) | p. A transition finitely executable, then the transition system is terniigat
7 is called finitely executablef in any computation,r is
only executed a finite number of times (in particularsiis C. Constraint-Based Program Analysis

disabled). Otherwise, i.e., if there exists a computatiten® pHere we review theconstraint-based program analysis

7 is executed infinitely, we say thatis infinitely executable approach [[5], [[9]. The idea is to consider a template for

~ An assertionis a first-order formula over. An assertion/ candidate invariant properties (respectively, rankinfions),

is aninvariant at location/ if for any reachable configurationg . |inear inequalities (linear expressions). Theseptates
(£,0), it holds thato [= I. An invariant mapu assigns an jnyolve both program variables as well as unknowns whose
invariant .(¢) to each of the locationé. An important class yajues have to be determined so as to ensure the required prop

of invariant maps is that ahductive invariant maps erties. To this end, the implications in Definitibh 1 (Defioit
Definition 1: An invariant mapy is said to banductiveif:) are expressed by meansafnstraints(hence the name of
« [Initiation] For every locatior? € £: O(¢) = p(0) the approach) on the unknowns. If implications are encoded
« [Consecution] For every transitionr = (¢,¢,p) € T: soundly, any solution to the constraints yields an invaniaap
w() A plE p). (ranking function). Specifically, if linear arithmetic iise target

Invariant maps are fundamental when analyzing progrdanguage, this can be achieved with Farkas’ Lemma:
termination. For instance, a transition= (¢, ¢, p) isprovedto ~ Theorem 1 (Farkas’ Lemma):et S be a system of linear
be disabled if there is an invariant¢) at location? such that inequalitesAz +b < 0 (A € R™*",b € R™) over real
1(€) A p is unsatisfiable. In general, jf is an invariant map, variablesz™ = (z1,...,z,). When S is satisfiable, it entails
then any transition- = (¢, ¢, p) can be safely strengthened® linear inequalityc”z +d < 0 (c € R”,d € R) iff there is
by replacing the transition relatiom by p.(¢) A p. A € R™ such thath > 0, ¢’ = AT4 andd < ATb. Further,

The basic idea of the approach we follow for proving is unsatisfiable iffl <0 can be so derived.
program termination5] is to argue by contradiction that no For clarity, henceforth the following notation is used. &
transition is infinitely executable. First of all, no disal & conjunction of linear inequalitied> + b < 0 and a linear
transition can be infinitely executable trivially. Moreayene inequalityc” z+d < 0, where the coefficients;;, b, ¢;, d may
just needs to focus on transitions joining locations in thHee real numbers or unknowns, we denote Ay +b <0
same strongly connected component (SCC): if a transitiondsz + d < 0 the set of constraints on the unknown coefficients
executed over and over again, then its pre and post locati@ngl on fresh real unknowns= (Ai,...,\;,), consisting in
must belong to the same SCC. So let us assume that one has0, ¢’ = AT A andd < A"b.
found aranking functionfor such a transitiornr, according to:

Definition 2: Let 7 = (¢,¢', p) be a transition such that Il. TERMINATION ANALYSIS WITH MAX-SMT
and (" belong to the same SCC, denoted ®y A function |n this section we first describe a constraint-based method
R:v — Zis said to be aanking functionfor r if: for termination analysis that uses SMT and identify some of
« [Boundedness]p = R >0 its shortcomings (SedtII[3A). Then we show how Max-SMT
o [Strict Decrease]p = R > R’ can be used to overcome these limitations (Sect]llI-B).
« [Non-increase] For everys = (¢,/',p) € T such that
(0'eC:pl=R>R A. An SMT Approach to Proving Termination

Note that boundedness and strict decreasly depend on Following the approach described in Séct. IFB [5], to show
7, while non-increase depends aft transitions in the SCC. that a transitionr is finitely executable and thus discard it,

The key result is that ifr = (¢,¢',p) admits a ranking one needs either a disability argument or a ranking function
function R, then it is finitely executable. Indeed, first noticdor it. To this end we construct a constraint system, i.e. 6T S
that if one can execute from a configuration(¢,os) then formula, whose solutions correspond to either an invaiizeit
R(o) > 0, because of boundedness. Also, the valueRof proves disability, or a ranking function. Given an SCC, the
at the states along any path containedircannot increase, constraint system, if satisfiable, will allow discarding I@ast,
thanks to the non-increase property. Moreover, in any cydbet possibly more than) one of the transitions in the SCC. By

iterating this procedure until no cycles are left we will aint Another problem with this method for analyzing termination

a termination argument for the SCC. is that the kind of termination proofs it yields may be too
To construct the constraint system, first of all we considetestricted. More specifically, when one proves that a tteomsi
. for each locatior?, a linear invariant templaté,(v) = 7 is finitely executable, then a single termination argument

i00+ 3, cnivy - v < 0, Whereig, ir,, are unknown; shows there is no computation whereappears infinitely.
5 VEV) — 1 ,Us ,]

« alinear ranking function templat&(v) =70+, .y o, Although this produces compact proofs, on the other hand
whererg, r, are unknown. sometimes there may not exist such a unique reason for

Recall that ranking functions are associated to transitior%erm'nathn’ and it becomes necessary a more fine-grained
anmmauon. However, the approach as presented so far does

not to locations. However, instead of introducing a templanot rovide a natural way or guidance for refining the analysi
for each transition, we just have one single template, which P yorg 9 y

the constraint system has a solution, will be a ranking fonct B. A Max-SMT Approach to Proving Termination

for a transitionto be determined by the solver The main contribution of our work is to show that the
Similarly to [6], we take the following constraints from theconstraint system can be expressed in such a way that, even
definitions of inductive invariant and ranking function: when it turns out to be unsatisfiable, some information usefu
Initiation: For/ e [L, o)+ I, fobr refining the :}erminatiorr\] anarllysis can pe obtained. Try_a.ke
: observation is that, even though our aim is to prove treositi
Disability: Forr = (¢,¢, ET:DTd—ﬂIg/\p}—lgo g P

p) def to be finitely executable (by finding a ranking function or an
Consecution: Forr = (¢,0,p) € T:C, = I Apt I}, invariant that disables them), if we just find an invariamtao
(0,0, p) € T:B, A pFR>0 invariant and aguasi-ranking functiorthat is close to fulfill

0,0, p)eT:S, def LApFR>R all reqwred pond|t|on§, we have progr_essed in our a}naly3|s _

_ T def The idea is to consider the constraints guaranteeing mvari

Non-increase: For 7 = (£,{',p) € T:N: = Iy Ap- R> R ance asard, so that any solution to the constraint system will

Finally, let L andT be the sets of locations and transition§atisfy them, while the rest asoft Let us consider proposi-
in the SCC under consideration, respectively. Let aiste tional variablegs, ps andpy, which intuitively represent if the
the set of transitions that angending to be proved finitely conditions of boundedness, strict decrease and non-seisa
executable. Then we construct the following constraintesys the definition of ranking function are violated respectyyeind

corresponding weightsg, ws andwy. We consider now the
/\ Hg/\/\ (D,VC;) /\\/ (D-V(BAS;))A ((/\ NT)\/\/ D-). nextconstraint system (where soft constraints are writter,
teL, T€T TEP TEP TEP and hard ones as usual):

The first two conjuncts guarantee that an invariant map A Iy /\ (]D)T\/(CT>/\ \/ (DT\/((BT\/pIB)/\(ST\/pS)))/\
computed; the other two, that at least one of the pendingr. reT TEP
transitions can be discarded. Notice that, if there is naldéei ((/\ NV \/ DT\/pN)/\[ﬁpB, wp] A[—ps, ws| A[—pn, wi].
transition, we ask thatll transitions inP are non-increasing, reP repP
but only that at leasbne transition in P (the next to be Note that ranking functions have cost 0, and (if no transitio
removed) is both bounded and strict decreasing. Note alsodisabled) functions that fail in any of the conditions are
that for finding invariants one has to take into accoalt penalized with the respective weight. Thus, the Max-SMT
transitions in the SCC, even those that have already bessiver looks for the best solution and gets a ranking functio
proved to be finitely executable: otherwise some reachaliefeasible; otherwise, the weights guide the search to get
states might not be covered, and the invariant generatipwariants and quasi-ranking functions that satisfy as yman
would become unsound. Hence in our termination analysis wenditions as possible.
consider two transition systems: the original transitigastem Hence this Max-SMT approach allows recovering informa-
for invariant synthesis, whose transitions &eand which tion even from problems that would be unsatisfiable in the
remains all the time the same: and tieemination transition initial method. This information can be exploited to penfor
systemwhose transitions ar®, i.e, where transitions alreadydynamic trace partitioning [19] as follows. Assume that the
shown to be finitely executable have been removed. Ttagtimal solution to the above Max-SMT formula has been
duplication is similar to theooperating graphof [8]. computed, and let us consider a transitiore P such that
However, this first approach is problematic when a rankidg- v ((B; V pg) A (S; V ps)) evaluates to true in the solution.
function needs several invariants. A possible solutionois Then we distinguish several cases depending on the pregerti
add more templates iteratively, so that for example inytial Satisfied byr and the computed functioR:
invariants consisting of a single linear inequality aredri o If 7 is disabled then it can be removed.
if unsuccessful then invariants consisting of a conjunctd « If Ris non-increasing and satisfies boundedness and strict
two linear inequalities are tried, etc. But when proceeding decrease for, thent can be removed tod? is a ranking
this way, all problems before the right number of invariants function for it.
is found are unsatisfiable. This is wasteful, as no consteict « If R is non-increasing and satisfies boundednessrfor
information is retrieved from unsatisfiable constraintteyss. but not strict decrease, one can spliin the termination

Boundedness: For m =

Strict Decrease:For 7 =

transition system into two new transitions: one where

R > R’ is added tor, and another one wherB = R’ a a a @

is enforced. Then the new transition witR > R’ is

automatically eliminated, ag is a ranking function for

it. Equivalently, this can be seen as addiRg= R’ to .

Now, if the solver could not prov& to be a true ranking | ™ 3 n 73 [2

function for = because it was missing an invariant, this

transformation will guide the solver to find that invariant

so as to disable the transition wifk = R'. a
« If R is non-increasing and satisfies strict decreaserfor v

but not boundedness, the same technique from above can

be applied: it boils down to adding < 0 to . (a) (b) (© ()
o If R is non-increasing but neither strict decrease nor

boundedness are fulfilled far, thent can be split into O(t) = true O(lp) = false

two new transitions: one witlR < 0, and another one Py y>1, o' =a—1, y =y, 2=z
with R>0AR=R. Prin: <0, y>1, 2’ =ax—1, y =y, =z
B B B . - o — I I

« If R does not satisfy the non-increase property, then it A= Yy i % L =2 +1, y=9 AT 1
is rejected; however, the invariant map from the solution 77" y2z @ =2, Y =Ty, =2
noy21, y>z, 2 =u, y=a+y 2=z

can be used to strengthen the transition relations for the b

following iterations of the termination analysis. Fig. 2. Evolution of the termination transition systemtially (a) and after
))] the first (b), second (c) and third (d) round.
Note this analysis may be worth applying on other transi-

tions 7 in the termination transition system apart from those

that makeD. Vv ((B- V ps) A (S; V ps)) true. E.g., ifR is a imposed:/__ éﬁzﬁp)GP(DT vV I; Ap F J;). The rationale is
ranking function for a transitiom but fails to be so for another that, if we find a property/, that is implied by all transitions
one ' because strict decrease does not hold, then, accordguing into/ and/ is finally reached, thed, must hold. Then
to the above discussiom, can be strengthened witR = R’. this termination implication can be propagated forwardhte t

On the other hand, working in this iterative way require§ansitions going out fror, i.e., J, can be conjoined té, A p
imposing additional constraints to avoid getting to a s&ilid in the constraint®., C., B, S; andN; for any of the form
Namely, in the case where non-increase does not hold &fd’’, p). Finally, additional constraints are imposed to ensure
so one would like to exploit the invariant, it is necessary tiat new termination implications are not redundant wité th
impose that the invariant is not redundant. More in detaiready computed invariants and termination implications
let us consider a fixed locatiof, and |et]él)a---a11§k) be Example 1:Let us show a termination analysis of the
the previously computed invariants at locatibriThen,, the program in Fig.[IL. In the first round, the solver finds the
invariant to be generated 4t is redundant if it is implied invarianty > 1 at ¢, and the ranking functior for 7,.
by Iz(l), Izgk), ie. if £, e g (Iz(l)(ﬁ) A ---Afék)(ﬁ) N Whllg_y 2/ 1 can bfe added_ tas (result!ng mFo a new
1,(v)). So we impos@y — — A, E¢ to ensure that violating transmor_w?,){ the rank_l_ng function allows eliminating from
non-increase leads to non-redundant invariants. Comditioe € termination transition system (see Fig. 2 (b)). .
added similarly to avoid redundant quasi-ranking function N the second round, the solver cannot find a ranking

Another advantage of this Max-SMT approach is that tzéynchon. However, than_ks © the_Max—S_MT_formu_Iatlon, inca
using different weights we can express priorities over ¢on roducg the quasrrankmg function which is non-increasing
tions. Since, as explained above, violating the propertyoof- and strict depreasmg for,, but not pounde_ql. T.h|s quasi-
increase invalidates the computed functi®nit is convenient ranking fu.r?cnon can be used to split transitien into two
to makewy the largest weight. On the other hand, when nofMeW transitionsry and, » as follows:
increase and boundedness are fulfilled but not strict deerea Pn. i =0, y=1, 2'=z-1, ¢ =y, /=2
an equality is added to the transition, whereas when non- Pri»: <0, y=>1, o=x—1, Y=y 2=z
increase and strict decrease are fulfilled but not boundesdn&hen 7, ; is immediately removed, since is a ranking
just an inequality is added. As we prefer the former to tHgnction for it. The current termination transition systésn
latter, in our implementation (see Sdcl. V) we sgt> ws. given in Fig.[2 (c).

Further refinements are possible. E.g., the termination tra [N the third and final round, the termination implication
sition system can also be used for generating propertieatha z < 0 is generated af,, together with the ranking function
guaranteed to eventually hold at a location for some computafor transition7;. Note that the termination implication is
tions. More specifically, we devised the following light-glet ~crucial to prove the strict decrease gffor 73, and that the
approach for generating what we cetmination implications ~ Previously generated invariapt> 1 at ¢, is needed to ensure
In a nutshell, for each locatiod a new linear inequality boundedness. Now, can be removed, which makes the graph
template J;(?) is introduced and the following constraint isacyclic (see Fig.2 (d)). This concludes the terminatiorofpro

assertionSPost(p)(v) = Jw p(w,v). Finally the SCC is
analysed for termination. If it could not be proved termingt

2 <0 the procedure stops. Otherwise the next SCC is dealt with.
The analysis of termination of SCC's is orchestrated by the

Fig. 3. Chain of locations obtained from a sequence of stabtsn function proved_SCC_term

assume(z # 0); assunme(y # 0); assune(z # 0). Note disequalities are hool proved SCC term(Set Loc L, Set Trans 7', Set Trans P) {
not natively supported, and so have to be split into disjonstof inequalities. if (dis trans(L, T, P) or rank fun(L, T', P) or term impl(L, T, P)){
if (P ==0) return true;
for (C’ SCC in the graph of) {
T’ = transitiondC");
if (T’ # 0 and not proved SCC term(L, T, T")) return false; }

The method presented in Sect] 11l has been implemented in U tue ; }
else return false; }

the toolCpplnui. This section describes this implementatiorh takes as arguments: a set of locatidnand a set of transi-
Cpplnv admits code written irC++ as well as in the lan- yions 7 corresponding to an SCC of the transition system:; and
guage ofT2 [10]. The system analyses programs with integhe termination transition systena non-empty seP C T of
variables, linear expressions and function calls; otheR dg,gjtions that still have to be proved finitely executatsle
types and constructs are soundly abstracted away. Func lained in SecETEB, one may assume that the graph irtiuce
calls are handled with techniques similar to those [in [Z%y P is strongly connected. The function returimge if all

although currently. the fe“{”‘ed value is |gr.10red. Fur.tlner, transitions inP can be proved finitely executable. We found
the case of recursive functions, after a function call wegass out that, instead of directly solving the full constrainsm

unknowns to all variables that can be modified during the C"ﬁ”troduced in SecETIEB, in practice it is preferable tmpeed
(that is, global variables and variables passed by refejenc ohases. Each ph&'(efunctionsdis e rank fun and

In .the transformation from Fhe source code to the interngj/rm_imp) attempts to remove transitions from by different
transition system representatio@ppinv attempts to reduce yeans, and returnisue if P has become empty or it is no
the number of locations by composing transitions. HOWevghnger strongly connected. In the former case, we are done. |
this may result in an exponential growth in the number Qfe |atter, the same procedure is recursively called. &ratl

transitions. Given that our technique does not require Mignaseq is non-empty, we report failure to prove termination.
imized transition systems for soundness, the tool stops thi |, the first phase (functiomis trang), Cpplnv attempts
location minimization if a threshold number of transitioSS i, aliminate transitions with disability arguments by gen-
reached. Moreover, whenever a chain of locations connec@gting the appropriate invariants (neither ranking fiomet
by transitions that do not modify variables (see Fi§. 3) igor termination implications are considered at this point)
detectedCpplnv does not attempt to eliminate the locationsyhjs is achieved by solving the following Max-SMT formula:
since no variable is updated, in these transitions any iomct Aver AN cp(DVCAN. o p D V) A[pp wD]E where

. g c Te T T Te T) ’
_satlsf|e§bt|he non—|hn_crease condlr?on, th'j'e no rarr:kmgtﬁonc_ pp is a propositional variable meaning that no transition can
Is possible. For this reason, when producing the constiainfe gisabled, andsy, is the corresponding weight. Transitions
these transitions are ignored as far as termination is €0Bde 5t gre detected to be disabled (by means of a call to an
and are only (-:onsidered for the generation of invariants. _ SMT solver) are removed both from the original and the

Once the input program is represented as a transitigfimination transition system. Invariants are used togtieen
system, the analysis begins. See funcgooved TS ternt the transition relations as described in SECLII-B. Thecpss

bool proved TS term(Trans SysS = (T, £, ©, 7)) { is repeated while new transitions can be disabled.

/I C is the list of SCC’s topologically sorted according to ordgr<)
(C, <) = compute SCCsand topologically sort(S): bool dis_trans(SetlLoc L, Set Trans 7', Set Trans P) {

z>0

IV. IMPLEMENTATION

cont = true;
forgf(f‘l;i{(('};%;%éw)’ transitiong(C)): W*(‘:'Lfl t(czofnatl)s é |
o (€L) < T <0 <0 i TN 1 s
retil]; r n(nt(r)LtJep;rO\}IGd_ SCCterm(L, T, P)) retumn false; } if (P - 0) return trué; '
The SCC's are computed and topologically sorted, and each ' [é\L e T/E\T(DT VeI T\E/T(DT V)

SCC is processed according to this order. Processing an SCCS = [~pp, wp; o _
involves first performing a copy of the transitions for kegpi ~ (/>¢) = SOV&H A S); /I I invariant map, cost of solution
L if (c == o0) break; /I No solution to hard clauses
track of those not proven finitely executable yet. Then the tor (¢ ¢ L, (¢, ¢, p) € T) /I Strengthen relation with invariant
initial conditions are updated with the strongest postétooms p=pAIL);
of the incoming transitions from previous SCC’s, where the [f (¢ ==0)cont = true; } _
L . A return not is_strongly connected P); }
strongest postcondition of a transition relatipfv,v’) is the
2These phases have a time limit in our implementation althdbig is not
1Cpplnv, together with all benchmarks used in the experimentaluetiain ~ made explicit in the pseudo-code shown below.
of Sect[V, is available at www.Isi.upc.edtdlbert/cppinv-term-bin.tar.gz. 3Constraints that avoid redundancy are not included for ity

www.lsi.upc.edu/~albert/cppinv-term-bin.tar.gz

In the second phase (functigank_fun), the system elim-

inates transitions by using ranking functions as arguments

(termination implications are not considered at this poitit

the computed functio? satisfies the non-increase property, |

then each of the transitions in the termination transition
system is examined and either removedHifis a ranking

function for 7, or split otherwise, as described in Séct TlI-B.

bool rank_fun(Set Loc L, Set TransT', Set Trans P){
while (true) {
H= NI, AN Cr A\ (Br Vpr)A (S Vps)) A\ (N-Vpy)
el TeT TeEP TEP
S = [-pp, ws] A [-ps, ws] A [-pN, wi];
(I, R,c) = solvéH A S);
if (c == oo) return false; // No solution to hard clauses
for (¢ € L, (£,¢,p) € T) Il Strengthen relation with invariant
p=pANI)
for (r=(,0,p) € P)
if (pis UNSAT) // r is disabled
(T, P)=(T = {7}, P—{7});
if (non_increasd R))
for (r € P)
if (boundedr, R) and strict_decreasér, R)) P = P — {7};
else split (v, R, P); /| SplitsT
if (P == 0 or not is_strongly_connecte@P)) return true ; } }

The third and final phase (functiderm_impl, not detailed

TABLE |
RESULTS WITH BENCHMARKS FROMT2

noMS | MS MS+QR | MS+QR+TI T2
Setl 210 218 226 236 245
Set2 | 242 | 249 259 272 275(+3)
TABLE I

RESULTS WITH BENCHMARKS FROMJutge.org.

Cpplnv T2 Cpplnv T2
P11655 324 328 P40685 324 329
P12603 143 140 P45965 780 793
P12828 707 710 P70756 243 235
P16415 81 81 P81966 2663 926
P24674 171 168 P82660 174 177
P33412 478 371 P84219 325 243

provide here a comparison with the new versiorTaf which
according to the results given inl [8] is performing much &ett
when proving termination than most of the existing tools, in
cludingTerminator [12], AProVE [25] or ARMC [24], among
others. We have also triedProver [13] and Loopfrog [14],

but the results were not good on these sets of benchmarks. All
_experiments were performed on an Intel Core i7 with 3.40GHz

here for lack of space) is very similar to the previous onehW|CIOCk speed and 16 GB of RAM

the difference that termination implications are also tided.

_The first two considered sets of benchmarks are those

As regards the constraints, we restrain ourselves to mvem,ovided by theT2 developers. Following the experiments

ants and ranking functions witihteger coefficients, since this

allows us to exploit efficient non-linear solving technigue

[21]. Moreover, in order to perform integer reasoning,

Chvatal cutting plane rulé [22], is employed:

Lemma llet Ax+b <0 (A € R™*" b € R™) be a system
of linear inequalities over integer variable$ = (1, ..., z,),
andc”z+d < 0 (c € Z™, d € R) be alinear inequality. If there
isSAeR™, ieZandf € R such thathx > 0, ¢7 = AT 4,
Mb=i—f,0< f<1andi>d, thenAx +b < 0 entails
cTe+d<0.

Lemmal[l allows transforming afVv problem into an3

problem. If all coefficients in the premise are known values,
the resulting satisfiability problem is an SMT problem over

LA. Otherwise, an SMT problem over NA is obtained. Fu
thermore, as some unknowns are integer (the coefficients)

some are real (the multipliers), the resulting problemsehav

mixed types.

in [8], we have set a 300 secs. timeout. In order to show
the impact of the different techniques described in the pape

th§ RO
.) able[] presents the number of programs proved terminatin
following variation of Farkas’ Lemma, based on the Gomor Op prog P g

Xvhile adding the different ingredients:

o (noMS)implements the generation of invariants and rank-
ing functions using a translation to SMT(NA), but without
using Max-SMT, i.e. with all constraintsard. The fact
that this plain version can already prove many instances
hints on the goodness of our underlying algorithm and
the impact of using our NA-solver in this application.
(MS)implements the generation of invariants and ranking
functions using Max-SMT(NA), where the constraints
imposed by the ranking function are addedsa#
(MS+QR)adds to the previous case the possibility to use
quasi-ranking functions.

(MS+QR+TI) adds to the previous case the possibility to
infer termination implications.

r-
an

Cpplnv uses Barcelogic [23] for solving the generated Note that every added improvement allows us to prove
constraints. The Max-SMT(NA) solver for mixed non-lineafome more instances, while none is lost due to the additional

arithmetic inBarcelogic extends the techniques presented

[21] for solving SMT(NIA) problems. This is achieved by

iromplexity of the constraints generated.
Moreover, by looking into the results in more detail, we have

allowing integer and real variables in the underlying line@Pserved that our tool ant2 complement each other to some

arithmetic solver, and wrapping this solver with a branald-a
bound scheme for optimizatioh [18].

V. EXPERIMENTAL EVALUATION

extent: in SetXCpplnv can prove 5 instances which cannot be
proved byT2, while we cannot prove 14 which can be handled
by T2; similarly, in Set2Cpplnv can prove 8 programs which

cannot be proved by2, while we cannot prove 11 that can be

In this section we show experiments that evaluate theandled byT2 (the +3 in Tabldll refers to 3 instances which
performance o€pplnv on a wide set of examples, which havenclude constructs not supported Gpplnv). The average time

been taken from the online programming learning envirortm

dan YES answers off2 is 2.9 secs and ofpplnv is 12.8 secs.

Jutge.org [[7] (se€ www.jutge.org), and from benchmark suites In Table[dl, we show the comparison d@pplnv (with

in [8] and in [research.microsoft.com/en-us/projects/i&e

all described techniques) ant2 on our benchmarks from

www.jutge.org
http://research.microsoft.com/en-us/projects/t2/

y>0/\y’:y—]/\;p’:qr—1/y_<0\\ y<O0AYy =y+a

CONENO)

o) =z>y O(ly) = false

ACKNOWLEDGMENT

This research was supported by Spanish MEC/MICINN
under grant TIN 2010-21062-C02-01. We thahitge.org for
providing benchmarks, and Byron Cook for giving us access
to T2 and their benchmarks and for his helpful comments.

Fig. 4. Program that requires invariants from previous SCC’

1]
the programming learning environmehttge.org, which is

currently being used in several programming courses in thﬁ]
Universitat Politécnica de Catalunya. The benchmarkesuit
consists of thousands of solutions written by students tiS]
12 different programming problems. These programs can be
considered challenging examples since most often theyaire
the most elegant solution but one with many more conditional
statements than necessary. In this case, due to the size of P
benchmark suite, for the execution of both tools we have set
a 120 secs. timeout. The average time in YES answeiiRof [6]
is 1.7 secs. and d€pplnv is 1.6 secs. Note that, in order to [7]
run these benchmarks if2, we have translated them ini®
format using our intermediate transition graph. This may bél
a disadvantage for2, as it happens in the reverse way Whe”[g]
Cpplnv is run onT2 benchmark set. In particular, we think
that the bad performance @R in the problem sets P33412,
P81966 and P84219 may be related to the way we handi@
division, which is crucial in these examples. [11]

VI. CONCLUSIONS ANDFUTURE WORK [12]

In short, the contributions of this paper are: [13]

o anovel Max-SMT constraint-based approach to proving
termination Thanks to expressing the synthesis of gy
ranking function and a supporting invariant as a Max-
SMT problem, we achieve a better guided and more fin 5)
grained termination analysis than SMT-based methods.
Max-SMT reveals to be a convenient framework for
constraint-based termination analysis. In addition to ol#®!
method, other techniques suchwasaffecting score max- [17]
imization[10] can be naturally modeled in Max-SMT.

« aprototype of termination analyzer for (a subset of) thﬁg]
C++ language.

One of the shortcomings of our approach is that invariant
synthesis is restricted to a single SCC. If invariants from!
previous SCC's have not been generated but are later relquire
our technique cannot prove termination. E.g., in the pnogra2°l
shown in Fig.[%, the invariant > 0 must be discovered
at /; so as to prove that the rightmost transition is finitelye1]
executable, although it is not necessary for proving that th
leftmost loop is terminating. For future work we plan 122
develop techniques to overcome this kind of situations. A
promising idea is to consider initiation conditions as soft23]
then the generategluasi-invariantsrepresent what is missing
from previous SCC's, and then can be propagated backwards}
Alternatively, these quasi-invariants can be used to gpét
initial conditions of the current SCC. Finally, as a byprogu [25]
this would allow us to solve the conditional termination
problem as well.

REFERENCES

D. Dams, R. Gerth, and O. Grumberg, “A heuristic for theoavatic
generation of ranking functions,” itorkshop on Advances in Verifica-
tion, 2000, pp. 1-8.

M. Colon and H. Sipma, “Synthesis of linear ranking ftions,” in
TACAS ser. LNCS, vol. 2031. Springer, 2001, pp. 67-81.

A. Podelski and A. Rybalchenko, “A complete method foe $ynthesis
of linear ranking functions,” IVMCAI, ser. LNCS, vol. 2937. Springer,
2004, pp. 239-251.

A. Tiwari, “Termination of linear programs,” irCAV, ser. LNCS, vol.
3114. Springer, 2004, pp. 70-82.

M. Colon and H. Sipma, “Practical methods for provingogram
termination,” inCAV, ser. LNCS, vol. 2404. Springer, 2002, pp. 442—
454,

A. Bradley, Z. Manna, and H. Sipma, “Linear ranking witrachability,”
in CAV, ser. LNCS, vol. 3576. Springer, 2005, pp. 491-504.

J. Petit, O. Giménez, and S. Roura, “Jutge.org: an e program-
ming judge,” inSIGCSE ACM, 2012, pp. 445-450.

M. Brockschmidt, B. Cook, and C. Fuhs, “Better terminatiproving
through cooperation,” irfCAV, 2013, to appear.

M. Colbn, S. Sankaranarayanan, and H. Sipma, “Linesariant Gen-
eration Using Non-linear Constraint Solving,” @AV, ser. LNCS, vol.
2725. Springer, 2003, pp. 420-432.

B. Cook, A. See, and F. Zuleger, “Ramsey vs. lexicogiapérmination
proving,” in TACAS ser. LNCS, vol. 7795. Springer, 2013, pp. 47-61.
A. Podelski and A. Rybalchenko, “Transition invarigfiin LICS. |IEEE
Computer Society, 2004, pp. 32-41.

B. Cook, A. Podelski, and A. Rybalchenko, “Terminatipnoofs for
systems code,” ifPLDI, ACM, 2006, pp. 415-426.

A. Tsitovich, N. Sharygina, C. M. Wintersteiger, and Broening,
“Loop summarization and termination analysis,” TACAS ser. LNCS,
vol. 6605. Springer, 2011, pp. 81-95.

D. Kroening, N. Sharygina, S. Tonetta, A. Tsitovich,da@. Winter-
steiger, “Loopfrog: A Static Analyzer for ANSI-C Prograrh@) ASE
IEEE, 2009, pp. 668—670.

B. Cook, S. Gulwani, T. Lev-Ami, A. Rybalchenko, and Madiv,
“Proving conditional termination,” inCAV, ser. LNCS, vol. 5123.
Springer, 2008, pp. 328-340.

P. Ganty and S. Genaim, “Proving termination startingnf the end,”
in CAV, 2013, to appear.

A. Biere, M. J. H. Heule, H. van Maaren, and T. Walsh, Edendbook
of Satisfiability ser. Frontiers in Atrtificial Intelligence and Applicat®&n
I0S Press, February 2009, vol. 185.

R. Nieuwenhuis and A. Oliveras, “On SAT Modulo Theoriesd
Optimization Problems,” ir6AT, ser. LNCS, vol. 4121. Springer, 2006,
pp. 156-169.

L. Mauborgne and X. Rival, “Trace partitioning in atestt interpretation
based static analyzers,” BSOP ser. LNCS, vol. 3444. Springer, 2005,
pp. 5-20.

B. Cook, A. Podelski, and A. Rybalchenko, “Summariaatifor termi-
nation: no return!”Formal Methods in System Desigwol. 35, no. 3,
pp. 369-387, 2009.

C. Borralleras, S. Lucas, A. Oliveras, E. Rodriguemifonell, and
A. Rubio, “SAT Modulo Linear Arithmetic for Solving Polynoial
Constraints,”J. Autom. Reasoningol. 48, no. 1, pp. 107-131, 2012.
J. A. Robinson and A. Voronkov, Eds¢dandbook of Automated Rea-
soning (in 2 volumes) Elsevier and MIT Press, 2001.

M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodrigueafbonell, and
A. Rubio, “The Barcelogic SMT Solver,” iI€AV, ser. LNCS, vol. 5123.
Springer, 2008, pp. 294-298.

A. Podelski and A. Rybalchenko, “ARMC: the logical chei for
software model checking with abstraction refinement,”"PADL, ser.
LNCS, vol. 4354. Springer, 2007, pp. 245-259.

C. Otto, M. Brockschmidt, C. von Essen, and J. Giesl, t#xoated
termination analysis of java bytecode by term rewritingi’ RTA
Volume 6 of LIPIcs., Schloss Dagstuhl, 2010, 259-276.

	Introduction
	Related Work.

	Preliminaries
	SMT and Max-SMT
	Transition Systems, Invariants and Ranking Functions
	Constraint-Based Program Analysis

	Termination Analysis with Max-SMT
	An SMT Approach to Proving Termination
	A Max-SMT Approach to Proving Termination

	Implementation
	Experimental Evaluation
	Conclusions and Future Work
	References

