
A Write-Based Solver for
SAT Modulo the Theory of Arrays

Miquel Bofill
Universitat de Girona

Robert Nieuwenhuis
Albert Oliveras

Enric Rodrı́guez-Carbonell
and Albert Rubio

Universitat Politècnica de Catalunya

Abstract—The extensional theory of arrays is one of the most
important ones for applications of SAT Modulo Theories (SMT)
to hardware and software verification.

Here we present a new T -solver for arrays in the context of
the DPLL(T) approach to SMT. The main characteristics of our
solver are: (i) no translation of writes into reads is needed, (ii)
there is no axiom instantiation, and (iii) the T -solver interacts
with the Boolean engine by asking to split on equality literals
between indices.

As far as we know, this is the first accurate description of
an array solver integrated in a state-of-the-art SMT solver and,
unlike most state-of-the-art solvers, it is not based on a lazy
instantiation of the array axioms. Moreover, it is very competitive
in practice, specially on problems that require heavy reasoning
on array literals.

I. INTRODUCTION

Over the last few years, traditional generic proof-search
methods have been increasingly replaced by more efficient
domain-specific procedures or procedures for fragments of
certain logics. Despite being more specific, these procedures
have seen its way into many real-world applications since
most problems can be decomposed, either manually or au-
tomatically, into smaller problems to which these concrete
procedures can be applied.

Among them, Satisfiability Modulo Theories (SMT) tools
have received special attention. These procedures decide the
satisfiability of (usually ground) formulas modulo some back-
ground theory T . The choice of the theory depends on the
particular application area: when verifying complex designs,
the theory of Equality with Uninterpreted Functions (EUF)
comes in handy since it allows one to abstract away uninterest-
ing or too complicated details of the system to be verified [1];
if, on the other hand, one is interested in verifying low-level
aspects of, e.g., a microprocessor, the theory of bit-vectors
provides the necessary level of detail [2], [3]; and, just to
give another example, for the verification of timed automata a
certain fragment of linear arithmetic called Difference Logic is
the most appropriate choice [4]. Hence, SMT tools deal with
problems that may consist of thousands of clauses like:

p ∨ a=f(b−c) ∨ read(s, f(b−c))=d ∨ a−g(c) ≤7
containing purely propositional atoms as well as atoms over
(combined) theories.

One of the main approaches to SMT has been called
DPLL(T) [5], which consists of a general DPLL(X) en-

gine, very similar in nature to a SAT solver, that works
in cooperation with a theory solver Solver

T
. In the most

basic version of this approach the engine is in charge of
enumerating propositional models of the formula, whereas
Solver

T
is responsible for checking whether these models are

consistent with the theory T (e.g. if T is the theory of linear
arithmetic and the current Boolean model contains x+2y ≤ 0,
−y − 1

2z ≤ 0 and x− z > 1, then Solver
T

has to detect that
the current assignment is T -inconsistent).

In this paper, we present a new Solver
T

for the Theory
of Arrays with Extensionality. This theory is useful for both
software and hardware verification, since it can be used
to model the behavior of, e.g., arrays and memories. The
signature of the theory consists of two interpreted function
symbols: read, used to retrieve the element stored at a certain
index of the array, and write, used to modify an array by
updating the element stored at a certain index. More formally,
their behavior can be modeled with the following axioms:

∀a : Array, ∀i, j : Index,∀x : V alue
i=j ⇒ read(write(a, i, x), j) = x
i 6=j ⇒ read(write(a, i, x), j) = read(a, j)

Finally, one still has to consider the extensionality property,
stating that two arrays that coincide on all indices are indeed
equal. This is enforced by the axiom:

∀a, b : Array
(∀i : Index read(a, i) = read(b, i)) ⇒ a = b

A possible approach to decide the satisfiability of ground
literals in the theory of arrays with extensionality is to consider
the necessary instances of the aforementioned axioms and let
them be handled by the DPLL(X) engine in cooperation with
a Solver

T
for EUF. In this setting, the array solver is reduced

to a module that only generates clauses. This approach is used
in state-of-the art SMT solvers like YICES [6] and Z3 [7] but,
as far as we know, there is no precise description of it in the
literature.

Our approach does not follow the same lines but is rather
based on a careful analysis of the problem that allows us to
infer, for each array, which are the relevant indices and which
values are stored at these indices. Once this information has
been made transparent, checking satisfiability of sets of literals

becomes an easy task. Unlike the approach of [8], we do not
remove significant write’s from the problem, and hence there
is no need to use the notion of “equality of arrays except in a
certain set of indices” used in [8].

As usual, the extensionality axiom is addressed by forcing
that, if two arrays are different, there is an index, called a
disequality witness, where the two arrays do not coincide.
For efficiency reasons, the introduction of these witnesses is
delayed so as to reduce the combinatorial explosion caused
by the comparison between indices. This explosion is also
mitigated in our solver by identifying situations where the set
of literals can be proved to admit a model without the need to
construct a total partition over the sets of values and indices.

These ideas lead to a very natural and easy-to-understand
solver. As a result, all proofs also become noticeably intuitive.
Moreover, using the adequate strategy, our solver performs
very well on problems that require heavy reasoning on array
literals.

The rest of the paper is structured as follows. In Section II
we give basic definitions and notation. Then, in Section III we
describe our solver in terms of transformation rules and prove
their correctness. After that, in Section IV we give some details
of the integration of the solver in a DPLL(T) system. Finally,
we present experimental results in Section V and we conclude
in Section VI.

II. PRELIMINARIES

We will consider a set of index constants denoted by I and
a set of value constants denoted by V . An array expression is
either an array constant or write(A, i, x) where A is an array
expression, i is an index constant and x is a value constant.
Arrays of the form write(. . . write(a, i1, x1) . . . , in, xn) will
be written as write(a, 〈i1, . . . , in〉, 〈x1, . . . , xn〉), and as
write(a, ~I, ~X) for short. Note that the first elements of ~I and
~X correspond to the innermost write and the last elements to
the outermost write. We are using vector notation for ~I and
~X to emphasize that the elements are ordered and to refer to
the elements at position p as ip and xp, respectively. Given
~I , we will write I to denote the set of elements in ~I . As a
convention, the array constant a will be seen, when necessary,
as write(a, ∅, ∅).

In what follows, possibly subscripted a, b, c denote array
constants and A, B,C denote array expressions. When we
write ≡ we mean syntactic equality between expressions and
=set denotes equality between sets.

An array satisfaction (ASAT) problem is a conjunction of
literals of the form:
• ⊥ (representing an unsatisfiable formula).
• x = read(A, i) or x 6= read(A, i), where A is an array

expression, i ∈ I and x ∈ V .
• A = B or A 6= B where A and B are array expressions.
• x = y or x 6= y, where x, y ∈ I or x, y ∈ V .

A. The Extensional Theory of Arrays

The extensional theory of arrays is defined by the following
axioms:

read-write axioms:
∀a : Array, ∀i, j : Index,∀x : V alue
i=j ⇒ read(write(a, i, x), j) = x
i 6=j ⇒ read(write(a, i, x), j) = read(a, j)

extensionality axiom:

∀a, b : Array
(∀i : Index read(a, i) = read(b, i)) ⇒ a = b

The following well-known axioms are not necessary if we
consider extensionality, since they are entailed by the previous
axioms:

write-write axioms:
∀a : Array, ∀i, j : Index,∀x, y : V alue
i=j ⇒ write(write(a, i, x), j, y)=write(a, j, y)
i 6=j ⇒ write(write(a, i, x), j, y)=write(write(a, j, y), i, x)

Note that, however, the axioms of read-write and write-write
do not entail the extensionality axiom.

Example 1: Let us consider the following set of literals:

write(a, i, x) 6=b read(b, i)=y read(write(b, i, x), j)=y
a=b i=j

The two literals on the left imply that read(b, i) 6= x.
This can be seen by replacing a by b in the first disequality,
applying a read at position i at both sides of the disequality
and using the first read-write axiom. The two literals on the
right imply that x = y. This can be deduced if we use that
i = j and apply the first read-write axiom at the top-right
hand equation. Together with the equation in the middle we
get that read(b, i) = x which shows that the set of literals is
T -inconsistent. 2

B. Models

The models we will consider are given by a mapping
II from I to some domain DI , a mapping IV from V to
some domain DV and a mapping IA from array constants
to functions fA : DI −→ DV , s.t. if IA(a) = fa then
IA(write(a, i, x)) = f ′a where f ′a(II(i)) = IV (x) and
f ′a(k) = fa(k) for all k ∈ DI such that k 6= II(i). Finally,
the interpretation on values is extended to the read operation
by the equality IV (read(a, i)) = IA(a)(II(i)).

Let M be a set of equalities and disequalities over I or V .
A position p in ~I is an M -significant position in ~I if M |=
ip 6= ik for all k > p. The set of M -significant indices in ~I is
denoted by sigM (~I) and is defined as the set of those indices
ip in I such that p is an M -significant position in ~I .

Example 2: Let M = {j 6= l, l = k} and ~I = (i, j, k, l).
The set sigM (~I) is {j, l}. Note that k is not an M -significant
index because M |= k= l and i is not an M -significant index
because, among other reasons, M 6|= i 6=j. If we now take M
and ~I ′ = (i, j, k, l, i) then i is now an M -significant index in
~I ′ because of its last occurrence. 2

The pairs (~I, ~X) and (~J, ~Y) are said to be M -equivalent,
if (i) for all i, i′ ∈ I (similarly for J), we have M |= i = i′

or M |= i 6= i′, (ii) M |= sigM (~I) =set sigM (~J), and (iii)

for all ip ∈ sigM (~I) and jq ∈ sigM (~J), if M |= ip = jq then
M |= xp =yq .

III. A NEW SOLVER FOR THE EXTENSIONAL THEORY OF
ARRAYS

In this section we present, in terms of transformation rules,
a solver for deciding the satisfiability of ASAT problems.
Our transformation system deals with conjunctions of literals,
but they will be represented as M | P , so as to explicitly
distinguish the subset M of literals than can be treated by
a simple Union-Find algorithm, i.e., (dis)equalities between
indices or values, from the conjunction P of those literals
involving arrays. As expected, M | P has to be understood as
M ∧ P . Given a conjunction of literals P , by P{a := A} we
mean the result of replacing all occurrences of a by A in P .

Definition 1: The system of transformation rules in Figure 1
is called A.

Let us briefly comment on some of the rules. First of all, for
rules like True equality, Array inconsistency or Disequality
witness introduction, recall that an array constant a can be
expressed as write(a, ∅, ∅).

The Significance query rule is used to detect the set
of significant indices in an array expression, whereas the
Equality index query rule is used to detect equal indices
in both sides of an equality.

In the Write introduction rule, by propagating b :=
write(c, i, x) in the conclusion we make explicit that b is an
array with x at position i. Note that we could keep that literal
in order to be able to later recover a model for the original set
of array constants. This is also the case for the Substitution
rule.

Finally, let us mention that the Disequality witness in-
troduction rule takes care of extensionality: if we have
write(a, ~I, ~X) 6= write(b, ~J, ~Y) and we know that the dif-
ference is not in the significant indices in ~I (which coincides
with significant indices in ~J), then we can infer that a and
b are different at some position not in ~I . The introduction of
these witnesses can be delayed at convenience. Similarly to
Write introduction and Substitution we could keep the two
substitutions as literals so as to later recover a model for the
original problem.

As we will show below in all these rules the premise and the
disjunction of the conclusions are equisatisfiable. Hence, they
can be used to produce a derivation tree rooted by the original
array problem and where every non-terminal node has as
children the conclusions of an application of a transformation
rule. As we will see, the problem will be unsatisfiable if and
only if all terminal nodes are ⊥.

Lemma 1: For all rules in A the premise and the disjunction
of its conclusions are equisatisfiable.

Proof: We show that there is a model for the premise
if and only if there is a model for the disjunction of the
conclusions. We only detail the proof for the following two
rules:
• Write introduction. For the left to right implication, let

(II , IV , IA) be a model for M | P ∧ write(a, ~I, ~X) =

write(b, ~J, ~Y). Since by the conditions of the trans-
formation rule, II(ip) 6= II(ik) for all k > p, and
II(ip) 6= II(j) for every j ∈

−→
J , we have that

IA(b)(II(ip)) = IV (xp). Therefore, extending IA to
interpret the fresh constant c as IA(c) = fc, where
fc(k) = (IA(b))(k) for all k ∈ DI , we have a model
for M | P ∧ write(a, ~I, ~X) = write(b, ~J, ~Y) ∧ b =
write(c, ip, xp) and hence also of the conclusion. For
the right to left implication, since b does not appear in
the conclusion we only have to extend the model so that
b is interpreted as write(c, ip, xp).

• Array inconsistency. In this case we show that there
cannot be any model for M | write(a, ~I, ~X) 6=
write(a, ~J, ~Y) if (~I, ~X) and (~J, ~Y) are M -equivalent.
Assume we have a model for M . Then II(sigM (~I)) is
equal to II(sigM (~J)) and for all M -significant ip ∈ ~I

and jq ∈ ~J , if II(ip) = II(jq) then IV (xp) = IV (yq),
which implies that any array interpretation must interpret
write(a, ~I, ~X) and write(a, ~J, ~Y) to the same function,
and thus cannot satisfy write(a, ~I, ~X) 6= write(a, ~J, ~Y).
2

Definition 2: An ASAT problem is in solved form if either
it is ⊥ or it is M | P where M is consistent and all literals
in P are of the form:

1) write(a, ~I, ~X) = write(b, ~J, ~Y)
with a 6≡ b, and (~I, ~X) and (~J, ~Y) being M -equivalent.

2) write(a, ~I, ~X) 6= write(b, ~J, ~Y)
with some M -significant position p in ~I such that M 6|=
ip = j for every j ∈ ~J .

3) write(a, ~I, ~X) 6= write(b, ~J, ~Y)
with some M -significant position p in ~I and some M -
significant position q in ~J such that M |= ip = jq and
M 6|= xp = yq .

4) x 6= read(a, i)
being a an array constant.

Lemma 2: An ASAT problem in solved form is satisfiable
if and only if it is not ⊥.

Proof: The left to right implication is trivial. For the other
one, let us consider a problem M | P in solved form. First of
all, we introduce a new value constant d. Then, we consider
M ′ = M ∪ {x 6= y |M 6|= x = y} that, since M is consistent
and equality is a convex theory1, is also consistent. Essentially,
we have extended M by adding that all what is not known to
be equal is set to distinct (including all comparisons with the
new constant d).

Now, let (II , IV) be a model of M ′. We call fd : DI → DV
the constant function that always returns IV (d). Note that, by
assumption, IV (d) is different from the interpretation of all
other value constants. Now, we define our array interpretation
IA as IA(a) = fd for every array constant a. Note that, if in
the rules Substitution, Write Introduction and Disequality
Witness Introduction we had kept the substitution as a literal

1This means that if E is a set of equalities and disequalities, E |= x1 =
y1 ∨ . . . ∨ xn =yn iff E |= xi =yi for some i in 1 . . . n.

UF-Dispatch:
M | x ./ y ∧ P

M ∪ {x ./ y} | P

with ./∈ {=, 6=}

Read2Write:
M | P [x = read(a, i)]

M | P [a = write(b, i, x)]

if a and b are array constants and b is fresh.

True equality:

M | P ∧ write(a, ~I, ~X) = write(a, ~J, ~Y)
M | P

if (~I, ~X) and (~J, ~Y) are M -equivalent.

UF-inconsistency:

M | P
⊥ if M is inconsistent

Read-Write:
M | P [read(write(A, i, x), j)]

M ∪ {i = j} | P [x] M ∪ {i 6= j} | P [read(A, j)]

Substitution:
M | P ∧ a = A
M | P{a := A}

if a does not occur in A.

Array inconsistency:

M | P ∧ write(a, ~I, ~X) 6= write(a, ~J, ~Y)
⊥

if (~I, ~X) and (~J, ~Y) are M -equivalent.

Write introduction:
M | P ∧ write(a, ~I, ~X)=write(b, ~J, ~Y)

M | (P ∧ write(a, ~I, ~X)=write(b, ~J, ~Y)){b := write(c, ip, xp)}

if c is fresh and p is an M -significant position in ~I and M |= ip 6= j for every j ∈ ~J .

Significance query:

M | P [write(write(A, ~I, ~X), j, y)]

M ∪ {i = j} | P [write(write(A, ~I, ~X), j, y)] M ∪ {i 6= j} | P [write(write(A, ~I, ~X), j, y)]

if M 6|= i = j and M 6|= i 6= j for some i ∈ ~I .

Equality index query:

M | P ∧ write(a, ~I, ~X) = write(b, ~J, ~Y)

M ∪ ip = jq | P ∧ write(a, ~I, ~X) = write(b, ~J, ~Y) M ∪ ip 6= jq | P ∧ write(a, ~I, ~X) = write(b, ~J, ~Y)

if p is an M -significant position in ~I , q is an M -significant position in ~J and M 6|= ip = jq and M 6|= ip 6= jq .

Equality values propagation:
M | P ∧ write(a, ~I, ~X) = write(b, ~J, ~Y)

M ∪ xp = yq | P ∧ write(a, ~I, ~X) = write(b, ~J, ~Y)

if p is an M -significant position in ~I , q is an M -significant position in ~J and M |= ip = jq and M 6|= xp = xq .

Disequality witness introduction:
M | P ∧ write(a, ~I, ~X) 6= write(b, ~J, ~Y)

M ′ | P{a := write(c, ni, e1), b := write(d, ni, e2)}

where M ′ = M ∪ {ni 6= i | i ∈ ~I} ∪ {ni 6= j | j ∈ ~J} ∪ {e1 6= e2}
if a 6≡ b, (~I, ~X) and (~J, ~Y) are M -equivalent and c, d, ni, e1 and e2 are fresh.

Fig. 1. Transformation rule system A

of the form a = A, where a does not occur elsewhere in P ,
then we would only need to extend IA with IA(a) = IA(A).

Let us show that (II , IV , IA) is a model of all literals in P .
1) The literal is of the form write(a, ~I, ~X) =

write(b, ~J, ~Y), where a 6≡ b, and (~I, ~X) and (~J, ~Y)
are M -equivalent. Then, by definition of IA we have
IA(a) = IA(b). Now, since if (~I, ~X) and (~J, ~Y) are M -
equivalent then they are also M ′-equivalent, we have
that II(sigM ′(~I)) is equal to II(sigM ′(~J)). Moreover,
for all M ′-significant ip ∈ ~I and jq ∈ ~J such that
II(ip) = II(jq) then IV (xp) = IV (yq), which implies
that IA(write(a, ~I, ~X)) = IA(write(b, ~J, ~Y)).

2) The literal is of the form write(a, ~I, ~X) 6=
write(b, ~J, ~Y) where there is some M -significant po-
sition p in ~I such that M 6|= ip = j for every j ∈ ~J .
Then, since M 6|= ip = j, we have that M ′ |= ip 6= j,
and hence II(ip) 6= II(j) for all j in ~J . Now, by
definition, we have that IA(write(a, ~I, ~X)) is some
function f1 such that f1(II(ip)) = IV (xp) and, since
IA(b) = fd and II(ip) 6= II(j) for all j ∈ ~J , we have
that IA(write(b, ~J, ~Y)) is some function f2 such that
f2(II(ip)) = IV (d) 6= IV (xp), which implies f1 6= f2,
satisfying the literal.

3) The literal is of the form write(a, ~I, ~X) 6=
write(b, ~J, ~Y) where there is some M -significant po-
sition p in ~I and some M -significant position q in
~J such that M |= ip = jq and M 6|= xp = yq .
Then, by definition, we have M ′ |= ip = jq and
M ′ |= xp 6= yq . Now, similarly to the previous case,
we have that IA(write(a, ~I, ~X)) is some function f1

such that f1(II(ip)) = IV (xp) and IA(write(b, ~J, ~Y))
is some function f2 such that f2(II(jq)) = IV (yq).
Therefore, since II(ip) = II(jq) and IV (xp) 6= IV (yq),
we have f1 6= f2, satisfying the literal.

4) The literal is of the form x 6= read(a, i). Then, by
definition, we have that M ′ |= x 6= d, and hence
IV (x) 6= IV (d). Moreover, since IA(a) = fd, then
IV (read(a, i)) = fd(II(i)) = IV (d) 6= IV (x), hence
satisfying the literal. 2

Definition 3: An A-derivation tree is a tree whose nodes
are ASAT problems and where the children of a node M | P
are the conclusions of a transformation rule in A applied to
M | P . We will say that an A-derivation tree is solved iff all
its leafs are solved forms.

Lemma 3: All paths in a A-derivation tree are finite.
Proof: First of all we show that given an ASAT problem

M | P , the set of indices and values that can occur in any
A-derivation tree rooted by M | P is finite. This is easy
to see since the only rule that introduces new constants is
Disequality witness introduction, but since every application
of this rule removes a disequality literal and no other rule
introduces new disequalities, this can only happen a finite
number of times. Hence, this also proves that this rule cannot
be applied an infinite number of times.

Regarding the rules Significance query, Equality index
query and Equality values propagation, they can only be
applied a finite number of times. This is because they add
a (dis)equality between indices or values to M that was not
previously entailed by it. Since there are only a finite number
of indices and values, this can only happen finitely often.

Similarly, the Write introduction rule can only be applied
a finite number of times. The key argument is based on the
two following facts: (i) the number of literals appearing in any
node of the derivation tree does not increase, since no rule adds
new literals and (ii) no rule removes write’s from an equality
between array expressions. Given these two facts, if we denote
by NI the maximum number of indices that can occur in the
derivation tree, we know that for every equality literal in the
original problem, we can apply Write Introduction at most
2 ∗ NI times, since after 2 ∗ NI applications all indices will
appear in both sides of the equality and the rule will no longer
be applicable.

Hence, any infinite derivation should end with an in-
finite sequence of applications of UF-Dispatch, Read-
Write, Read2Write, Substitution and True equality. But
this cannot be the case: given an ASAT problem M |
P , we can associate to it the triple of natural numbers
(#literals in P,#reads, |P |), being |P | the size of P . It is
an easy exercise to check that using a lexicographic ordering
all remaining rules decrease that triple of natural numbers.

The following lemma is easily proved by comparing the
conditions imposed on solved forms and the conditions im-
posed on the rules.

Lemma 4: If an ASAT problem is not a solved form then
a transformation rule in A can be applied.

Proof: If M is not consistent then we can apply the UF-
inconsistency rule. Otherwise, we proceed by case analysis
according to the kind of literal that is not in solved form.

1) The literal is of the form a = A. If a does not occur in
A then the Substitution rule can be applied. Otherwise,
if A ≡ a then True equality can be applied. Finally, if
A is write(a, ~I, ~X) with ~I 6= ∅, we can apply Write
introduction for the last index in in ~I .

2) The literal is of the form write(a, ~I, ~X) =
write(b, ~J, ~Y), with ~I and ~J non-empty. If there is
a pair of indices ip and iq in ~I (or in ~J) such that
M 6|= ip = iq and M 6|= ip 6= iq , we can apply the
Significance query rule. Otherwise, if there is some
M -significant position p in ~I and some M -significant
position q in ~J s.t. M 6|= ip = jq and M 6|= ip 6= jq then
we can apply the Equality index query rule. Otherwise,
if (~I, ~X) and (~J, ~Y) are not M -equivalent it is because
either (i) there is some M -significant index ip in ~I such
that M |= ip 6=j for all j in ~J and we can apply Write
introduction (the same happens if we exchange ~I and
~J) or (ii) M |= sigM (~I) =set sigM (~J) but there exist
an M -significant position p in ~I and an M -significant
position q in ~J such that M |= ip =jq but M 6|= xp =yp

and then we can apply Equality values propagation.

The only possibility left now is that (~I, ~X) and (~J, ~Y)
are indeed M -equivalent and then either the literal is in
solved form or we can apply True equality.

3) The literal is of the form write(a, ~I, ~X) 6=
write(b, ~J, ~Y). If there is a pair of indices ip and iq
in ~I (or in ~J) such that M 6|= ip = iq and M 6|= ip 6= iq ,
we can apply the Significance query rule. Otherwise, if
the literal is not in solved form, then (~I, ~X) and (~J, ~Y)
are M -equivalent, and hence we can either apply the
Array Inconsistency rule when a ≡ b, or we can apply
the Disequality witness introduction otherwise.

4) The literal is of the form x = read(A, i). If A is
not a constant then we can apply the Read-Write rule.
Otherwise, we can apply the Read2Write rule.

5) The literal is of the form x 6= read(A, i) and A is not
a constant. Then we can apply the Read-Write rule.

6) The literal is a (dis)equality between indices or values.
Then, we can apply the UF-Dispatch rule. 2

Since the premises and the disjunction of the conclusions
of every transformation rule are equisatisfiable, the following
lemma holds.

Lemma 5: An ASAT problem M | P is satisfiable if and
only if at least one leaf of a solved A-derivation tree rooted
by M | P is not ⊥.

Now we present our main result.
Theorem 1: The extensional theory of arrays can be decided

with A.
Proof: By lemmas 3 and 4, we have that, given a ASAT

problem M | P , a solved A-tree derivation can be obtained.
Then by Lemma 5, we can decide if the problem is satisfiable.
2

Note that we can apply any strategy in the application of
the transformation rules.

IV. INTEGRATION OF THE SOLVER IN DPLL(T)

In the previous section, we showed how to check the
satisfiability of conjunctions of literals, but SMT deals with
arbitrary formulas. For that purpose, in the DPLL(T) approach
to SMT a Boolean engine DPLL(X) works in cooperation
with a theory solver Solver

T
. In its most basic version, the

engine enumerates all propositional models of the formula
and Solver

T
checks the models (seen as conjunctions of

literals) for consistency over the theory T . As expected, the
input formula is declared satisfiable as soon as a T -consistent
propositional model is found.

In our implementation of the Solver
T

described in this
paper, array expressions are stored using a DAG, where the
nodes are array constants and the edges are labelled by the
index and the value of the corresponding write. In this
way we can share information and have an efficient way of
applying subtitutions of array constants by write expressions.
In addition, (dis)equalities between constants are stored in a
Union-Find data structure. In what follows, we give some
details about usual optimizations on DPLL(T) systems and
how they are implemented in our solver.

Incrementality: there is no need to delay consistency
checks until a full propositional model has been found. One
can check the T -consistency of partial assignments while they
are being built, with the aim of detecting T -inconsistencies
at an earlier stage. In order to fully exploit this feature, it is
interesting to ask Solver

T
to be incremental. That is, once an

assignment M has been found T -consistent, processing the
addition of a literal l should be done faster (in average) than
reprocessing the whole assignment M ∪ {l} from scratch.

For that purpose, for every array (dis)equality literal we
have a watched pair of indices, one in each side, that is used
for the analysis of satisfiability of the literal. If the literal is
not in solved form and we know whether these two indices
and their associated values are equal or not, and whether they
are significant, we move the watched pair to other indices in
order to avoid repeated work in future checks.

Splitting on demand: if some of this information is un-
known, we allow the solver not to give a conclusive answer,
but rather to ask DPLL(X) to split on a certain equality
between indices. This refinement, presented in [9] and called
splitting on demand, allows reusing the case-splitting infras-
tructure present in DPLL(X) instead of duplicating it inside
Solver

T
. This simplifies the implementation of all splitting

rules presented in the previous section.

Theory propagation: if, when checking a non-solved lit-
eral, we have all the information about equalities between
indices but not about values, we can propagate an equality
between values, applying the Equality values propagation
rule. Similarly, by successive applications of Read-Write
we can sometimes infer a disequality between values that is
propagated by UF-Dispatch. If such a (dis)equality already
exists in the input formula we can notify it to the DPLL(X)
engine. This optimization, introduced in [10], is very effective
in reducing the search space.

Backtracking: sometimes an inconsistency can be detected,
and then it is beneficial to backtrack to a point where the
assignment was still T -consistent, instead of restarting the
search. Hence, we need Solver

T
to be backtrackable. Our

solver annotates some information with timestamps, e.g. the
one given by the Union-Find, and some other information is
restored using a trail stack.

In addition, Solver
T

has to assist DPLL(X) in identifying
the backtrack point by providing an inconsistency explanation,
that is, given a T -inconsistent set of literals M , it has to
provide a small subset of M that is also T -inconsistent. As it
is well-known, generating short explanations is a determinant
factor in the performance of an SMT solver. In our case, an
explanation describes basically the conditions of the trans-
formation rule of Figure 1 that has been applied on a given
(dis)equality array literal, together with the explanation of why
the relevant indexes and values of both sides of the array literal
are there. For this reason, when any of the rules introducing
new write’s is applied, namely the Read2Write, the Write
introduction or the Disequality witness introduction rule,

we remember the literal that has generated it. It is crucial to
make these explanations for the introduced write’s as short
as possible.

V. EXPERIMENTS

In order to evaluate the Solver
T

for arrays described in this
paper, we implemented it on top of our BARCELOGIC [11]
system2. We performed experiments on a 2GHz 2GB Intel
Core Duo with a time limit of 300 seconds, comparing
our implementation with the four systems that competed at
SMT-COMP 2007 (the annual SMT competition3) in the
QF AUFLIA division, the only one involving quantifier-free
formulas with arrays. These systems are: CVC3 1.2 [12],
YICES 1.0 and YICES 1.0.10 [6] and Z3 0.1 [7]. We ran
all systems on all available benchmarks in SMT-LIB [13],
the largest existing library for SMT problems, discarding
families of benchmarks consisting only of trivial problems.
The remaining benchmark families were:
• array-benchs (25 benchs): a variety of verification con-

ditions involving arithmetic and arrays.
• cvc (25 benchs): processor verification conditions involv-

ing arithmetic and arrays.
• qlock2 (52 benchs): unbounded version of the queue lock

algorithm. All benchmarks result from parameterizing
two single problems. They all contain arithmetic and
arrays.

• storecomm (2030 benchs), storeinv (172 benchs) and
swap (1368 benchs): benchmarks from the paper [14]
encoding simple properties about arrays. They do not
contain any arithmetic.

As we can see, most benchmarks involve both arrays and
arithmetic, hence forcing us to implement some method for
combining the Solver

T
for arrays with our solvers for arith-

metic (both the difference logic one and the one for full linear
arithmetic). It is important to note that BARCELOGIC does not
implement any sophisticated combination technique. Unlike
what it is done in YICES or Z3, where interface equalities
are created on the fly and sophisticated techniques are used
to reduce their number, BARCELOGIC implements Delayed
Theory Combination [15]. This is much simpler but, since we
create all interface equalities upfront, it may significantly slow
down the search in some cases. The main reason for that is
that, since our arithmetic solvers do not admit (dis)equalities,
we have to add clauses, for each interface equality x = y,
expressing that x = y ↔ x ≤ y ∧ x ≥ y . This problem is
specially acute in the qlock2 family where, in some cases, up
to sixty thousand interface equalities had to be created.

Results are presented in Figure 2, where the column labeled
Total contains the number of seconds needed to process the
whole family. We only count the time for the number of
instances solved within 300 seconds and, if not all problems
could be handled, we write in parenthesis how many instances

2The system can be downloaded from
http://www.lsi.upc.edu/˜oliveras/espai/fmcad.tar.gz

3See http://www.smtcomp.org

YICES 1.0.10 YICES 1.0
Total Max Total Max

array benchs 52 42 69 52
cvc 5 4 4 3
qlock2 49 5 50 6
storecomm 35 0.1 41 0.1
storeinv 1 0.1 1 0.1
swap 970 130 581 60

Z3 0.1 CVC3 1.2
Total Max Total Max

array benchs 21 8 496 (16) 294
cvc 1 1 114 57
qlock2 114 37 199 (30) 117
storecomm 37 0.1 993 20
storeinv 8 0.3 691 (162) 76
swap 1431 128 13726 (1263) 275

BARCELOGIC
Total Max

array benchs 282 162
cvc 59 38
qlock2 652 55
storecomm 48 0.1
storeinv 22 2
swap 275 9

Fig. 2. Experimental results (times are in seconds)

could be processed. The column Max gives the largest time in
seconds needed by a single instance.

From the table it can be seen that BARCELOGIC can solve
any instance in less than 3 minutes and in fact only one
benchmark takes more than one minute. Our system is in
general much faster than CVC3, but slower than Z3 and
YICES. However, apart from the qlock2 family, where the huge
number of interface equalities greatly affects the search space,
the difference wrt. Z3 and YICES is similar to the difference
we obtain when we run the systems on formulas not involving
arrays. Hence, the difference is probably not due to the array
solver but rather to other factors such as heuristics and the
worse performance of the arithmetic solvers in BARCELOGIC.
In fact, for benchmarks containing a big array component, such
as the families storecomm, storeinv and swap, our system is
comparable, if not better, which shows that our array solver
behaves very well in practice.

VI. CONCLUSIONS

In this paper we have described a new theory solver for
extensional arrays. As far as we know, this is the first accurate
description of an array solver integrated in a state-of-the-
art SMT solver and, unlike most state-of-the-art solvers, it
is not based on a lazy instantiation of the array axioms.
Moreover, our solver is very intuitive and easy-to-understand:
after performing a careful analysis on which indices are

relevant in each array, the satisfiability of conjunctions of
literals becomes an easy task. We have proved soundness,
completeness, and termination of our procedure and shown
how it can be integrated to work in a DPLL(T) setting.
Finally, we have presented experimental results showing that
it performs very well in practice. We want to note that this
approach smoothly extends to multidimensional arrays by
expressing a position (i1, . . . , in) in an n-dimensional array
as f(i1, . . . , in), where f is an uninterpreted function symbol.

REFERENCES

[1] J. R. Burch and D. L. Dill, “Automatic Verification of Pipelined
Microprocessor Control,” in 6th International Conference on Computer
Aided Verification, CAV’94, ser. Lecture Notes in Computer Science,
D. L. Dill, Ed., vol. 818. Springer, 1994, pp. 68–80.

[2] V. Ganesh and D. L. Dill, “A Decision Procedure for Bit-Vectors
and Arrays,” in 19th International Conference on Computer Aided
Verification, CAV’07, ser. Lecture Notes in Computer Science, W. Damm
and H. Hermanns, Eds., vol. 4590. Springer, 2007, pp. 519–531.

[3] R. Bruttomesso, A. Cimatti, A. Franzén, A. Griggio, Z. Hanna, A. Nadel,
A. Palti, and R. Sebastiani, “A Lazy and Layered SMT(BV) Solver for
Hard Industrial Verification Problems,” in 19th International Conference
on Computer Aided Verification, CAV’07, ser. Lecture Notes in Computer
Science, W. Damm and H. Hermanns, Eds., vol. 4590. Springer, 2007,
pp. 547–560.

[4] R. Alur, “Timed Automata,” in 11th International Conference on
Computer Aided Verification, CAV’99, ser. Lecture Notes in Computer
Science, N. Halbwachs and D. Peled, Eds., vol. 1633. Springer, 1999,
pp. 8–22.

[5] R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Solving SAT and SAT
Modulo Theories: From an abstract Davis–Putnam–Logemann–Loveland
procedure to DPLL(T),” Journal of the ACM, JACM, vol. 53, no. 6, pp.
937–977, 2006.

[6] B. Dutertre and L. de Moura, “ The YICES SMT Solver,” Computer
Science Laboratory, SRI International, Tech. Rep., 2006, available at
http://yices.csl.sri.com.

[7] L. de Moura and N. Bjorner, “ Z3: An Efficient SMT Solver,”
Microsoft Research, Redmond, Tech. Rep., 2007, available at
http://research.microsoft.com/projects/z3.

[8] A. Stump, C. W. Barrett, D. L. Dill, and J. R. Levitt, “A Decision
Procedure for an Extensional Theory of Arrays,” in 16th Annual IEEE
Symposium on Logic in Computer Science, LICS’01. IEEE Computer
Society, 2001, pp. 29–37.

[9] C. Barrett, R. Nieuwenhuis, A. Oliveras, and C. Tinelli, “Splitting on
Demand in SAT Modulo Theories,” in 13h International Conference on
Logic for Programming, Artificial Intelligence and Reasoning, LPAR’06,
ser. Lecture Notes in Computer Science, M. Hermann and A. Voronkov,
Eds., vol. 4246. Springer, 2006, pp. 512–526.

[10] R. Nieuwenhuis and A. Oliveras, “DPLL(T) with Exhaustive Theory
Propagation and its Application to Difference Logic,” in 17th Interna-
tional Conference on Computer Aided Verification, CAV’05, ser. Lecture
Notes in Computer Science, K. Etessami and S. Rajamani, Eds., vol.
3576. Springer, 2005, pp. 321–334.

[11] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodrı́guez-Carbonell, and
A. Rubio, “The Barcelogic SMT Solver,” in 20th International Con-
ference on Computer Aided Verification, CAV’08, ser. Lecture Notes in
Computer Science, A. Gupta and S. Malik, Eds. Springer, 2008.

[12] C. Barrett and C. Tinelli, “CVC3,” in 19th International Conference on
Computer Aided Verification, CAV’07, ser. Lecture Notes in Computer
Science, W. Damm and H. Hermanns, Eds., vol. 4590. Springer, 2007,
pp. 298–302.

[13] C. Tinelli and S. Ranise, “SMT-LIB: The Satisfiability Modulo Theories
Library,” http://www.smtlib.org.

[14] A. Armando, M. P. Bonacina, S. Ranise, and S. Schulz, “New results
on rewrite-based satisfiability procedures,” ACM Transactions on Com-
putational Logic, TOCL, 2008, to appear.

[15] M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, S. Ranise, P. van
Rossum, and R. Sebastiani, “Efficient Satisfiability Modulo Theories
via Delayed Theory Combination.” in 17th International Conference on
Computer Aided Verification, CAV’05, ser. Lecture Notes in Computer

Science, K. Etessami and S. Rajamani, Eds., vol. 3576. Springer, 2005,
pp. 335–349.

