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Abstract. At CAV’04 we presented the DPLL(T ) approach for satis-
fiability modulo theories T . It is based on a general DPLL(X) engine
whose X can be instantiated with different theory solvers Solver

T
for

conjunctions of literals.
Here we go one important step further: we require Solver

T
to be able to

detect all input literals that are T -consequences of the partial model that
is being explored by DPLL(X). Although at first sight this may seem
too expensive, we show that for difference logic the benefits compensate
by far the costs.
Here we describe and discuss this new version of DPLL(T ), the DPLL(X)
engine, and our Solver

T
for difference logic. The resulting very simple

DPLL(T ) system importantly outperforms the existing techniques for
this logic. Moreover, it has very good scaling properties: especially on
the larger problems it gives improvements of orders of magnitude w.r.t.
the existing state-of-the-art tools.

1 Introduction

During the last years the performance of decision procedures for the satisfiability
of propositional formulas has improved spectacularly. Most state-of-the-art SAT
solvers [MMZ+01,GN02] today are based on different variations of the Davis-
Putnam-Logemann-Loveland (DPLL) procedure [DP60,DLL62].

But, in many verification applications, satisfiability problems arise for logics
that are more expressive than just propositional logic. In particular, decision
procedures are required for (specific classes of) ground first-order formulas with
respect to theories T such as equality with uninterpreted functions (EUF), the
theory of the integer/real numbers, or of arrays or lists.

Normally, for conjunctions of theory literals there exist well-studied decision
procedures. For example, such a theory solver for the case where T is equal-
ity (i.e., for EUF logic) can use congruence closure. It runs in O(n log n) time
[DST80], also in the presence of successor and predecessor functions [NO03].
Another example is difference logic (sometimes also called separation logic) over
the integers or reals, where atoms take the form a − b ≤ k, being a and b vari-
ables and k a constant. In difference logic the satisfiability of conjunctions of
such literals can be decided in O(n3) time by the Bellman-Ford algorithm.
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However, it is unclear in general which is the best way to handle arbitrary
Boolean or CNF formulas over theory (and propositional) literals. Typically, the
problem is attacked by trying to combine the strengths of the DPLL approach
for dealing with the boolean structure, with the strengths of the specialized
procedures for handling conjunctions of theory literals.

One well-known possibility is the so-called lazy approach [ACG00,dMR02]
[BDS02,FJOS03,BBA+05]. In this approach, each theory atom is simply ab-
stracted by a distinct propositional variable, and a SAT solver is used to find
a propositional model. This model is then checked against the theory by using
the solver for conjunctions of literals. Theory-inconsistent models are discarded
from later consideration by adding an appropriate theory lemma to the original
formula and restarting the process. This is repeated until a model compatible
with the theory is found or all possible propositional models have been explored.
The main advantage of such lazy approaches is their flexibility: they can eas-
ily combine new decision procedures for different logics with new SAT solvers.
Nowadays, most lazy approaches have tighter integrations in which partial propo-
sitional models are checked incrementally against the theory while they are built
by the SAT solver. This increases efficiency at the expense of flexibility.

However, these lazy approaches suffer from the drawbacks of insufficient con-

straint propagation and blind search [dMR04]: essentially, the theory information
is used only to validate the search a posteriori, not to guide it a priori.

In practice, for some theories these lazy approaches are outperformed by the
so-called eager techniques, where the input formula is translated, in a single
satisfiability-preserving step, into a propositional CNF, which is checked by a
SAT solver for satisfiability. However, such eager approaches require sophisti-
cated ad-hoc translations for each logic. For example, for EUF there exist the
per-constraint encoding [BV02], the small domain encoding [PRSS99,BLS02],
and several hybrid approaches [SLB03]. Similarly, for difference logic, sophis-
ticated range-allocation approaches have been defined in order to improve the
translations [TSSP04]. But, in spite of this, on many practical problems the
translation process or the SAT solver run out of time or memory (see [dMR04]).

1.1 The DPLL(T ) approach of [GHN+04]

As a way to overcome the drawbacks of the lazy and eager approaches, at CAV’04
we proposed DPLL(T ) [GHN+04]. It consists of a general DPLL(X) engine,
whose parameter X can be instantiated with a solver (for conjunctions of literals)
Solver

T
for a given theory T , thus producing a DPLL(T ) decision procedure.

One essential aspect of DPLL(T ) is that Solver
T

not only validates the choices
made by the SAT engine (as in the lazy approaches). It also eagerly detects
literals of the input CNF that are T -consequences of the current partial model,
and sends them to the DPLL(X) engine for propagation. Due to this, for the
EUF logic the DPLL(T ) approach not only outperforms the lazy approaches,
but also all eager ones, as soon as equality starts playing a significant role in the
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EUF formula [GHN+04]1. On the other hand, DPLL(T ) is similar in flexibility
to the lazy approaches: other logics can be dealt with by simply plugging in their
theory solvers into the DPLL(X) engine, provided that these solvers conform to
a minimal and simple interface.

In the DPLL(T ) version of [GHN+04], Solver
T

is allowed to fail sometimes to
detect that a certain input literal l is a T -consequence of literals l1, . . . , ln in the
current partial model. Then, only when the DPLL(X) engine actually makes ¬l

true, as a decision literal, or as a unit propagated literal, and communicates this
to Solver

T
, it is detected that the partial model is no longer T -consistent. Then

Solver
T

warns the DPLL(X) engine, who has several different ways of treating
such situations. One possibility is to backjump to the level where l actually
became T -entailed, and propagate it there. This mechanism alone gives one a
complete DPLL(T ) decision procedure. But in order to make it more efficient,
it is usually better to learn the corresponding theory lemma l1∧. . .∧ln → l. In
other similar branches of the DPLL search the literal l can then be propagated
earlier. Altogether, such concrete situations of non-exhaustiveness of Solver

T
are

essentially handled as in the lazy approaches.
The reason why in [GHN+04] the approach was defined considering a possibly

non-exhaustive Solver
T

was due to our experiments with EUF. More precisely,
for negative equality consequences we found it expensive to detect them exhaus-
tively, whereas all positive literals were propagated.

1.2 DPLL(T ) with Exhaustive Theory Propagation

At least for difference logic, it is indeed possible to go one important step fur-
ther in this idea: in this paper we describe a DPLL(T ) approach where Solver

T

is required to detect and communicate to DPLL(X) all literals of the input for-
mula that are T -consequences of the partial model that is being explored. This
assumption makes the DPLL(X) engine much simpler and efficient than before,
because it can propagate these literals in exactly the same way as for standard
unit propagation in DPLL, and no theory lemma learning is required at all.

The DPLL(X) engine then becomes essentially a propositional SAT solver.
The only difference is a small interface with Solver

T
. DPLL(X) communicates

to Solver
T

each time the truth value of a literal is set, and Solver
T

answers with
the list of literals that are new T -consequences. DPLL(X) also communicates to
Solver

T
, each time a backjump takes place, how many literals of the partial inter-

pretation have been unassigned. As in most modern DPLL systems, backjumping
is guided by an implication graph [MSS99], but of course here some arrows in
the graph correspond to theory consequences. Therefore, for building the graph,
DPLL(X) also needs Solver

T
to provide an Explain(l) operation, returning, for

each T -consequence l it has communicated to DPLL(X), a (preferably small)
subset of the true literals that implied l. This latter requirement to our Solver

T

coincides with what solvers in the lazy approach must do for returning the theory
lemmas.

1 And our implementations are now again much faster than reported at CAV’04.
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Due to the fact that DPLL(X) is here nothing more than a standard DPLL-
based SAT solver, the approach has become again more flexible, because it is
now easy to convert any new DPLL-based SAT solver into a DPLL(X) engine.
Moreover, there is at least one important theory for which the exhaustiveness
requirement does not make Solver

T
too slow: here we give extensive experimental

evidence showing that for difference logic our approach outperforms all existing
systems, and moreover has better scaling properties. Especially on the larger
problems it gives improvements of orders of magnitude.

This paper is structured as follows. In Section 2 we give a precise formulation
of DPLL(T ) with exhaustive theory propagation. In Section 3 we show how our
relatively simple solver for difference logic is designed in order to efficiently fulfill
the requirements. Section 4 gives all experimental results, and we conclude in
Section 5.

2 DPLL(T ): basic definitions and notations

A procedure for Satisfiability Modulo Theories (SMT) is a procedure for deciding
the satisfiability of ground (in this case, CNF) formulas in the context of a
background theory T . By ground we mean containing no variables—although
possibly containing constants not in T (which can also be seen as Skolemized
existential variables).

A theory T is a satisfiable set of closed first-order formulas. We deal with (par-
tial Herbrand) interpretations M as sets of ground literals such that {A,¬A} ⊆
M for no ground atom A. A ground literal l is true in M if l ∈ M , is false in
M if ¬l ∈ M , and is undefined otherwise. A ground clause C is true in M if
C ∩ M 6= ∅. It is false in M , denoted M |= ¬C, if all its literals are false in
M . Similarly, we define in the standard way when M satisfies (is a model of) a
theory T . If F and G are ground formulas, G is a T -consequence of F written
F |=T G, if T ∪F |= G. The decision problem that concerns us here is whether a
ground formula F is satisfiable in a theory T , that is, whether there is a model
M of T ∪ F . Then we say that M is a T -model of F .

2.1 Abstract transition rules

Here we define DPLL(T ) with exhaustive theory propagation by means of the
abstract DPLL framework, introduced in [NOT05] (check this reference for de-
tails). Here a DPLL procedure is modelled by a transition relation over states.
A state is either fail or a pair M || F , where F is a finite set of clauses and M

is a sequence of literals that is seen as a partial interpretation. Some literals l

in M will be annotated as being decision literals; these are the ones added to
M by the Decide rule given below, and are sometimes written ld. The transition
relation is defined by means of rules.



5

Definition 1. The DPLL system with exhaustive theory propagation consists

of the following transition rules:

UnitPropagate :

M || F, C ∨ l =⇒ M l || F, C ∨ l if

{

M |= ¬C

l is undefined in M

Decide :

M || F =⇒ M ld || F if

{

l or ¬l occurs in a clause of F

l is undefined in M

Fail :

M || F, C =⇒ fail if

{

M |= ¬C

M contains no decision literals

Backjump :

M ld N || F, C =⇒ M l′ || F, C if























M ld N |= ¬C, and there is

some clause C′ ∨ l′ s.t.:

F, C |=T C′ ∨ l′ and M |= ¬C′

l′ is undefined in M

l′ or ¬l′ occurs in F or M ld N

T-Propagate :

M || F =⇒ M l || F if







M |=T l

l or ¬l occurs in a clause of F

l is undefined in M

Learn :

M || F =⇒ M || F, C if

{

all atoms of C occur in F

F |=T C

Forget :
M || F, C =⇒ M || F if

{

F |=T C

Restart :
M || F =⇒ ∅ || F

These rules express how the search state of a DPLL procedure evolves. With-
out T-Propagate, and replacing everywhere |=T by |=, they model a standard
propositional DPLL procedure. Note that this is equivalent to considering T to
be the empty theory: then T-Propagate never applies. The propagation and deci-
sion rules extend the current partial interpretation M with new literals, and if in
some state M || F there is a conflict, i.e., a clause of F that is false in M , always
either Fail applies (if there are no decision literals in M) or Backjump applies (if
there is at least one decision literal in M). In the latter case, the backjump clause

C′ ∨ l′ can be found efficiently by constructing a conflict graph. Good backjump
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clauses allow one to return to low decision levels, i.e., they maximize the number
of literals in N . Usually such backjump clauses are learned by the Learn rule, in
order to prevent future similar conflicts. The use of Forget is to free memory by
removing learned clauses that have become less active (e.g., cause less conflicts
or propagations).

These first five rules terminate (independently of any strategies or priorities)
and termination of the full system is easily enforced by limiting the applicability
of the other three rules (e.g., if all Learn steps are immediately after Backjump

steps, and Restart is done with increasing periodicity). If we say that a state is
final if none of the first five rules applies, the following theorem is proved in a
similar way to what is done in [NOT05].

Theorem 2. Let =⇒ denote the transition relation of the DPLL system with

exhaustive theory propagation where T-Propagate is applied eagerly, i.e., no other

rule is applied if T-Propagate is applicable, and let =⇒∗ be its transitive closure.

1. ∅ || F =⇒∗ fail if, and only if, F is unsatisfiable in T .

2. If ∅ || F =⇒∗ M || F ′, where M || F ′ is final, then M is a T -model of F .

2.2 Our particular strategy

Of course, actual DPLL implementations may use the above rules in more re-
strictive ways, using particular application strategies. For example, many sys-
tems will eagerly apply UnitPropagate and minimize the application of Decide,
but this is not necessary: any strategy will be adequate for Theorem 2 to hold.

We now briefly explain the particular strategy used by our DPLL(T ) imple-
mentation, and the roles of the DPLL(X) engine and of Solver

T
in it.

For the initial setup of DPLL(T ), one can consider that it is Solver
T

that
reads the input CNF, then stores the list of all literals occurring in it, and
hands it over to DPLL(X) as a purely propositional CNF. After that, DPLL(T )
implements the rules as follows:

• Each time DPLL(X) communicates to Solver
T

that the truth value of a
literal has been set, due to UnitPropagate or Decide, Solver

T
answers with

the list of all input literals that are new T -consequences. Then, for each one
of these consequences, T-Propagate is immediately applied.

• If T-Propagate is not applicable, then UnitPropagate is eagerly applied by
DPLL(X) (this is implemented using the two-watched-literals scheme).

• DPLL(X) applies Fail or Backjump if, and only if, a conflict clause C is
detected, i.e., a clause C that is false in M . As said, if there is some decision
literal in M , then it is always Backjump that is applied. The application
of Backjump is guided by an implication graph. Each literal of the conflict
clause C is false in M because its negation l is in M , which can be due to
one of three possible rules:

– UnitPropagate: l is true because, in some clause D ∨ l, every literal in D

is the negation of some l′ in M .
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– T-Propagate: l has become true because it is a T -consequence of other
literals l′ in M .

– Decide: l has been set true by Decide.

In the cases of UnitPropagate and T-Propagate, recursively the l′ are again
true due to the same three possible reasons. By working backwards in this
way from the literals of C, one can trace back the reasons of the conflict. A
conflict graph is nothing but a representation of these reasons. By analyzing
a subset of it, one can find adequate backjump clauses [MSS99]. But for
building the graph, for the case of the T-Propagate implications, Solver

T

must be able to return the set of l′ that T -entailed l. This is done by the
Explain(l) operation provided by Solver

T
.

After each backjump has taken place in DPLL(X), it tells Solver
T

how many
literals of the partial interpretation have been unassigned.

• Immediately after each Backjump application, the Learn rule is applied for
learning the backjump clause.

• In our current implementation, DPLL(X) applies Restart when certain sys-
tem parameters reach some limits, such as the number of conflicts or lemmas,
the number of new units derived, etc.

• Forget is applied by DPLL(X) after each restart (and only then), removing at
least half of the lemmas according to their activity (number of times involved
in a conflict since last restart). The 500 newest lemmas are not removed.

• DPLL(X) applies Decide only if none of the other first five rules is applicable.
The heuristic for chosing the decision literal is as in Berkmin [GN02]: we take
an unassigned literal that occurs in an as recent as possible lemma, and in
case of a draw, or if there is no such literal in the last 100 lemmas, the literal
with the highest VSIDS measure is taken [MMZ+01] (where each literal has
a counter increased by each participation in a conflict, and from time to time
all counters are divided by a constant).

3 Design of Solver
T

for Difference Logic

In this section we address the problem of designing Solver
T

for a DPLL(T ) system
deciding the satisfiability of a CNF formula F in difference logic (sometimes also
called separation logic). In this logic, the domain can be the integers, rationals
or reals (as we will see, the problem is essentially equivalent in all three cases),
and atoms are of the form a ≤ b+k, where a and b are variables over this domain
and k is a constant.

Note that, over the integers, atoms of the form a < b+ k can be equivalently
written as a ≤ b + (k − 1). A similar transformation exists for rationals and
reals, by decreasing k by a small enough amount that depends only on the
remaining literals ocurring in the input formula [Sch87]. Hence, negations can
also be removed, since ¬(a ≤ b+k) is equivalent to b < a−k, as well as equalities
a = b + k, which are equivalent to a ≤ b + k ∧ a ≥ b + k. Therefore, we will
consider that all literals are of the form a ≤ b + k.
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Given a conjunction of such literals, one can build a directed weighted graph

whose nodes are the variables, and with an edge a
k

−→ b for each literal a ≤ b+k.
It is easy to see that, independently of the concrete arithmetic domain (i.e.,
integers, rationals or reals), such a conjunction is unsatisfiable if, and only if,
there is a cycle in the graph with negative accumulated weight. Therefore, once
the problem has all its literals of the form a ≤ b + k, the concrete domain does
not matter any more.

Despite its simplicity, difference logic has been used to express important
practical problems, such as verification of timed systems, scheduling problems
or the existence of paths in digital circuits with bounded delays.

3.1 Initial setup

As said, for the initial setup of DPLL(T ), it is Solver
T

that reads the input CNF,
then stores the list of all literals occurring in it, and hands it over to DPLL(X)
as a purely propositional CNF.

For efficiency reasons, it is important that in this CNF the relation between
literals and their negations is made explicit. For example, if a ≤ b + 2 and
b ≤ a − 3 occur in the input, then, since (in the integers) one is the negation of
the other, they should be abstracted by a propositional variable and its negation.
This can be detected by using a canonical form during this setup process. For
instance, one can impose that always the smallest variable, say a, has to be at
the left-hand side of the ≤ relation, and thus we would have a ≤ b + 2 and
¬(a ≤ b + 2), and abstract them by p and ¬p for some propositional variable p.

Solver
T

will keep a data structure recording all such canonized input literals
like a ≤ b + 2 and its abstraction variable p. Moreover, for reasons we will see
below, it keeps for each variable the list of all input literals it occurs in, together
with the length of this list.

3.2 DPLL(X) sets the truth value of a literal

When the truth value of a literal is set, Solver
T

converts the literal into the
form a ≤ b + k and adds the corresponding edge to the aforementioned directed
weighted graph. Since there is a one-to-one correspondence between edges and
such literals, and between the graph and the conjunction of the literals, we will
sometimes speak about literals that are (T -)consequences of the graph. Here we

will write a0

k ∗

−→ an if there is a path in the graph of the form

a0

k1−→ a1

k2−→ . . .
kn−1

−→ an−1

kn−→ an

with n ≥ 0 and where k = 0 + k1 + . . . kn is called the length of this path.
Note that one can assume that DPLL(X) does not communicate to Solver

T

any redundant edges, since such consequences would already have been commu-
nicated by Solver

T
to DPLL(X). Similarly, DPLL(X) will not communicate to

Solver
T

any edges that are inconsistent with the graph. Therefore, there will be
no cycles of negative length.
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Here, Solver
T

must return to DPLL(X) all input literals that are new conse-
quences of the graph once the new edge has been added. Essentially, for detecting

the new consequences of a new edge a
k

−→ b, Solver
T

needs to check all paths

ai
ki ∗

−→ a
k

−→ b
k′

j ∗

−→ bj

and see whether there is any input literal that follows from ai ≤ bj +(ki+k+k′

j),
i.e., an input literal of the form ai ≤ bj + k′, with k′ ≥ ki + k + k′

j .
For checking all such paths from ai to bj that pass through the new edge

from a to b, we need to be able to find all nodes ai from which a is reachable,
as well as the nodes bj that are reachable from b. Therefore, we keep the graph
in double adjacency list representation: for each node n, we keep the list of
outgoing edges as well as the one of incoming edges. Then a standard single-
source-shortest-path algorithm starting from a can be used for computing all ai

with their corresponding minimal ki (and similarly for the bj).
What worked best in our experience to finally detect all entailed literals is

the following. We use a simple depth-first search, where each time a node is
reached for the first time it is marked, together with the accumulated distance
k, and, each time it is reached again with some k′, the search stops if k′ ≥ k

(this terminates because there are no cycles of negative length).
While doing this, the visited nodes are pushed onto two stacks, one for the

ai’s and another one for the bj ’s, and it is also counted, for each one of those two
stacks, how many input literals these ai’s (and bj ’s) occur in (remember that
there are precomputed lists for this, together with their lengths).

Then, if, w.l.o.g., the ai’s are the ones that occur in less input literals, we
check, for each element in the list of input literals containing each ai, whether
the other constant is some of the found bj , and whether the literal is entailed
or not (this can be checked in constant time since previously all bj have been
marked).

3.3 Implementation of Explain

As said, for building the implication graph, DPLL(X) needs Solver
T

to provide
an Explain(l) operation, returning, for each T -consequence l it has communi-
cated to DPLL(X), a preferably small subset of the literals that implied l.

For implementing this, we proceed as follows. Whenever the m-th edge is
added to the directed weighted graph, the edge is annotated with its associated
insertion number m. In a similar fashion, when a literal l is returned as a con-
sequence of the m-th edge, this m is recorded together with l. Now assume l is
of the form a ≤ b + k, and the explanation for l is required. Then we search a
path in the graph from a to b of length at most k, using a depth-first search
as before. Moreover, in this search we will not traverse any edges with insertion
number greater than m. This not only improves efficiency, but it is it is also
needed for not returning “too new” explanations, which may create cycles in the
implication graph, see [GHN+04].
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4 Experimental Evaluation

Experiments have been done with all benchmarks we know of for difference logic,
both real-world and hand-made ones2. The table below contains runtimes for
five suites of benchmark families: the SAL Suite [dMR04], the MathSAT Suite
(see mathsat.itc.it), and the DLSAT one [CAMN04] come from verification
by bounded model checking of timed automated and linear hybrid systems and
from the job shop scheduling problem (the abz family of DLSAT). The remaining
two suites are hand-made. The Diamond Suite is from the problem generator
of [SSB02], where problem diamondsN has N edges per diamond, generating
between 10 and 18 diamonds (i.e., 9 problems per family), forcing unsatisfiability
over the integers. The DTP Suite is from [ACGM04].

We compare with three other systems: ICS 2.0 (ics.csl.sri.com), Math-
SAT [BBA+05]3 and TSAT++ (see [ACGM04] and ai.dist.unige.it/Tsat,
we thank Claudio Castellini for his help with this system). For the handmade
problems, TSAT++ has been used in the setting recommended by the authors
for these problems; for the other problems, we used the best setting we could
find (as recommended to us by the authors). DPLL(T ) has been used on all
problems in the same standard setting, as described in this paper.

We have included ICS and not others such as CVC [BDS02], CVC-Lite
[BB04], UCLID [LS04], because, according to [dMR04], ICS either dominates
them or gives similar results. It has to be noted that UCLID could perhaps
improve its performance by using the most recent range allocation techniques
of [TSSP04], and that ICS applies a more general solver for linear arithmetic,
rather than a specialized solver for difference logic as MathSAT, TSAT++ and
DPLL(T ) do.

On all benchmark families, DPLL(T ) is always significantly better than all
other systems. It is even orders of magnitude faster, especially on the larger
problems, as soon as the theory becomes relevant, i.e., when in, say, at least 10
percent of the conflicts the theory properties play any role. This is the case for
all problem families except lpsat and the FISCHER problems of the MathSAT
Suite.

Results are in seconds and are aggregated per family of benchmarks, with
times greater than 100s rounded to whole numbers. All experiments were run
on a 2GHz 512MB Pentium-IV under Linux. Each benchmark was run for one
hour, i.e., 3600 seconds. An annotation of the form (n t) or (n m) in a column
indicates respectively that the system timed out or ran out of memory on n

benchmarks. Each timeout or memory out is counted as 3600s.

2 Individual results for each benchmark can be found at www.lsi.upc.es/~oliveras,
together with all the benchmarks and an executable of our system.

3 V3.1.0, Nov 22, 2004, see mathsat.itc.it, which features a new specialized solver
for difference logic. We have no exhaustive results yet of the even more recent V3.1.1
of Jan 12, 2005 on all the larger problems. It appears to be slightly faster than V3.1.0
on some problems, but with results relative to DPLL(T ) similar to V3.1.0. We will
keep up-to-date results on www.lsi.upc.es/~oliveras.
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Benchmark # Problems
family in family ICS MathSAT TSAT++ DPLL(T)

SAL Suite:

lpsat 20 636 185 490 135

bakery-mutex 20 39.44 17.91 9.93 0.5

fischer3-mutex 20 (7t) 27720 363 (2t) 14252 259

fischer6-mutex 20 (10t) 39700 (7t) 27105 (11t) 40705 4665

fischer9-mutex 20 (12t) 43269 (9t) 33380 (13t) 48631 (2t) 14408

MathSAT Suite:

FISCHER9 10 187 187 172 86.68

FISCHER10 11 1162 962 3334 380

FISCHER11 12 (1t) 5643 4037 (2t) 9981 3091

FISCHER12 13 (3t) 11100 (2t) 8357 (4t) 14637 (1t) 6479

FISCHER13 14 (4t) 14932 (3t) 12301 (5t) 18320 (2t) 10073

FISCHER14 15 (5t) 18710 (4t) 15717 (6t) 218891 (3t) 14253

PO4 11 14.57 33.98 28.01 2.68

PO5 13 (10m) 36004 269 220 23.8

DLSAT Suite:

abz 12 (2t) 11901 218 49.02 5.29

ba-max 19 770 211 233 14.55

Diamond Suite:

diamonds4 9 (2m) 11869 9018 501 312

diamonds6 9 (2m) 9054 2926 742 193

diamonds10 9 (2m) 11574 (1t) 4249 1567 207

diamonds20 9 (4m, 1t) 19286 5050 (1t) 6073 219

DTP Suite:

DTP-175 20 (8t) 45060 37.63 35.69 0.77

DTP-210 20 (20t) 72000 50.74 112 5.27

DTP-240 20 (20t) 72000 36.53 191 6.86

4.1 Scaling Properties

To illustrate the scaling properties of our approach, below we include two graph-
ical representations of the behaviour of MathSAT and DPLL(T ) on the fischer6-
mutex family, which is a typical real-world suite for which large benchmarks
exist where the theory plays a relevant role (the other such suites give similar
graphics).

The diagram on the left below compares both systems on the problems of size
between 10 and 20 on a normal time scale of up to 100,000 seconds. MathSAT
did not finish any of the problems 18, 19 and 20 in 210,000 seconds, whereas
DPLL(T ) (almost invisible) takes 603, 1108 and 1778 seconds on them, respec-
tively. The diagram on the right expresses the same results on a logarithmic scale,
in order to get a better impression of the asymptotic behaviour of DPLL(T ).
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5 Conclusions and Further Work

We have shown that it is possible to deal with Satisfiability Modulo Theories
(SMT) in a clean and modular way, even if the information for the theory under
consideration is used exhaustively for propagating implied literals. Although at
first sight one might get the impression that this may be too expensive, we have
shown that, at least for difference logic, this is not the case.

Future work concerns other theories for which exhaustive theory propagation
may be useful, and others where a hybrid approach has to be applied, i.e., where
some classes of unit T -consequences are assumed to be detected and other are
handled more lazily.
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