General overview of a T-Solver for Difference Logic

Albert Oliveras and Enric Rodríguez-Carbonell

Deduction and Verification Techniques
Session 3
Fall 2009, Barcelona

Difference logic

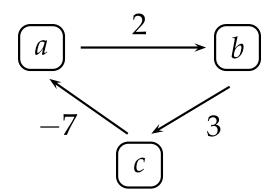
- Literals in Difference Logic are of the form $a b \bowtie k$, where
 - ⋈∈ {≤,≥,<,>,=,≠}
 - a and b are integer/real variables
 - k is an integer/real
- At the formula level, a=b is replaced by p and $p \leftrightarrow a \leq b \land b \leq a$ is added
- If domain is \mathbb{Z} then a b < k is replaced by $a b \le k 1$
- If domain is \mathbb{Z} then a b < k is replaced by $a b \le k \delta$
 - δ is a sufficiently small real
 - δ is not computed but used symbolically (i.e. numbers are pairs (k, δ)
- Hence we can assume all literals are $a b \le k$

Difference Logic - Remarks

- Note any solution to a set of DL literals can be shifted (i.e. if σ is a solution then $\sigma'(x) = \sigma(x) + k$ also is a solution)
- This allows one to process bounds $x \le k$
 - Introduce fresh variable zero
 - Convert all bounds $x \le k$ into $k zero \le k$
 - Given a solution σ , shift it so that $\sigma(zero) = 0$
- If we allow (dis)equalities as literals, then:
 - If domain is \mathbb{R} consistency check is polynomial
 - If domain is Z consistency check is NP-hard (k-colorability)
 - $1 \le c_i \le k$ with $i = 1 \dots \# verts$ encodes k colors available
 - $c_i \neq c_j$ if i and j adjacents encode proper assignment

Difference Logic as a Graph Problem

• Given $M = \{a-b \le 2, b-c \le 3, c-a \le -7\}$, construct weighted graph $\mathcal{G}(M)$



Theorem:

M is T-inconsistent iff $\mathcal{G}(M)$ has a negative cycle

Difference Logic as a Graph Problem (2)

Theorem:

 \Leftarrow

M is T-inconsistent iff $\mathcal{G}(M)$ has a negative cycle

Any negative cycle $a_1 \xrightarrow{k_1} a_2 \xrightarrow{k_2} a_3 \longrightarrow \ldots \longrightarrow a_n \xrightarrow{k_n} a_1$ corresponds to a set of literals:

$$a_1 - a_2 \le k_1$$

$$a_2 - a_3 \le k_2$$

$$a_n - a_1 \le k_n$$

If we add them all, we get $0 \le k_1 + k_2 + ... + k_n$, which is inconsistent since neg. cycle implies $k_1 + k_2 + ... + k_n < 0$

Difference Logic as a Graph Problem (3)

Theorem:

M is T-inconsistent iff $\mathcal{G}(M)$ has a negative cycle

 \Rightarrow

Let us assume that there is no negative cycle.

- 1. Consider additional vertex o with edges $o \xrightarrow{0} v$ for all verts. v
- 2. For each variable x, let $\sigma(x) = -dist(o, x)$ [exists because there is no negative cycle]
- 3. σ is a model of M
 - If $sigma \not\models x y \le k$ then -dist(o, x) + dist(o, y) > k
 - Hence, dist(o, y) > dist(o, x) + k

Bellman-Ford: negative cycle detection

```
forall v \in V do d[v] := \infty endfor
 forall i = 1 to |V| - 1 do
     forall (u, v) \in E do
          if d[v] > d[u] + weight(u,v) then
              d[v] := d[u] + weight(u,v)
              p[v] := u
       endif
     endfor
 endfor
 forall (u, v) \in E do
     if d[v] > d[u] + weight(u, v) then
          Negative cycle detected
          Cycle reconstructed following p
     endif
 endfor
UNIVERSITAT POLITECNICA DE CATALUNYA
```

Consistency checks

- Consistency checks can be performed using Bellman-Ford in time $(O(|V| \cdot |E|))$
- Other more efficient variants exists
- Incrementality easy:
 - Upon arrival of new literal $a \xrightarrow{k} b$ process graph from u
- Solutions can be kept after backtracking
- Inconsistency explanations are negative cycles (irredundant but not minimal explanations)

Theory propagation

■ Addition of $a \xrightarrow{k} b$ entails $c - d \le k'$ only if

shortest
$$\underbrace{c \longrightarrow * a \xrightarrow{k} b \longrightarrow * d}_{shortest}$$

- Each edge $a \xrightarrow{k} b$ has its reduced cost $k \sigma(a) + \sigma(b) \le 0$
- Shortest path computation more efficient using reduced costs, since they are non-negative [Dijkstra's algorithm]
- Theory propagation \approx shortest-path computations
- Explanations are the shortest paths