Resolution in Propositional Logic

Javier Larrosa

Albert Oliveras

Enric Rodríguez-Carbonell

Problem Solving and Constraint Programming Session 3

- Inference rules
- Resolution
- Ordered resolution
- Practical remarks

Inference rules

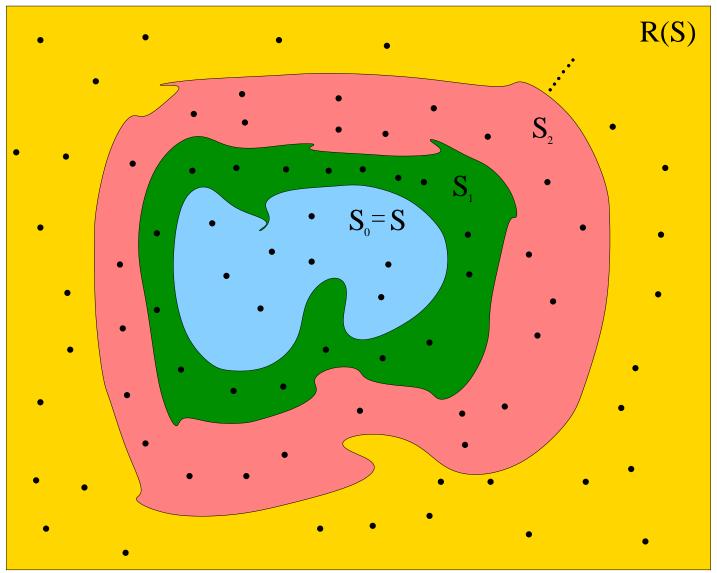
- They allow one to deduce new formulas from given ones
- Given an inference rule R and a set of formulas S, we define:
 - The closure of S under R, denoted R(S) is the set of all formulas that can be obtained in zero or more deduction steps from S using R.
 - More formally, for $i \ge 0$

$$S_0 = S$$

 $S_{i+1} = S_i \cup R_1(S_i)$ and $R(S) = \bigcup_{i=0}^{\infty} S_i$

where $R_1(S_i)$ is the set of all formula obtained from S_i in exactly one application of R.

Inference rules - Closure



Inference rules - properties

- R is correct—iff— $F \in R(S)$ implies $S \models F$
 - That is, the closure only contains logical consequences (but maybe not all of them)
- R is complete iff $S \models F$ implies $F \in R(S)$
 - That is, the closure contains all logical consequences (but maybe something more)
- Ideally, we want correct and complete inference rules
- A weaker notion of completeness is refutational completeness:

$$S$$
 unsatisfiable $\implies \Box \in R(S)$

■ If R is correct and refutationally completely, then

S unsatisfiable
$$\iff \Box \in R(S)$$

EXERCISE: prove the last property

- Inference rules
- Resolution
- Ordered resolution
- Practical remarks

Resolution

The resolution inference rule is the following:

$$\frac{p \vee C \quad \neg p \vee D}{C \vee D}$$

- We will see that:
 - Resolution is
 - Correct
 - Not complete
 - Refutationally complete
 - If S is a finite set of clauses, then Res(S) is also finite
- \blacksquare Hence, given a set of clauses S, its satisfiability is checked by:
 - 1. Computing Res(S)
 - 2. If $\Box \in Res(S)$ Then UNSAT; Else SAT

Resolution - Properties

EXERCISE: prove that

- If *S* is finite, Res(S) is also finite
- Resolution is not complete
- Resolution is correct
- Resolution is refutationally complete

- Inference rules
- Resolution
- Ordered resolution
- Practical remarks

Ordered resolution

- The proof of refutational completeness introduces ordered resolution
- Given clauses S and a total ordering on the variables in S:

$$p_1 < p_2 < p_3 < \dots$$

we can define ordered resolution:

$$\frac{p \vee C \quad \neg p \vee D}{C \vee D} \quad \text{if } p > q \text{ for all var. } q \in C \vee D$$

- It is easy to see that:
 - If *S* is finite, ResOrd(S) is also finite
 - It is correct (because resolution is)
 - It is refutationally complete (same proof suffices)
- Hence, it is better from the practical point of view

- Inference rules
- Resolution
- Ordered resolution
- Practical remarks

Practical Remarks

- In practice, even ordered resolution is not efficient enough
- SAT engines based on resolution not used in practice
- However, resolution plays a crucial role in DPLL

