Preprocessing CNF instances: SatELite

Albert Oliveras and Enric Rodríguez-Carbonell

Logic and Algebra in Computer Science
Session 5
Fall 2009, Barcelona
Overview of the session

- Why should we preprocess?

 - Empirical observations:
 - Clause distribution
 - Self-subsuming resolution
 - Var. elimination by substitution

 - Overall algorithm

 - Demo and experimental results
Motivation

SAT solvers are successfully used in a very different areas, but:
- CNF conversion is usually done by Tseitin transformation
- Application-dependent smarter encodings work better
- SAT users only want to be users, not developers!

Two possible solutions:
- Develop smart CNF conversions
- Preprocess already converted CNF formulas

Here we take the second solucion: PREPROCESS
Preprocess

- GOAL: convert the CNF formula into a better one

- What does “better” mean?
 - **Smaller**
 - In general, size \neq difficulty of a formula
 - Among similarly generated formulas, smaller \approx easier
 - **Better-suited** for SAT solver
 - SAT solvers’ only deduction rule is unit propagation
 - We should try to make unit propagation more powerful

- We will focus on the **SatELite** preprocessor:
 - Light-weight approach (not too much time preprocessing)
 - Focus is on reducing size (size = number of clauses)
Resolution, again...

\[
\begin{align*}
\frac{p \lor C \quad \neg p \lor D}{C \lor D}
\end{align*}
\]

- Given clause set \(S \) we can:
 - Choose a variable \(p \in S \)
 - Let \(S_p = \{ p \lor C \mid p \lor C \in S \text{ and is not a tautology} \} \)
 - Let \(S_{\overline{p}} = \{ \neg p \lor D \mid \neg p \lor D \in S \text{ and is not a tautology} \} \)
 - Take \(S_p \otimes S_{\overline{p}} := \{ C \lor D \mid p \lor C \in S_p \text{ and } \neg p \lor D \in S_{\overline{p}} \} \)
 - The clause set \(S \setminus \{ S_p \cup S_{\overline{p}} \} \cup S_p \otimes S_{\overline{p}} \)
 - Contains one variable less than \(S \)
 - Is equisatisfiable to \(S \).

- If we iterate the process we get a decision procedure for SAT
 (\(\approx \) original Davis-Putnam algorithm [’60])

- Problem: clauses sets may grow too much

Preprocessing CNF instances: SatELite – p. 5
Resolution, again (2)

Remember \(S_p \otimes S_{\overline{p}} := \{ C \lor D \mid p \lor C \in S_p \text{ and } \neg p \lor D \in S_{\overline{p}} \} \)

QUESTION: Why \(S' := S \setminus \{S_p \cup S_{\overline{p}}\} \cup S_p \otimes S_{\overline{p}} \) is equisatisfiable to \(S \)?

Proof sketch:

\(S \) satisf. \(\Rightarrow \) \(S' \) satisf. is trivial (resolution correct)

\(S' \) satisf. \(\Rightarrow \) \(S \) satisf.?

Take \(I \) model of \(S' \) and extend it to \(p \)

\(I(p) = 0 \) iff \(I \not| D \) for some \(\neg p \lor D \) in \(S_{\overline{p}} \)

Now obviously \(I \models S_{\overline{p}} \)

If \(I \not| S_p \), there is \(p \lor C \in S_p \) with \(I \not| p \lor C \)

Necessarily \(I(p) = 0 \), and hence there is a clause \(\neg p \lor D \in S_{\overline{p}} \) with \(I \not| D \). But then clause \(C \lor D \in S' \) and \(I \not| C \lor D \). Contradiction!

IMPORTANT: effective extension of models if \(p \) is eliminated
Overview of the session

- Why should we preprocess?

- **Empirical observations:**
 - Clause distribution
 - Self-subsuming resolution
 - Var. elimination by substitution

- Overall algorithm

- Demo and experimental results
Observation 1 - Clause Distribution

The clause set $S \otimes S'$ is called the **clause distribution** of S and S'

Exhaustive application of clause distribution is too productive

But.....

- Removing some vars might decrease number of clauses

- **Empirical observation:**

 Clause distribution generates lots of subsumed clauses

 ([Def.] C subsumes C' iff $C \subseteq C'$)

EXAMPLE:

$S := \{q \lor s \lor r, \ p \lor q \lor \neg t \lor r, \ \neg p \lor q \lor s\}$

After removing p we would obtain the clause set

$\{q \lor s \lor r, \ q \lor \neg t \lor r \lor s\}$

but the added clause is subsumed by the first one
Observation 2 – Self-subsuming Resolution

- Consider the clauses \(x \lor a \lor b \) and \(\neg x \lor a \)

- 2nd clause almost subsumes 1st, but \(x \) has different polarity

- Consider the resolution step

\[
\begin{array}{c}
 x \lor a \lor b \\
 \neg x \lor a \\
 \hline
 a \lor b
\end{array}
\]

- Conclusion subsumes first premise hence we remove premise

- \(x \lor a \lor b \) has been strengthened by self-subsuming resolution

- Note that it allows us to reduce the size of an existing clause
Obser. 3 - Variable elimination by substitution

Most CNF instances are obtained after Tseitin conversion

Hence, it is easy to identify and/or definitions:

- $\overline{x} \lor a \lor b$, $x \lor \overline{a}$, $x \lor \overline{b}$ is $x \leftrightarrow a \lor b$
- $x \lor \overline{a} \lor \overline{b}$, $\overline{x} \lor a$, $\overline{x} \lor b$ is $x \leftrightarrow a \land b$

Consider $S := \{x \lor c, x \lor \overline{d}, x \lor \overline{a} \lor \overline{b}, \overline{x} \lor a, \overline{x} \lor b, \overline{x} \lor \overline{e} \lor \overline{f}\}$

If we try to remove x by clause distribution we get:

$c \lor a$, $c \lor b$, $\overline{d} \lor a$, $\overline{d} \lor b$, $\overline{a} \lor \overline{b} \lor \overline{e} \lor \overline{f}$ $(R_x \otimes \overline{G_x} \cup R_{\overline{x}} \otimes G_x)$

$\overline{a} \lor \overline{b} \lor a$, $\overline{a} \lor \overline{b} \lor b$ $(G_x \otimes \overline{G_x})$ $c \lor \overline{e} \lor \overline{f}$, $\overline{d} \lor \overline{e} \lor \overline{f}$ $(R_x \otimes R_{\overline{x}})$

We observe:

- $G_x \otimes \overline{G_x}$ only contains tautologies
- $R_x \otimes \overline{G_x} \cup R_{\overline{x}} \otimes G_x \models R_x \otimes R_{\overline{x}}$

Hence we replace S (6 clauses) by $R_x \otimes \overline{G_x} \cup R_{\overline{x}} \otimes G_x$ (5 clauses)
Overview of the session

- Why should we preprocess?

- Empirical observations:
 - Clause distribution
 - Self-subsuming resolution
 - Var. elimination by substitution

- Overall algorithm

- Demo and experimental results
Overall Preprocessing Algorithm

do
 do
 for each $C \in S$ do selfSubsumeWith(C)
 unitPropagate()
 while (someProgress)

for each $C \in S$ do subsumeWith(C)

do
 for each $x \in S$ do tryToEliminate(x)
 while (someProgress)
while (someProgress)
Pending things:

- How to implement:
 - selfSubsumeWith(C)
 - subsumeWith(C)
 - tryToEliminate(x)

- Refine the algorithm so that: [read paper for details]
 - someProgress is clearly defined
 - Not all clauses and variables are tried every time
Subsumption and Self-subsumption

```plaintext
subsumeWith (Clause C) returns SetOfClauses
   // returns all clauses in S subsumed by C
   pick literal l ∈ C with the shortest occurList
   for each C' ∈ occurList(l) do
      if C ≠ C' and subset(C, C') then
         add C' to result
   return result

selfSubsumeWith (Clause C)
   for each l ∈ C do
      for each C' ∈ subsumeWith(C[l := ¬l]) do
         remove ¬l from C'
```

Preprocessing CNF instances: SatELite – p. 12
Subsumption and Self-subsumption

subsumeWith (Clause C) returns SetOfClauses
 // returns all clauses in S subsumed by C
 pick literal \(l \in C \) with the shortest occurList
 for each \(C' \in \text{occurList}(l) \) do
 if \(C \neq C' \) and \(\text{subset}(C,C') \) then
 add \(C' \) to result
 return result

selfSubsumeWith (Clause C)
 for each \(l \in C \) do
 for each \(C' \in \text{subsumeWith}(C[l:=\neg l]) \) do
 remove \(\neg l \) from \(C' \)
Subsumption and Self-subsumption (2)

How to implement $\text{subset}(C, C') = C$ is a subset of C'?

- Each clause has its size and a 64-bit signature:
 - Take a hash function $h : \text{Literals} \rightarrow [0...63]$
 - The signature of C is the bitwise-or of $2^{h(l)}$ for each $l \in C$
 - Clearly, if $C \subseteq C'$ then $\text{sig}(C)$ bitwise implies $\text{sig}(C')$

```
subset(Clause C, Clause C')
// PRECONDITION: C \neq C'
// returns whether C is a subset of C'
if size(C) \geq size(C') then return FALSE
if \text{sig}(C) \text{ does not bitwise imply } \text{sig}(C') then return FALSE
return complete (expensive) check C \subseteq C'
```
Variable elimination

```
tryToEliminate (Variable x)
    // tries to eliminate variable x
    if x has zero occurrences then return
    if occurList(x) > 10 and occurList(\bar{x}) > 10 then return

    // will remove x only if this reduces num. of clauses
    def = findDefinition(x)
    if def ≠ NO_DEF then tryVarSubstitution(def)
    else tryClauseDistribute(def)

    if x was eliminated then unitPropagate()
```

- Note that expensive things are not even tried
- 10 is a heuristic cut-off value
Overview of the session

- Why should we preprocess?

- Empirical observations:
 - Clause distribution
 - Self-subsuming resolution
 - Var. elimination by substitution

- Overall algorithm

- Demo and experimental results
Bibliography - Some further reading

Paper:

Other resources:

- http://minisat.se/SatELite.html