
jar manuscript No.

(will be inserted by the editor)

6 Years of SMT-COMP

Clark Barrett · Morgan Deters ·

Leonardo de Moura · Albert Oliveras ·

Aaron Stump

Received: date / Accepted: date

Abstract The annual Satisfiability Modulo Theories Competition (SMT-COMP) was

initiated in 2005 in order to stimulate the advance of state-of-the-art techniques and

tools developed by the Satisfiability Modulo Theories (SMT) community. This paper

summarizes the first six editions of the competition. We present the evolution of the

competition’s organization and rules, show how the state of the art has improved

over the course of the competition, and discuss the impact SMT-COMP has had on

the SMT community and beyond. Additionally, we include an exhaustive list of all

competitors, and present experimental results showing significant improvement in SMT

solvers during these six years. Finally, we analyze to what extent the initial goals of

the competition have been achieved, and sketch future directions for the competition.

Keywords SAT Modulo Theories · Competition · Experimental evaluation

1 Introduction

Domain-specific reasoning has emerged in the past decade or so as crucial for the success

of automated reasoning tools for real-world applications [Sha02]. Consider problems

involving arithmetic constraints, to take one example. Applying dedicated algorithms

for solving arithmetic problems (e.g., Simplex in the case of linear arithmetic) allows one

to exploit structural information that might be lost if one reduces the problem to a more

general-purpose logic. If, in addition, we know that these arithmetic constraints come

from software verification, we probably want to use modular arithmetic methods, since

this is the type of arithmetic that computers indeed implement [Wan06]. In software

verification, it is typical to generate problems where arithmetic terms appear as indices

of arrays. Thus, the solver needs to have some means for reasoning in the theory of

arrays. Finally, to make things even worse, a large skeleton of Boolean operators is

usually present to express the relationships between the hundreds of constraints a

medium-sized problem might have.

Satisfiability Modulo Theories (SMT) [BSST09] allows one to express such prob-

lems in a very natural way, using first-order formulas whose satisfiability is to be

New York University · New York University · Microsoft Research · Tech. University of Catalo-
nia · The University of Iowa

2

checked modulo a background theory. The choice of the theory depends on the nature

of the problem. Classic examples are linear arithmetic, arrays, bit-vectors, recursive

data structures and uninterpreted functions. Using SMT to express such problems has

important advantages over using more generic logics. If one uses purely propositional

logic (SAT), for example, then data must be encoded into a Boolean representation: a

bit-vector must be represented as just its individual bits, for example. In contrast, an

SMT encoding can represent the bit-vector directly, and may be able to reason more

efficiently at the bit-vector level of abstraction, without resorting to bit-level reason-

ing (though this may sometimes be necessary). And if one uses pure first-order logic

(even with equality), one loses out on the myriad specialized algorithms that have

been developed for many particular theories. Formulating problems with SMT keeps

them at a reasonable level of abstraction. SMT tools are then free to tackle those

problems using a rich variety of techniques: instantiation-based techniques for deal-

ing with quantifiers [dMB07,GBT09], specialized Simplex-based algorithms for linear

arithmetic [DdM06], graph-based algorithms for fragments of linear arithmetic [CM06,

WIGG05], and even reductions to SAT if this is considered to be the best solving

method [GTG07].

Devising a common input language for SMT solvers has been a highly non-trivial

task for the SMT community, due to the need to accommodate a variety of different

background theories, and express (at least informally) their syntax and semantics.

This task has been addressed by the SMT-LIB initiative (http://www.smtlib.org),

co-organized at first by Silvio Ranise and Cesare Tinelli, and later by Clark Barrett,

Aaron Stump, and Cesare Tinelli. The goal of the SMT-LIB initiative is to promote the

field of SMT through the development of standard formats for SMT solvers, standard

definitions of SMT theories with respect to a precisely defined underlying logic, and

the collection of a library of benchmarks in SMT-LIB format. The latter was inspired

by the TPTP library of benchmarks for first-order theorem provers, curated by Geoff

Sutcliffe [Sut09]. After a lengthy community process, SMT-LIB released the first version

of the standard input language, named SMT-LIB v1.0, in July 2004. This included

languages for describing theories and logics (logics modify the language that may be

used, for example to contain only quantifier-free formulas, or to restrict arithmetic

terms to be linear), and a standard input language for SMT solvers. It was an exciting

day for the SMT community, and would prove to be so also for applications developers

who would soon come to rely on this common format for SMT solvers. But there were

as yet no solvers that supported the format, and no benchmarks in the library.

This is where the Satisfiability Modulo Theories Competition (SMT-COMP), which

is the subject of this paper, made its first and most important contribution: jump-

starting adoption of the SMT-LIB format and collection of benchmarks in that format.

In just one year, from the release of the standard in July 2004 to the first SMT-

COMP in the summer of 2005, the SMT community went from having its brand new

standard input language but no compliant solvers and no benchmarks, to 12 compliant

solvers and over 1300 benchmarks. When the SMT-COMP organizers announced these

results to the audience at the Conference on Computer-Aided Verification (CAV), with

whom SMT-COMP was affiliated in 2005, they received several rounds of spontaneous

applause during their presentation. This warmly expressed the broader verification

field’s excitement about what SMT-COMP had been able to accomplish. Indeed, since

two of the co-authors of this paper are also SMT-LIB co-organizers (Clark Barrett and

Aaron Stump), we can say that the success the initiative has enjoyed has been highly

dependent on SMT-COMP. For example, benchmark collection has always been driven

3

by the competition. The competition organizers issue a call for benchmarks to the SMT

community, and solicit them from applications developers. While new SMT benchmarks

are certainly being created at other times, they have primarily been collected and

added to the library in conjunction with finalizing the benchmarks for the annual

competition. The implementation in SMT solvers of the SMT-LIB v1.0 standard, and

its successor SMT-LIB v2.0, released March 2010, have also been strongly driven by

the competition. Entering the competition requires the ability to read benchmarks in

SMT-LIB format, and so in order to compete, solver developers invest the moderate but

non-negligible effort required to write a parser for the format. Without SMT-COMP,

we doubt (particularly in our capacity as SMT-LIB co-organizers), that adoption of

the standard language would have occurred so quickly. This adoption was really the

primary role of SMT-COMP.

An important secondary role of SMT-COMP has been to raise the profile of the

SMT field in the broader research community. The competition has been held annu-

ally since 2005, collocated with either the Conference on Computer-Aided Verification

(CAV) or the Conference on Automated Deduction (CADE). These are premier con-

ferences in their respective fields of verification and automated reasoning, and the

presence of SMT-COMP at these venues has significantly raised the profile of SMT

within these communities. The SMT-COMP organizers learned a lot from the success

of other competitions in automated theorem proving, such as the CASC competition

for first-order theorem provers [SS06], which started in 1996, and the SAT competition

for SAT solvers [SBH05], which started in 2002. From CASC, SMT-COMP adopted

the practice of running the competition live during the affiliated conference, and an-

nouncing results at a special conference session. While running the competition “live”

in this sense can be stressful for the organizers, the benefits in excitement from solver

implementers and interest from members of the broader research communities makes

this well worth the effort. SMT has gone from a minor field of automated reasoning

to one of the most active and essential for applications. While this is, of course, due

to a complex conjunction of factors, the role played by the competition is significant

among them.

The competition has also served as a forum where implementers and users of SMT

technology have met to express their needs and concerns, and has allowed the commu-

nity to see how the performance of SMT systems has improved year after year. Indeed,

a tertiary role for SMT-COMP has been to help spur development in the field, by

giving new implementers a proving ground to establish themselves, and helping bring

implementers and application developers together. This has been done so far in the

context of the SMT Workshop (originally called Pragmatics of Decision Procedures in

Automated Reasoning, PDPAR), with which each edition of the competition is always

closely connected. As we will see below (Section 5.2), the competition has certainly

seen significant improvement in solver performance and capabilities over the years.

One need not find a direct causal connection to the competition in order to appreciate

the role SMT-COMP has played in highlighting improvements to SMT solvers, and

giving newcomers to the field an opportunity to prove themselves.

In 2011, the competition began its transition to a new set of organizers. This pa-

per summarizes the six editions of the SMT-COMP which the authors organized. In

contrast with previous SMT-COMP papers, we do not only focus on describing the

technical settings of the competitions like its infrastructure or rules, but we also sum-

marize the main characteristics of all SMT-COMP entrants over these years, analyze

the impact the competition has had on the research community, judge to what ex-

4

Edition Location # Participants # Divisions # New Solvers
2005 Edinburgh 12 7 12
2006 Seattle 12 11 5
2007 Berlin 9 12 4
2008 Princeton 13 15 6
2009 Montreal 12 19 2
2010 Edinburgh 10 19 6

Table 1 Summary of the six SMT-COMP editions.

tent the initial goals have been achieved and present some conclusions that are worth

considering for future editions.

The paper is organized as follows. In Section 2 we quickly overview some data

about the different SMT-COMP editions. Section 3 concerns the benchmarks used

for the competition, focusing on their organization and the language used. Section 4

describes the design of the competition, highlighting the changes it has undergone

over the years. Section 5 describes the solvers that have entered SMT-COMP and

presents some performance comparisons among winners of different editions. After

that, Section 6 analyzes to what extent the initial goals of SMT-COMP have been

achieved and presents some possible negative effects of the competition. We conclude

in Section 7.

2 SMT-COMP Editions

SMT-COMP started in 2005, affiliated with CAV in Edinburgh. Since then, the number

of participants has been quite stable, independent of whether it was affiliated with CAV

(the first four and the sixth editions) or with CADE in 2009. Every year, new solvers

entered the competition while some old entries decided not to participate. What has

been increasing since the first edition is the number of different divisions, i.e. different

types of problems, as we will explain in Section 3, starting with only 7 in 2005 and

ending with 19 in 2010. All these data can be seen in detail in Table 1. For information

about which are the different divisions, see Table 2.

The winners of different divisions have changed over the years, as can be seen in

Table 3, where we summarize the winners of every division in the first six editions of

SMT-COMP. A total of 13 different systems have won some division some year, which

indicates that the competition is usually tough due to the quality of all entrants. In

the 2006 edition, Yices 1.0 and STP tied on the QF BV division, and Yices 1.0 and

CVC3 tied on the AUFLIRA division. This was was due to all three systems solving

all benchmarks in a negligible amount of time.

3 Benchmarks and their Language

3.1 Benchmarks

As has been stated, one of the primary goals of SMT-COMP has been to facilitate the

collection and use of a large library of benchmarks in the standard SMT-LIB format.

While a tremendous amount of effort was required to collect, translate and check the

quality of these benchmarks, the effort has been very successful: the benchmark library

5

Logic Description
QF RDL real difference logic
QF IDL integer difference logic
QF LRA linear real arithmetic
QF LIA linear integer arithmetic
QF NIA non-linear integer arithmetic
QF NRA non-linear real arithmetic
QF UF uninterpreted functions
QF UFIDL uninterpreted functions and integer difference logic
QF UFLIA uninterpreted functions and linear integer arithmetic
QF UFLRA uninterpreted functions and linear real arithmetic
QF UFNRA uninterpreted functions and non-linear real arithmetic
QF AX (extensional) arrays
QF AUFLIA arrays, uninterpreted functions, and linear int. arithm.
QF BV bit-vectors
QF ABV arrays and bit-vectors
QF AUFBV arrays, uninterpreted functions, and bit-vectors
LRA quantifiers, linear real arithmetic
UFNIA quantifiers, uninterpreted functs., non-linear int. arithm.
AUFLIA quantifiers, arrays, unint. functs., linear int. arithm.
AUFLIRA quantifiers, arrays, unint. functs., linear int. and real arithm.
AUFNIRA quantifiers, arrays, unint. functs., non-lin. int. and real arithm.

Table 2 Description of competition divisions.

has grown from the 1360 benchmarks collected for the 2005 competition to more than

93,000 benchmarks available for the 2010 competition; nearly all SMT solvers support

the format; and the SMT-LIB benchmarks are used in most serious papers reporting

experimental results for SMT solvers. As the format has become more accepted, SMT

users have also been more willing to support the format directly, making it easier to

collect new benchmarks.

In the library, benchmarks are organized by logic, a formal notion in the SMT-LIB

language standard (see below). Benchmarks are further divided into families (sub-

directories under each logic). Typically, each family contains a set of benchmarks of

varying difficulty from the same application. This same organization is used in the com-

petition. For each logic containing a sufficient number and diversity of benchmarks, and

for which there exist solvers supporting that logic, there is a division of the competition

in which solvers compete on the benchmarks from that logic (occasionally divisions have

been excluded for lack of interesting benchmarks or solvers). Table 4 shows, for each

division and every year, the number of benchmarks in the library.1 It is important to

note that the changes from year to year are not only because new divisions and bench-

marks were added, but also because occasionally divisions were split into new ones or

existing benchmarks were removed (because they were trivial or redundant) or reclas-

sified (into a more appropriate division). The addition of new divisions often coincided

with new capabilities in the competing SMT solvers. For example, in 2006, quantified

formulas were included; in 2006, bit-vectors (in the form of the QF UFBV32 division)

were new to the competition; and in 2009 and 2010, non-linear arithmetic divisions

were run as part of the competition.

1 Note that the table reports the availability of benchmarks in 21 divisions for SMT-COMP
2010. However, some of these benchmark divisions had too few benchmarks to run as a com-
petition division. The benchmarks are still available as part of the benchmark library.

6

Edition Winners Divisions

2005
Barcelogic QF UF, QF RDL, QF IDL, QF UFIDL
Simplics QF LRA
Yices 0.1 QF LIA, QF AUFLIA

2006
CVC3 AUFLIRA
STP QF BV
Yices 1.0 QF UF, QF RDL, QF IDL, QF UFIDL, QF LRA,

QF LIA, QF UFLIA, QF UFBV32, QF AUFLIA,
AUFLIA, AUFLIRA

2007

CVC3 1.2 AUFLIRA
Spear 1.9 QF BV
Yices 1.0.10 QF RDL, QF UFIDL, QF AUFLIA, QF UFLIA,

QF LRA, QF LIA
Z3 0.1 QF UF, QF IDL, QF AUFBV, AUFLIA

2008

Barcelogic 1.3 QF IDL, QF AX
Boolector QF BV, QF AUFBV
Yices 2 QF UF, QF LRA
Z3 1.0 QF RDL, QF UFIDL, AUFLIA+p, AUFLIA-p,

AUFLIRA, QF AUFLIA, QF UFLRA, QF UFLIA,
QF LIA

2009

Barcelogic-QF NIA QF NIA
CVC3 2.0 AUFLIA-p, AUFLIA+p, AUFLIRA, UFNIA+p,

QF UFNRA, LRA, AUFNIRA
MathSAT 4.3 QF BV, QF UFIDL
Sateen-3.5 QF IDL, QF LIA
Yices 2 QF AX, QF UFLRA, QF AUFLIA, QF UFLIA,

QF UF, QF RDL, QF LRA

2010

MathSAT 5 QF UF, QF UFLRA, QF UFLIA, QF LRA, QF LIA
OpenSMT-1.0-alpha QF RDL, QF IDL, QF UFIDL
simplifyingSTP QF BV
CVC3 2.3 QF AUFLIA, QF UFNRA, QF ABV, QF AX,

AUFLIA+p, AUFLIA-p, AUFLIRA, AUFNIRA,
UFNIA+p

MiniSMT QF NIA, QF NRA

Table 3 Winners of the different SMT-COMP editions.

3.2 The SMT-LIB Standard

The SMT-LIB standard includes a concrete syntax for first-order terms and formulas

using many-sorted first-order logic. It also provides for a number of annotations, both

within the logical structure of terms and formulas as well as in addition to it. Each

benchmark consists of a set of formulas whose conjunction needs to be checked for

satisfiability, preceded by several attributes with meta-data about that benchmark:

name, source, status, category, difficulty, and logic.

The name of a benchmark is used only as additional documentation - it is not

used in the competition (the family and filename are used to identify benchmarks in

the competition). The source attribute gives information about where the benchmark

came from. The category attribute identifies one of three categories to be associated

with the benchmark: crafted - meaning hand- or machine-crafted benchmarks that serve

no purpose other than to test SMT solvers; random - randomly generated from some

distribution; and industrial - a bit of a misnomer since most are from academia, not

industry, but used to indicate that the benchmark was generated from some piece of

application software (interpreted broadly). The difficulty is a numeric value from 0 to 5,

calculated for each year’s SMT-COMP using the results of previous years’ solvers (see

7

Division 2005 2006 2007 2008 2009 2010
QF RDL 170 204 204 204 204 255
QF IDL 343 1145 1145 1673 1672 1670
QF LRA 174 501 501 543 543 634
QF LIA 182 237 203 3277 3970 5259
QF NIA 470 344
QF NRA 166
QF UF 152 152 6556 6656 6655 6647
QF UFIDL 285 399 400 432 431 428
QF UFLIA 110 110 564 564 562
QF UFLRA 900 900 900
QF UFNRA 26 26
QF AX 1485 552 551
QF AUFLIA 54 3729 3729 2244 1140 1140
QF BV 2011 2505 31582 31046
QF ABV 14335
QF AUFBV 8247 8168 8461 8644
LRA 374 374
UFNIA 1813 1799
AUFLIA 932 4534 4566 6445 6402
AUFLIRA 26511 27836 28034 25544 19917
AUFNIRA 1167 989
TOTAL 1360 42167 55397 61544 92696 93480

Table 4 Number of available benchmarks per division and year.

below). Finally, the logic attribute consists of the name of one of the logics available

in the SMT-LIB standard. Each logic specifies a background theory and often also

includes a set of syntactic restrictions on the first-order language associated with that

logic. For example, the logic QF UFLRA requires formulas to be quantifier-free and

in a language mixing uninterpreted (free) function symbols and linear real arithmetic.

Following the attributes, each benchmark contains one or more formulas (all but one

labeled as assumptions and the final one labeled as the formula) whose conjunction is

to be tested for satisfiability within the theory specified by the logic.

The competitions from 2005 through 2009 used version 1.2 of the SMT-LIB stan-

dard, which is described in detail in a document available online at http://www.

smtlib.org. In 2010, a new version of the standard, version 2.0, was released [BST10].

The purpose of the new version was (among other things) to simplify syntax, make it

easier to specify parametric theories and combinations of theories within logics, and

to create a standard command language for SMT applications (benchmarks in version

2.0 are simply scripts in the command language).

The SMT-LIB standard continues to grow and adapt in response to the needs

of the community. Ongoing efforts aim to refine and improve version 2.0, to introduce

standard API’s, to standardize a format for proofs, and, of course, to add new theories,

logics, and benchmarks.

4 Design of the Competition

Naturally enough, the design of SMT-COMP has changed and developed over the six

years the competition has run. This section discusses the evolution of the competition,

in particular its rules and policies, approach to benchmark selection, and computing

8

Division 2005 2006 2007 2008 2009 2010
QF RDL 10 8 5 6 6 3
QF IDL 11 8 5 7 7 3
QF LRA 9 6 6 5 4 4
QF LIA 9 6 5 4 4 2
QF NIA 2 3
QF NRA 2
QF UF 10 7 5 6 5 4
QF UFIDL 10 5 4 4 4 3
QF UFLIA 5 5 4 3 2
QF UFLRA 4 3 2
QF UFNRA 1 1
QF AX 3 3 1
QF AUFLIA 6 4 3 3 3 1
QF BV 3 7 8 3
QF ABV 1
QF AUFBV 5 2 3 4
LRA 1
UFNIA 1 1
AUFLIA 2 4 3 1 1
AUFLIRA 2 3 3 1 1
AUFNIRA 1 1
TOTAL 12 12 9 13 12 10

Table 5 Number of solvers per division and year.

resources and infrastructure. As is perhaps not too surprising, the competition has

moved towards more sophisticated infrastructure and more elaborate benchmark selec-

tion algorithms. At the same time, the competition’s approach to correctness of solvers

has developed more slowly, perhaps an indication of how challenging it is to be sure

that systems as complex as modern SMT solvers are absolutely bug-free.

The basic format of the competition has remained constant over its history: for each

division of the competition, submitted solvers are invoked on selected benchmarks in

the division, subject to a fixed time limit per benchmark. Solvers attempt to classify

benchmarks as either sat (satisfiable) or unsat (unsatisfiable). They may also report

unknown for benchmarks which they are unable to solve (for whatever reason). Results

are posted incrementally to the competition website, and finally announced in a short

(15-20 minutes) presentation at the sponsoring conference. We first consider issues

which arose historically in implementing this basic scheme, and then turn to changes

in the competition’s computing infrastructure.

4.1 Scoring and Penalties

Scoring system. The basic scoring system is very simple and has not changed since

the first edition. One point is awarded for each correct sat or unsat answer that is

given within the time limit. The winner of the division is determined by score. In 2005,

ties were broken by comparing the total time taken for benchmarks that were correctly

solved.

The time limit has always been between 10 and 30 minutes and is decided by the

organizers depending on the number of entrants and the available computing resources.

The goal is to let the competition run over the course of several days during the

9

sponsoring conference, but make sure that the results are available by the last day of

the conference so that they can be presented.

Penalties. There have been several changes over SMT-COMP’s history with re-

spect to the penalties for wrong answers. For the first SMT-COMP (2005), answering

unsat for a benchmark that is, in fact, satisfiable was penalized by −8 points, while

answering sat for an unsatisfiable benchmark received −4 points. The rationale for

having different penalties was to penalize solvers which are unsound (viewed as a proof

system) with respect to the model-theoretic semantics of SMT more heavily than those

which are incomplete. The choice of −8 and −4 was somewhat arbitrary. Recall that

unsatisfiability naturally corresponds to validity, and satisfiability to invalidity. Hence

reporting unsat for a satisfiable formula corresponds to reporting that a formula is a

theorem when it really is not, while reporting sat for an unsatisfiable formula corre-

sponds to failing to report that a formula is a theorem when it really is.2

At the time, the organizers agreed to penalize incompleteness less than unsound-

ness, on the grounds that completeness is generally harder to achieve. This assessment

was based on the organizers’ personal experience developing SMT solvers: it was quite

rare to perform an unsound inference in practice, but it was not rare to fail (due to

bugs in the solver’s code) to perform some inferences required for completeness. Put

another way: to achieve the highest possible performance, there is significant pressure

on the solver’s implementation to optimize as much as possible. Such optimizations

are intended to reduce the amount of work the solver performs. It was, at the time,

the organizers’ experience that it was more common to reduce (erroneously) the de-

ductions performed to the point of incompleteness, rather than to perform deductions

unsoundly. No limit was imposed on the number of wrong answers.

Scoring and penalties revised. The competitions after SMT-COMP 2005 all

dropped the distinction between soundness and completeness errors: any wrong an-

swer receives −8 points. The organizers’ initial motivation was not sufficient to justify

retaining the distinction in the face of criticism from members of the SMT community,

who advocated using the same penalty in each case. The competitions after 2005 ex-

plicitly treated both crashing and exhaustion of memory like a timeout. For 2006 and

2007, ties were broken by comparing the total time taken on benchmarks for which

the solver did not crash or report unknown. Starting in 2008, this was modified slightly

to consider just the total time taken on benchmarks for which the solver reported the

correct answer. The only difference, of course, is that this does not include time solvers

took to report an incorrect answer. We judge now that it is the purpose of point penal-

ties to account for wrong answers, and thus the simpler statement of the tie-breaking

rule is preferable.

Disqualification. SMT-COMP 2005 revealed several issues with the scoring scheme.

First, due no doubt to the fact that the competition was just starting, there were several

entrants with rather large numbers of wrong answers in certain divisions (for example,

in the QF IDL division: see the results section for 2005 on www.smtcomp.org). SMT-

COMP 2006 through SMT-COMP 2008 added a rule disqualifying, from the whole

competition, any solver that gives more than three wrong answers in a single division.

Starting with SMT-COMP 2009, however, the competition dropped this requirement,

in response to perceptions that the barrier to entry for the competition was too high.

In particular, one solver (Alt-Ergo), which was entered for the first time in 2008,

2 While other possible definitions of soundness and completeness are reasonable in this con-
text, our usage is consistent with the norms in the SMT and verification research communities.

10

suffered from a superficial bug which led it to give many wrong answers. This bug

was not in the actual solver algorithms, but rather was a misunderstanding by the

implementers who assumed for quantified formulas, an answer of sat would be treated

the same as an answer of unknown. Once the problem was detected, the solver imple-

menters quickly fixed the problem, and the solver did not exhibit any incompleteness.

The revised solver ran hors concours with the competition. But the damage was done,

so to speak, because the originally submitted tool was identified as disqualified for

wrong answers on the competition web site. This kind of identification was viewed as

potentially discouraging to new competitors. So for SMT-COMP 2009, the disquali-

fication rule was removed. Solvers getting many wrong answers will certainly not be

competitive. It is overkill, we now believe, to highlight their problems by disqualifying

them.

In 2009, a paper was presented at the SMT workshop demonstrating that by run-

ning a sufficient number of randomly generated benchmarks (generated using a “fuzzer”

tool), it was possible to crash or elicit incorrect answers from many existing SMT

solvers [BB09a]. In 2010, in order to encourage implementers to make their solvers

more robust, a small number of benchmarks generated by the fuzzer of [BB09a] were

used in every division of the competition. Since these were the only benchmarks used

in the competition that were not present in the SMT-LIB library, we considered that

their presence would encourage participants to use the fuzzer to debug their systems.

Discussion. Of course, the field is certainly striving for totally correct solver imple-

mentations. In the absence of formal verification for solver implementations themselves,

however, this is difficult to achieve and impossible to certify. Indeed, one might argue

that the experience of fuzzing SMT solvers, which was able to produce incorrect an-

swers from 6 well-known SMT solvers for bit-vector reasoning, confirms this [BB09a].

SMT solver implementations tend to be much larger than those for SAT or first-order

provers. A typical number one hears from solver implementers is on the order of 40kloc-

60kloc of C/C++, and some solvers have much more (the open source CVC3 solver,

version 2.2, for example, has over 130kloc of C++). Furthermore, as noted above, the

organizers frequently hear that the barrier to entry for the competition is too high,

stifling development of new solvers. In this direction, we decided to be more tolerant

of the occasional error in an SMT solver, rather than stigmatize tools as incorrect if

they demonstrate an error. An alternative to formal verification of SMT solvers is to

have solvers that produce an independently certifiable proof for unsatisfiable instances.

While some solvers already do this to some extent, SMT solvers will not enjoy the same

degree of usability for certified verification as they do for uncertified verification, until

they can produce proofs in a common format. The challenging problem of devising

such a format is an active research area in the SMT community.

4.2 Solver Requirements

Open vs. closed source. The SMT community has often discussed the question

of whether or not solvers entering SMT-COMP should be required to release their

source code. SMT-COMP has always adopted what we view as a compromise position:

solver binaries are made publicly available on the SMT-COMP web site following the

competition (and remain available thereafter), but source code need not be provided

or released by solver implementers in order to compete. This is in contrast with at

least the 2009 version of the SAT Competition, where any solvers provided only in

11

executable form are relegated to a demonstration division [LBS06]. The competition

division requires solver implementers to allow their source code to be posted on the

competition website.

Due, it seems, to the higher barrier of entry for SMT, there are usually significantly

fewer SMT solvers in SMT-COMP than there are entrants to the SAT Competition.

Other causes might be that SMT technology is more recent than SAT or simply that

SAT is more attractive to users and developers. For example, the main SAT track had

over 25 competitors in 2009, while the largest SMT-COMP division in 2009 (QF BV)

had 8 competitors (see Table 5 for more details about number of competitors). The

smaller number of competitors makes it more difficult for SMT-COMP to insist (as the

2009 SAT Competition did) on what is surely the scientifically most progressive rule:

all solvers must be submitted in source form, and all sources will be posted following

the competition.

Among the 35 solvers that have entered the competition at least once, only 15 of

them have been closed source (see Table 6). The bad news is that, perhaps surprisingly,

many important SMT solvers are closed source. Solvers like Yices, Barcelogic, Z3,

and MathSAT, to name just a few, all have performed at the highest levels in var-

ious divisions over the history of the competition, and all are closed source, though

their implementers freely provide binaries for academic use. In some cases, there are

commercial reasons for remaining closed source. For example, the Barcelogic solver

is the central technology of a start-up company of the same name, spun out in 2009

from the research group (including the fourth co-author of this paper) that develops

the solver [BNO+08].

Over the history of the competition, the SMT-COMP organizers have been per-

suaded that making binaries public but not requiring open source represents a reason-

able compromise between the needs of various research teams. Certainly, the academic

SMT community would benefit from more open-source systems. Indeed, open-source

solvers like CVC3 and OpenSMT are eagerly used in some projects where access to

source code is required. Of course, many other properties of open-source software are

required to make solvers easy to adapt or modify for application needs: the source code

should have a well-documented in-memory interface, should be simply yet flexibly de-

signed, and for some users, should be modifiable or usable for commercial purposes.

But requiring open source would shut out solvers that are being applied commercially,

since their implementers have a business need to protect their intellectual property

from competitors. These implementers would simply not participate in the competi-

tion, thus depriving the community of innovation-driving competitors, and possibly

discouraging such implementers from submitting papers about their technology. Such

papers, submitted by all the above-mentioned closed-source groups, have revealed es-

sential algorithmic ideas that have benefited many other solvers, e.g. the use of theory

propagation [NO05] or the Simplex algorithm of [DdM06]. Finally, providing binaries

helps application developers, who wish to utilize SMT solvers as back-ends for solving

other problems.

Wrapper tools. In 2006, a solver called HTP was entered in SMT-COMP, which,

as its system description documented, executed a preprocessing step and then passed

along the resulting formula to one of several SMT solvers entered in SMT-COMP 2005.

While this was perfectly appropriate according to the SMT-COMP 2006 rules, the

organizers for 2007 felt that rules should be put in place to help make clear what value

was added by the wrapped tool over and above the tool that it wrapped. Starting

in 2007, wrapper tools were recognized by the SMT-COMP rules, which require a

12

wrapper tool to list the wrapped tool’s name as part of its name. The rules further

require an implementer of a wrapper tool to obtain permission from the implementer

of the wrapped tool if a version of the wrapped tool is being used which was released

after the previous year’s SMT-COMP. This rule is to prevent competitors from taking

too much advantage of the good performance of another tool, particularly performance

achieved after the previous competition. Finally, wrapper tools which do not best their

wrapped tools in a given division are disqualified from that division.

Unlike for SAT, where an entire track of the 2009 competition is dedicated to mod-

ifications of the award-winning MiniSAT solver, wrapper tools have not been common

in SMT. Indeed, with the exception of HTP, there have been none. Thus, the admin-

istrative investment of devising new rules for wrapper tools has yielded few returns so

far. Nevertheless, it seems appropriate to have a codified policy for systems that seek

to build on others’ work.

Organizer entries. Another sensitive point for competitions like SMT-COMP and

others is the participation of the competition organizers. The safest policy is, naturally

enough, to exclude competition organizers from competing. The SAT Competition

2007, for example, did not allow organizers to enter the competition division, but

only the demonstration division. In 2009, the SAT Competition allowed organizers to

compete in both divisions, provided they released the MD5 checksums of their solvers

before submission of other solvers began. This rule makes sense in the context of an

open-source competition, where it would otherwise be very difficult to establish that

organizers had not cheated by taking good ideas from other systems’ source code.

SMT-COMP has always allowed organizer submissions. The rationale is that, as

noted above, there are typically a much smaller number of SMT solvers competing in

SMT-COMP than in the SAT competition. Excluding the organizers in any given year

would have excluded 2 or 3 solvers, a non-trivial percentage of the total field. Further-

more, since SMT solvers are typically submitted for competition in binary form only,

the organizers have not felt it necessary to put policies in place to be able to prove

that they are not unfairly inspecting competitors’ submissions. Since 2008, (enabled

by a change to the competition’s computing infrastructure–see Section 4.4 below), the

MD5 checksums for all solvers have been made public just after the close of solver sub-

mission. This helps ensure that the solvers which are executed during the competition

are the intended ones.

4.3 Benchmark Selection

A reasonable number of benchmarks are drawn randomly from SMT-LIB for the com-

petition. The final number of benchmarks has varied somewhat based on the expected

execution time of the competition. This is more than simply a matter of available

computing resources; as SMT-COMP has always run live during CAV or CADE, a

spirited competition, with adequate suspense and excitement, and a proper conclu-

sion, have always been among the design goals. In 2008, for example, some divisions

of the competition were run with different time limits, to ensure timely completion of

the competition.

Using the full SMT-LIB as a benchmark source has consequences. As SMT-LIB

aims to be a repository for as many available benchmarks as possible, some open

problems are included in the library. Without a trustworthy status of the satisfiability

13

of a benchmark, a benchmark is inadequate for scoring in a competition of SMT-

COMP’s design.3 Further, many large families of benchmarks in SMT-LIB are all

fundamentally encodings of the same problem with different parameters. Inclusion of

all of these parameterizations in the library is in the library’s interest, but not in

the best interest of the competition. To provide diversity among the benchmarks and

ensure that winners of the competition have a breadth of capabilities, we have taken

care not to over-represent these large families in SMT-COMP.

The current benchmark selection algorithm takes into account:

Benchmark difficulty: Benchmark difficulties are recomputed for each compe-

tition year using the previous competition year’s solvers. In years 2005-2009, a

benchmark’s difficulty was simply a function of the fraction of solvers that could

solve the benchmark within ten minutes. Due to popular demand from the com-

munity, the 2010 difficulty calculation took time into account as well. The selection

process tries to include approximately equal numbers of benchmarks at different

difficulties within each division; this is not always possible, as the distribution of

difficulties within a division is not uniform.

Benchmark category: Many benchmarks are encodings of problems that arise

in industrial settings in scheduling, planning, and verification. These are favored

by SMT-COMP’s selection procedure over hand-crafted and randomly-generated

benchmarks. (However, simple hand-crafted benchmarks checking for particular

features of note, such as support for large integers, are considered “check” bench-

marks and are always included in the competition.)

Benchmark status: The selection procedure for SMT-COMP tries to include

equal numbers of satisfiable and unsatisfiable benchmarks at different levels of

difficulty. Benchmarks with unknown status are not included.

Benchmark family: The selection procedure does not require all benchmark

sources and families to be represented; however, the effect of large families is re-

duced to allow for smaller benchmark families to be represented in competition.

In order to provide transparency, and to ensure that no unfair advantage is given

to competition organizers who may also be competitors, the benchmark selection pro-

cedure is designed to be verifiable (repeatable) by any interested party during or after

the competition.

The benchmark selection algorithm is published with the rules, and an implemen-

tation is released in source form. The set of available benchmarks for selection (input

to this software) is known before the competition deadline (there are no secret bench-

marks). The other input to the selection algorithm, a random seed, is computed by

combining contributed integers from all entrants and a published opening stock index

the week of the competition.

Selected benchmarks are slightly scrambled to discourage problem recognition; this

is done by providing the competition random seed as input to a publicly available

benchmark scrambler. Scrambling consists of reordering arguments to commutative

Boolean connectives like conjunction and disjunction, renaming variables, and similar

shallow syntactic changes. Note that the performance of SAT solvers has been shown

to be quite sensitive to such changes [Nik10].

3 As SMT-COMP entrants are not required to provide evidence of (un)satisfiability, there
is no way to judge a SAT or UNSAT response to a benchmark with unknown status.

14

4.4 Computing Infrastructure

Certain things have remained constant throughout the history of the competition with

regard to the computing infrastructure used to run the competition. Naturally enough,

solvers have always been run on machines without other user-processes running, and

all solvers in a division run on machines with the same hardware and operating system

versions and configurations. Results have always been reported incrementally; as soon

as a solver completes a benchmark, its reported answer and run-time are incorporated

into the results section of the competition website.

Another important fact is that, in order to check that no solver is benefited by

the computing infrastructure, anyone can, in principle, rerun the competition on their

own machines to confirm the results. In the 2006 competition, the authors of the STP

solver did rerun the QF UFBV32 division of the competition, and found a discrepancy

with the reported results: the competition reported STP and Yices 1.0 as tied for first

place taking 0 measurable seconds, while the STP authors reported STP ahead, with

1.05 seconds for STP and 1.77 for Yices. The source of the problem was, apparently,

the trivial nature of the benchmarks for that division, which was new in 2006, coupled

with differences in the specifications of the machines (the competition machines had

significantly more cache than the machines used by the STP authors). In the end,

the tools were declared as tied, and efforts were made to collect more challenging

benchmarks for subsequent years.

The first computing infrastructure, in 2005, was a small (tens of nodes) cluster

of Linux machines, kindly made available for the competition’s exclusive use by the

University of Edinburgh’s School of Informatics. For 2006, the competition ran on

a similar cluster hosted at SRI. Leonardo de Moura wrote the scripts to distribute

the workload of the competition across the cluster nodes, and collect the results for

web display. From 2007 on, the competition has been run on a web service called SMT-

EXEC (http://www.smtexec.org), designed by Morgan Deters and Aaron Stump, and

implemented by Morgan Deters. This web service allows registered users to upload and

run solvers on the benchmarks from the SMT-LIB benchmark library, using a small

compute cluster hosted at Aaron Stump’s institution (initially Washington University

in St. Louis and then the University of Iowa). This cluster was purchased with funds

from a grant from the U.S. National Science Foundation (grant number CNS–0551697).

On SMT-EXEC, users submit jobs, consisting of a selection of solvers to be run

on a selection of benchmarks. SMT-EXEC breaks each job up into chunks of tasks,

where a task is to run all selected solvers on a single benchmark. Each task is then

executed (via sequential execution of the solvers) on a single node of the cluster. The

chunking mechanism helps to reduce latency for new jobs to begin execution, since

chunks from different jobs are interleaved. SMT-EXEC builds on visualization scripts

written by Leonardo de Moura for SMT-COMP 2006. These visualizations can be

used to compare the whole field of solvers in a division, as well as to compare two

solvers head-to-head. Such visualizations are quite helpful in understanding differences

in solver performance, for example across different families of benchmarks. In addition

to such improved interface features, SMT-EXEC uses a MySQL database to keep track

of information about benchmarks, solvers, users, and jobs. This has helped SMT-EXEC

scale to 65 registered users, and multiple revisions of the benchmark library.

With such an open computing infrastructure, one could ask whether there is still

room for competitions, since one could, at any time, run one’s own competition on

SMT-EXEC. The first important difference is that SMT-COMP gives the possibility

15

to all SMT developers to submit their latest versions. Hence, it is a more trustworthy

snapshot of the current state of the art. Moreover, the social aspect of SMT-COMP

should also be taken into account. The days of the competition are very intense in terms

of discussions among SMT developers, something which is more difficult to achieve in

ordinary conferences, with a smaller attendance of SMT implementers.

4.5 Concurrent Track.

In order to stimulate research on parallel SMT solvers, we ran a concurrent track in

2010. Only two systems entered this track: testp mathsat, which competed in QF UF,

QF LRA, QF LIA, QF UFLRA and QF UFLIA; and simplifyingSTP, which competed

in QF BV. Results were not very conclusive as these two tools were still very initial

prototypes: testp mathsat ran several instances of the sequential MathSAT 5 solver,

and simplifyingSTP converted the formula to propositional logic and sent it to the

parallel SAT solver ManySAT.

5 Solvers

5.1 Competition Entrants

There have been 35 distinct entrants over the first six years of SMT-COMP. A summary

of the main characteristics of all solvers is shown in Table 6. In Table 7, the reader can

find the years each solver participated in some division and in Table 8 we summarize the

divisions each solver ever entered. A more detailed description of each solver follows:

Alt-Ergo. (2008.) Alt-Ergo was submitted by Sylvain Conchon (LRI, Université Paris-

Sud and INRIA Saclay Ile-de-France) and Evelyne Contejean (LRI, CNRS, and INRIA

Saclay Ile-de-France). Alt-Ergo is an OCaml implementation of a generic congruence

closure algorithm over an equational theory (for the submission, the equational theory

was instantiated with linear arithmetic). It provides for a method of theory combination

similar to Shostak’s approach [CCKL08]. Alt-Ergo includes a custom-built SAT engine

and supports quantifiers. In 2008, it competed in the quantified divisions (AUFLIA+p,

AUFLIA−p, and AUFLIRA).

AProVE NIA. (v0.2.1, 2010.) AProVE NIA was submitted by Karsten Behrmann,

Andrej Dyck, Fabian Emmes, Carsten Fuhs, Jürgen Giesl and Patrick Kabasci from

RWTH Aachen University, Germany; Peter Schneider-Kamp from University of South-

ern Denmark and René Thiemann from University of Innsbruck, Austria. AProVE is

a termination prover that uses non-linear integer arithmetic when using well-founded

orders based on polynomial or matrix multiplication. It only competed in QF NIA,

using an eager encoding into propositional logic and giving the resulting formula to

MiniSAT.

ArgoLib. (v3.5, 2007.) ArgoLib was submitted by Filip Marić and Predrag Janičić from

the University of Belgrade, Serbia. ArgoLib is a C++ implementation of DPLL(T), cou-

pling a rational reconstruction of MiniSAT [ES03] with two rational linear arithmetic

solvers, one based on Fourier-Motzkin [Wil76] and another one based on the Yices

16

Progr.
Solver Institution Source Language Appr. SAT Solver

Alt-Ergo INRIA Saclay ProVal Op. OCaml L Custom
AProVE NIA RWTH Aachen Cl. Java E MiniSAT

ArgoLib Univ. Belgrade Op. C++ L Custom
Ario Univ. Michigan Cl. C++ L Custom

Barcelogic Technical Univ. Catalonia Cl. C++ L Custom
Beaver UC Berkeley Op. OCaml E Rsat/NFLSAT

Boolector Johannes Kepler Univ. Op. C E PrecoSAT
clsat Washington Univ St Louis

Univ. of Iowa Op. C++ L Custom
CVC Stanford Univ. Op. C++ L Chaff

CVC Lite Stanford + New York Univ Op. C++ L Custom
CVC3 New York Univ + U. Iowa Op. C++ L MiniSAT
CVC4 New York Univ + U. Iowa Op. C++ L MiniSAT
ExtSAT Inst. Superior Técnico Cl. C++ L MiniSAT
Fx7 Univ. of Wroclaw Op. Nemerle L MiniSAT
HTP Formal Doc. Systems C Cl. P MiniSAT
Jat Verimag Op. Java L Custom

MathSAT Univ. Trento/ITC-IRST Cl. C++ L MiniSAT
MiniSMT Univ. of Innsbruck Op. OCaml L MiniSAT
NuSMV ITC-IRST Op. C P MiniSAT

OpenSMT Univ. Svizzera Italliana Op. C++ L MiniSAT
Sammy Univ. Iowa Op. OCaml/C L SATO
Sateen Univ. Colorado Boulder Cl. C L CirCUs
SBT Univ. Iowa Op. C L SatBox

Simplics SRI International Cl. Ocaml L Custom
simplifyingSTP Univ. of Melbourne Op. C++ E cryptoMiniSAT
SONOLAR Univ. Bremen Cl. C++ E PicoSat

Spear Univ. British Columbia Cl. C++ E Custom
STP Stanford University/MIT/

Univ. Melbourne Op. C++ E MiniSAT
SVC Stanford University Op. C++ L Custom

SWORD Univ. of Bremen Cl. C++ L MiniSAT
veriT LORIA/INRIA/

Univ. Rio Grande Op. C L MiniSAT
test pmathsat Univ. Trento Cl. C++ L MiniSAT

Yices SRI International Cl. C++ L Custom
Yices2 SRI International Cl. C L Custom
Z3 Microsoft Research Cl. C++ L Custom

Table 6 Summary of the entrants for the six SMT-COMP editions.. The letters in Source
stand for Open or Closed-source and in Appr(oach) they stand for Eager, Lazy or
Preprocessing.

Simplex algorithm [DM06]. In 2007, ArgoLib competed in quantifier-free, real linear

arithmetic divisions (QF RDL and QF LRA).

Ario. (Unversioned, 2005; v1.2, 2006.) Ario was submitted by Hossein M. Sheini and

Karem A. Sakallah from the University of Michigan. Ario is implemented in C++ and

combines a DPLL-style SAT solver with special-purpose modules for reasoning about

arithmetic. Ackermann’s method is used to eliminate uninterpreted function sym-

bols. Ario competed in real and integer arithmetic divisions, uninterpreted functions,

and their combination (QF UF, QF RDL, QF IDL, QF UFIDL, QF LRA, QF LIA,

QF UFLIA.) Ario did not compete in quantified divisions or divisions involving ar-

rays.

17

2005 2006 2007 2008 2009 2010 Solver
• Alt-Ergo

• AProVE NIA
• Argolib

• • Ario
• • Barcelogic

• • Beaver
• • Boolector
• • CLsat

• • CVC
• CVC Lite

• • CVC3
• CVC4

• ExtSAT
• Fx7

• • HTP
• Jat

• • MathSAT
• MiniSMT

• NuSMV
• • OpenSMT

• Sammy
• • Sateen
• SBT
• Simplics

• simplifyingSTP
• SONOLAR

• • Spear
• • STP

• SVC
• • SWORD

• test pmathsat
• • VeriT

• • Yices
• • Yices v2

• • Z3

Table 7 A view of entrants per year of SMT-COMP.

Barcelogic. (Unversioned, 2005; v1.1, 2006; v1.2, 2007; v1.3, 2008; unversioned special

nonlinear arithmetic entry, 2009.) Barcelogic was submitted by Robert Nieuwenhuis

and Albert Oliveras (TU Catalonia) in 2005; Miquel Bofill (University of Girona), En-

ric Rodŕıguez-Carbonell and Albert Rubio (TU Catalonia), along with Nieuwenhuis

and Oliveras, in 2006 and 2007; Morgan Deters and Germain Faure (TU Catalonia)

joined the other submitters in 2008; and the special entry in 2009 was by Cristina

Borralleras (University of Vic), Nieuwenhuis, Oliveras, Rodŕıguez-Carbonell, and Ru-

bio. Barcelogic was, in 2005 and 2006, a DPLL(T) SMT solver [GHN+04], written in

C. It featured a custom-built SAT solver and competed in QF UF, QF RDL, QF IDL

and QF UFIDL. Later submissions, in C++ but keeping the overall design, supported

full linear arithmetic (QF LRA, QF LIA, QF UFLIA and QF UFLRA) and arrays

(QF AX and QF AUFLIA). A special submission in 2009, code-named barcelogic-

QF NIA, entered only the QF NIA division and demonstrated the techniques published

in [BLNM+09b] for translating non-linear integer arithmetic to linear arithmetic.

18

Quantifier-free (QF)
Solver RDL IDL LRA LIA NIA NRA UF UFIDL UFLIA UFLRA UFNRA
AProVE NIA •
ArgoLib • •
Ario • • • • • • •
Barcelogic • • • • • • • • •
clsat •
CVC • • • • • •
CVC Lite • • • • • •
CVC3 • • • • • • • • • • •
CVC4 •
ExtSAT • • • •
HTP • • • • • • •
Jat •
MathSAT • • • • • • • •
MiniSMT • •
OpenSMT • • • • •
Sammy • • • • • •
Sateen • • •
SBT • • • •
Simplics • •
SVC • • • • • •
veriT • • • •
test pmathsat • • • • •
Yices • • • • • • •
Yices2 • • • • • • • •
Z3 • • • • • • • •

Quantifier-free Quantified
UFNIA

AUFNIRA
Solver AX AUFLIA BV ABV AUFBV LRA AUFLIA AUFLIRA
Alt-Ergo • •
Barcelogic • •
Beaver •
Boolector • •
CVC •
CVC Lite •
CVC3 • • • • • • • •
Fx7 •
HTP •
MathSAT • • • •
NuSMV •
OpenSMT •
Sammy •
simplifyingSTP •
SONOLAR •
Spear •
STP •
SVC •
SWORD •
Yices • • • • •
Yices2 • • • •
Z3 • • • • • •

Table 8 Summary of participants and the divisions they have competed in.

19

Beaver. (v1.0, 2008; unversioned, 2009.) Beaver was submitted by Susmit Jha, Rhishikesh

Limaye, and Sanjit Seshia (UC Berkeley). It is an SMT solver, written in OCaml, for

the theory of quantifier-free finite-precision bit-vector arithmetic (the SMT-LIB logic

QF BV). Beaver performs rewrites and simplifications to transform a bit-vector for-

mula into a Boolean circuit. In 2008, it then converted the resulting circuit into CNF

and ran an off-the-shelf SAT solver (RSat [PD07] for the competition); in 2009, it

integrated NFLSAT [JC09] to obviate the need to convert the circuit into CNF.

Boolector. (v0.4, 2008; v1.2, 2009.) Boolector was submitted by Robert Brummayer

and Armin Biere (Johannes Kepler University, Linz, Austria). It is a decision proce-

dure for the quantifier-free theory of bit-vectors and for the quantifier-free extensional

theory of arrays with bit-vectors and uninterpreted functions. Additionally, Boolector

can be used as a model checker for word-level safety properties [BBL08]. Boolector

is implemented in pure C; Picosat [Bie08] is used as the SAT solver for version 0.4;

Picosat and PrecoSAT [Bie09] are each utilized in version 1.2. Boolector competed in

QF BV and QF AUFBV.

clsat. (v0.17f, 2008; v1.0, 2009.) clsat was submitted in 2008 by Duckki Oe, Timothy

Simpson, Aaron Stump, and Terry Tidwell (Washington University in St. Louis), and

by Duckki Oe in 2009 (then at the University of Iowa). The clsat solver integrates

a custom-built clause-learning SAT solver with a standard graph-based IDL solver.

Started as a class project, it later incorporated modern SAT techniques, including

watched literals, failure-driven assertions, and conflict clause simplification. Version 1.0

was capable of generating proofs for unsatisfiable formulas. clsat competed in QF IDL.

CVC. (v1.0b, 2005; unversioned, 2006.) CVC [SBD02] is a legacy system developed at

Stanford University by Aaron Stump, Clark Barrett, and David Dill. An updated ver-

sion capable of parsing SMT-LIB format was submitted by Aaron Stump. CVC is imple-

mented in C++ and implements a general framework for combining first-order theories

based on the Nelson-Oppen method [NO79]. CVC uses the Chaff SAT solver [MMZ+01]

for Boolean reasoning. The 2006 version was largely unmodified from 2005, though it

was ported to a more recent compiler. CVC competed in all divisions in 2005, but, as

it did not support integers or bit-vectors, and had no special handling for difference

logic, it only entered QF UF, QF AUFLIA, and QF LRA in 2006.

CVC Lite. (Unversioned, 2005.) CVC Lite [BB04] is the successor to CVC developed

primarily by Clark Barrett at New York University and Sergey Berezin at Stanford

University. CVC Lite is implemented in C++ and is based on the framework for co-

operating decision procedures found in Clark Barrett’s Ph.D. thesis [Bar03]. CVC Lite

has a custom SAT solver and is capable of producing independently checkable proofs

for valid queries. CVC Lite competed in all divisions.

CVC3. (Unversioned, 2006; v1.2, 2007; v1.5, 2008; v2.0, 2009.; v2.3, 2010) CVC3 is

a large, multiple-year effort, led by Clark Barrett (New York University) and Cesare

Tinelli (University of Iowa). It was initially submitted in 2006 by Barrett and Tinelli,

with development credits also going to Yeting Ge (New York University), Alexander

Fuchs and George Hagen (University of Iowa); and the implementers of CVC Lite, its

predecessor. It is implemented in C++ and is based on Clark Barrett’s framework for

20

cooperating decision procedures. 2007’s version 1.2 credits Barrett, Fuchs, Ge, and De-

jan Jovanović (New York University) with major code improvements, which expanded

the feature set and improved performance. 2008’s version 1.5 credits Barrett, Ge, Jo-

vanović, Fuchs, Lorenzo Platania (University of Genoa), and Darren Kelley (New York

University) with improvements in performance. 2009’s version 2.0 credits Barrett, Chris

Conway (New York University), Ge, Jovanović, and Fuchs with performance improve-

ments. CVC3 competed in all problem divisions in 2006, 2008, 2009 and 2010. In 2007,

it competed in QF UF, QF LIA, QF LRA, QF UFLIA, QF AUFLIA, AUFLIA, and

AUFLIRA.

CVC4. (v.1.0-α0, 2010) CVC4 was submitted by Clark Barrett, Christoper Conway,

Morgan Deters, Yeting Ge, Liana Hadarean, Dejan Jovanović and Timothy King from

New York University and Cesare Tinelli from the University of Iowa. CVC4 is the

fourth solver in the family of Cooperating Validity Checkers (CVC, CVC-Lite, CVC3

and CVC4), but it does not incorporate any code from its predecessors. It has been

designed to increase the performance and reduce the memory overhead of the previous

solvers. The submission to SMT-COMP 2010 was still a prototype and only competed

in QF LRA.

ExtSAT. (v1.1, 2006.) ExtSat was submitted by Paulo Matos of the Instituto Superior

Técnico, Portugal. ExtSat is implemented in C++, and combines a Boolean enumerator

based on MiniSAT [ES03] with arithmetic solvers. ExtSAT competed in QF RDL,

QF IDL, QF LRA, and QF LIA.

Fx7. (Unversioned, 2007.) Fx7 was submitted by Micha l Moskal from the University of

Wroc law, Poland, with contributions from Jakub Lopuszański, from the same institu-

tion. Fx7 is implemented in Moskal’s Nemerle language and was designed for software

verification queries, which make heavy use of quantifiers. To deal with quantifiers, Fx7

implements two novel matching algorithms. It competed in AUFLIA.

Heuristic Theorem Prover (HTP). (Unversioned, 2005; unversioned, 2006.) HTP was

developed by Kenneth Roe at Formal Documentation Systems, Redwood City, CA. It

preprocesses benchmarks, then hands them off to Yices, Barcelogic, or MiniSAT. HTP

competed in QF UF, QF IDL, QF RDL, QF LRA, QF LIA, and QF UFLIA in both

years; it also competed in QF AUFLIA in 2005.

Jat. (Unversioned, 2006.) Jat was submitted by Scott Cotton from Verimag, and de-

veloped by the submitter under the supervision of Oded Maler (also at Verimag). Jat

is written entirely in Java, and employs novel techniques for exhaustive theory propa-

gation for difference logic. Jat competed in QF RDL.

MathSAT. (v3, 2005; v3.4, 2006; v4.0, 2007; v4.2, 2008; v4.3, 2009; v5, 2010.) A ver-

sion of MathSAT 3 capable of parsing SMT-LIB was contributed by the MathSAT

team: Roberto Bruttomesso (ITC-IRST4, Trento, Italy), Alessandro Cimatti (ITC-

IRST), Anders Franzén (ITC-IRST and the University of Trento, Italy), Alberto Grig-

gio (University of Trento), and Roberto Sebastiani (University of Trento) from 2005–

2010. MathSAT is a C++ implementation of the standard “online” lazy integration

4 Later, ITC-IRST became FBK-IRST.

21

schema used in many SMT tools. It uses a customized version of MiniSAT [ES03]

for Boolean reasoning. Uninterpreted functions are handled by either the Ackermann

reduction or congruence closure. Support for arithmetic is layered with faster, less

general solvers run first, followed by slower, more complete solvers. MathSAT was

actively worked on between 2005 and 2010, resulting in new features and improved

performance. In 2005, MathSAT competed in QF UF, QF RDL, QF IDL, QF UFIDL,

QF LRA, and QF LIA. In 2006, it competed in QF UFLIA and QF UFBV32 as well.

It didn’t compete in the bit-vector division in 2007, though it did again in 2008 and

2009, as well as in the new QF UFLRA division. In 2009, it also added support for

arrays, and competed additionally in QF AUFBV, QF AX, and QF AUFLIA. In 2010,

it competed in QF UF, QF LRA, QF LIA, QF UFLIA and QF UFLRA.

MiniSMT. (unversioned, 2010) MiniSMT was submitted by Harald Zankl and Aart

Middeldorp from the University of Innsbruck, Austria. This open-source solver forms

the core of the Tyrolean Termination Tool 2, an automatic analyzer for termination

of rewrite systems. It is written in OCaml and reduces non-linear SMT formulas to

propositional logic. It competed in QF NIA and QF NRA.

NuSMV. (Unversioned, 2006.) NuSMV was submitted by R. Bruttomesso, R. Cavada,

A. Cimatti, A. Franzen, S. Semprini, M. Roveri, and A. Tchaltsev, from ITC-IRST,

Trento, Italy. NuSMV is written in C, and uses a preprocessing step to reduce input

problems in QF UFBV32 to problems which could be solved using routines from the

NuSMV symbolic model checker. NuSMV competed in QF UFBV32.

OpenSMT. (v0.1, 2008; v0.2, 2009; v1.0-alpha, 2010.) OpenSMT was submitted by

Roberto Bruttomesso and Natasha Sharygina (Università della Svizzera Italiana, Lugano,

Switzerland). It was intended as a small and open-source SMT solver, written in C++,

which provided a basic infrastructure for helping non-experts develop theory solvers

without having to start from scratch. OpenSMT initially included a parser for the

SMT-LIB language, a state-of-the-art SAT solver, and a core solver for uninterpreted

functions, as well as an empty, template theory solver to facilitate the development of

solvers for other logics. In 2008, OpenSMT competed only in QF UF; however, 2009’s

submission, by Bruttomesso and Sharygina as well as Edgar Pek and Aliaksei Tsi-

tovich (also from Svizzero Italiana), added support for QF IDL, QF RDL, QF LRA,

and QF BV. In 2010, it did not compete in QF BV but entered the QF UFIDL division.

Sammy. (Unversioned, 2005.) Sammy was submitted by Michael DeCoster, George

Hagen, Cesare Tinelli, and Hantao Zhang from the University of Iowa. Sammy is writ-

ten in OCaml and C and is based on the DPLL(T) framework. Sammy uses a tool

derived from SATO [Zha97] for propositional reasoning and CVC Lite [BB04] for the-

ory reasoning. Sammy competed in all divisions in 2005.

Sateen. (Unversioned, 2005; unversioned, 2006; unversioned, 2007; v2.2.1, 2008; v3.5,

2009.) Sateen was initially submitted by Hyondeuk Kim, HoonSang Jin, and Fabio

Somenzi from the University of Colorado at Boulder. The 2009 submission added Hy-

ojung Han to the list of credits, from the same institution. Sateen is written in C and

combines efficient propositional reasoning with layered theory solvers, incorporating

special solvers for difference logic and arithmetic with the CirCUs SAT engine [JHS05].

Sateen competed in QF IDL from 2005–2007, in QF RDL and QF IDL in 2008, and

in QF RDL, QF IDL, and QF LIA in 2009.

22

SatBox with Theories (SBT). (Unversioned, 2005.) SBT was submitted by Hantao

Zhang, Haiou Shen, and John Wheeler from the University of Iowa. SBT is written in C

and built on top of the SatBox toolbox for propositional reasoning. It also incorporates

some code from Albert Oliveras (one of the authors of Barcelogic). SBT competed in

QF UF, QF IDL, QF UFIDL, and QF LIA.

Simplics. (Unversioned, 2005.) Simplics was submitted by Bruno Dutertre and Leonardo

de Moura from the Computer Science Laboratory at SRI International. Simplics is a

successor to ICS [FORS01], written mostly in OCaml. Simplics uses a core real-linear

arithmetic solver based on an enhanced version of the simplex algorithm [RS04]. Sim-

plics competed in QF RDL and QF LRA.

simplifyingSTP. (unversioned, 2010.) simplifyingSTP was submitted by Trevor Hansen,

Peter Schachte and Harald Søndergaard from the University of Melbourne, Australia.

It is a variant of the STP solver that adds extra simplification rules before encod-

ing the problem into propositional logic. The resulting formula is then processed by

CryptoMinisat or by ManySAT in the parallel division. It competed in QF BV.

SONOLAR. (r252, 2010.) SONOLAR was submitted by Florian Lapschies from the

University of Bremen, Germany. It is targeted for automatic test data generation in the

field of model-based and C/C++ unit testing. It uses the eager approach to convert the

SMT formula into a propositional one, which is then passed to PicoSAT. It competed

in QF BV.

Spear. (v1.9, 2007; unversioned, 2008.) Spear was submitted by Domagoj Babić from

the University of British Columbia. Spear is a theorem prover for bit-vector arithmetic

that translates the input formula into a propositional one, then sends it to a simple

lightweight DPLL SAT solver. It was designed chiefly for software verification, but also

for other industrial problems, like bounded hardware model checking. Spear competed

in QF BV.

STP. (Unversioned, 2006; #101, 2009.) STP was submitted in 2006 by Vijay Ganesh

and David Dill from Stanford University. STP preprocesses and then translates input

formulas into purely propositional formulas, which are then solved by MiniSAT [ES03].

An abstraction-refinement technique is used for handling array read expressions. Ver-

sion #101, submitted in 2009 by Trevor Hansen (University of Melbourne) and Vijay

Ganesh (then at MIT) incorporates a better CNF converter, and was improved to han-

dle the updated SMT-LIB bit-vector theory. STP competed in QF UFBV32 in 2006

and QF BV in 2009.

SVC. (Unversioned, 2005.) SVC [BDL96] is a legacy system developed at Stanford

University by Clark Barrett, Jeremy Levitt, and David Dill. An updated version capable

of parsing the SMT-LIB format was submitted by Clark Barrett. SVC is implemented in

C++ and features a framework for combining decision procedures described in Jeremy

Levitts Ph.D. thesis [Lev99]. SVC competed in all divisions.

23

SWORD. (v0.2, 2008; v1.0, 2009.) SWORD was submitted in 2008 by Robert Wille,

André Sülflow, and Rolf Drechsler (University of Bremen), and in 2009 by Jean Christoph

Jung (University of Bremen) along with Wille, Sülflow, and Drechsler. The bit-vector

solver SWORD makes use of word-level information. Logical bit-vector operations are

handled as clauses in an incorporated SAT solver, but arithmetic operations are han-

dled by adjoining modules, which are permitted to affect the search heuristics. SWORD

uses MiniSAT [ES03] as a SAT engine, and competed in QF BV.

veriT. (v200907, 2009; v201007, 2010.) veriT was submitted by Thomas Bouton (LORIA-

INRIA), Diego Caminha B. de Oliveira (LORIA-INRIA), David Déharbe (Universidade

Federal do Rio Grande do Norte, Natal, RN, Brazil), and Pascal Fontaine (LORIA-

INRIA). It is mainly written in C, is open-source, and supports Nelson-Oppen theory

combination [NO79] over uninterpreted functions and difference logic over reals and

integers. It also supports quantifiers and can produce proofs. veriT competed in 2009

and 2010 in QF UF, QF RDL, QF IDL, and QF UFIDL.

test pmathsat. (v0.0.5, 2010.) test pmathsat was submitted by Alberto Griggio from

FBK-IRST, Trento, Italy. It is a simple parallel version of the MathSAT 5 solver which

sends different instances of MathSAT with different search parameters to different CPU

cores and terminates as soon as one of them returns a result. It consists of only 300 lines

of C code and competed in QF UF, QF LRA, QF LIA, QF UFLRA and QF UFLIA.

Yices. (v0.1, 2005; v1.0, 2006; v1.0.10, 2007.) The first submission of Yices in 2005 was

by Leonardo de Moura while at the Computer Science Laboratory at SRI International.

Yices is implemented in C++ and is based on the Nelson-Oppen method for combining

decision procedures [NO79]. Yices produces proof objects for valid queries. Yices 1.0

was submitted in 2006 by Bruno Dutertre (SRI International) and de Moura, and

incorporates significant work since the 2005 submission on the SAT solver, overall

architecture, and theory solvers. In 2007, Yices 1.0.10 was submitted by Dutertre,

incorporating many bug fixes, improvements to the bit-vector solver, and extensions

to support new and updated logics of SMT-LIB. Yices competed in all divisions in all

three years it was submitted.

Yices 2. (Unversioned prototype “c,” 2008; unversioned prototype, 2009.) Yices 2 was

submitted by Bruno Dutertre (SRI International, Menlo Park, California). It was a

prototype of the successor to the Yices 1 SMT solver written entirely in C. It at-

tempts to address several limitations of Yices 1, including type checking issues and

limited functionality of the Yices API. The new solver supports a simpler specifica-

tion language that can be statically type checked and it provides a full API to access

all functions of the solver. It is intended to offer similar or better performance than

Yices 1 on most benchmarks, while being more modular, extensible, and maintainable.

Yices 2 competed in QF UF, QF RDL, QF IDL, and QF LRA in 2008. The 2009 ver-

sion added support for bit-vectors and arrays, and competed in the same four divisions

as in 2008, plus QF BV, QF AUFBV, QF UFIDL, QF AX, QF AUFLIA, QF UFLRA,

QF UFLIA, and QF LIA.

24

Z3. (v0.1, 2007; v3.2α, 2008.) Z3 was submitted by Nikolaj Bjørner and Leonardo

de Moura from Microsoft Research, Redmond. Z3 is written in C++ and is similar in

spirit to Yices, but it also incorporates an E-matching abstract machine to deal with

quantifiers and model-based theory combination techniques. Z3 supports linear real and

integer arithmetic, fixed-size bit-vectors, extensional arrays, uninterpreted functions,

and quantifiers. It can read problems in SMT-LIB and Simplify formats. Z3 competed

in all competition divisions during both years it competed.

5.2 Evolution in Performance

To demonstrate the evolution in performance from 2005 to 2010, we ran the winners

of each year’s competition on the QF LRA benchmark set used for the 2009 competi-

tion. The winners were Simplics (2005), Yices 1.0 (2006), Yices 1.0.10 (2007), Yices 2

“proto c” (2008), Yices 2 “proto” (2009) and MathSAT 5 (2010). The results are shown

in Table 9. Note that the 2006 winner beat the 2007 winner, and the 2008 winner beat

the 2009 and 2010 winners (each by a very small margin).

Simplics gave two incorrect answers (reporting SAT instead of the expected UN-

SAT) on the benchmarks frame prop.base.smt and reint to least.base.smt from the spi-

der benchmarks suite. A bugfix version (version 0.1.1) of Simplics released after the

competition fixed these problems.

A “cactus” plot of the comparison is shown in Figure 1. In this plot, for each

solver, that solver’s times on benchmarks are sorted in ascending order and plotted

cumulatively—the best solver is then the one with its line furthest to the right of the

plot (the most instances solved) and the lowest (the least CPU time used). As seen in

the plot, considerable improvement all-around was made by 2006’s entry (over 2005’s).

Later years showed a flattening of the curve at the 0-10 seconds region, indicating that

more benchmarks were immediately solved by the winning solvers. Note that while the

2008 solver beat the 2009 solver overall in the test, owing to the fact that the 2009

solver timed out on one additional instance, the 2009 solver shows this curve-flattening

improvement over 2008; although it lost in our test, it was able to immediately solve

many instances that were reasonably easy (but not trivial) for the 2008 solver. This

may indicate a practical advantage of the 2009 version, namely the ability to solve

many relatively easy satisfiability problems very rapidly, an ability that is important

in many domains. As benchmarks get harder, the 2008 and 2009 solvers seem to behave

somewhat similarly performance-wise.

Finally, a scatter plot (Figure 2) shows a benchmark-by-benchmark comparison

between the 2005 winner Simplics and the 2009 winner Yices 2 “proto”. This version

of Yices 2 shows considerable improvement over the state of the art in 2005.

Although we only provide data comparing the winners for the QF LRA division,

similar data could be given for other divisions. The situation is usually the same: a cer-

tain solver presents a key idea that improves the performance in a particular division,

and this idea is implemented by most solvers in the following SMT-COMP editions.

After that, only minor improvements are shown in that division, but still remarkable

improvements appear in some others. The rationale behind that is that the main focus

of SMT developers changes year after year. This is illustrated in Figure 3, where it can

be seen that important improvements were made in 2006 (QF LRA), 2007 (AUFLIA),

2008 (QF BV) and 2010 (QF LIA). We can easily identify the reasons behind such

improvements: in 2006, Yices introduced a new Simplex-based algorithm for linear

25

Solver Correct Time Unsat Sat Unk T/O Wrong
Yices2 “proto c” (2008) 186 4586.7 s 92 (0) 94 (0) 0 16 0
Yices 2 proto (2009) 185 3311.2 s 92 (0) 93 (0) 0 17 0
MathSAT 5 (2010) 185 4567.6 s 92 (0) 93 (0) 0 17 0
Yices 1.0 (2006) 183 2554.9 s 92 (0) 91 (0) 0 19 0
Yices 1.0.10 (2007) 183 2590.4 s 92 (0) 91 (0) 0 19 0
Simplics (2005) 166 10120.6 s 82 (2) 84 (0) 0 34 2

Table 9 Results for comparison of the SMT-COMP winners in QF LRA from 2005 through
2010. The comparison was done on the SMT-Exec platform, on the 202 benchmarks of the
QF LRA 2009 competition set with a 30-minute timeout. The time reported here is for
correctly-answered benchmarks only.

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140 160 180 200

C
P

U
 ti

m
e

(s
)

Number of correctly solved benchmarks

Yices2 (proto c) (2008 winner)
Yices 2 proto (2009 winner)

MathSAT 5 (2010 winner)
Yices 1.0 (2006 winner)

Yices 1.0.10 (2007 winner)
Simplics (2005 winner)

Fig. 1 A “cactus” plot showing the performance of the SMT-COMP winners from 2005
through 2010. Considerable improvement of the 2006 winner over the 2005 winner was un-
matched in later years on this benchmark set, with important, but more modest, improvement
overall.

arithmetic [DdM06]; in 2007, efficient E-matching techniques like the ones in [dMB07]

turned out to be crucial for the performance of Z3; in 2008, several new ideas to deal

with bit-vectors were implemented in Boolector [BB09b] and in 2010, MathSAT intro-

duced specific techniques for reasoning over integer linear arithmetic [Gri10]. Hence,

the current situation is that SMT improvements are mostly theory-specific.

26

1

10

100

1k

1.8k

wrong/
unknown/

timeout

1 10 100 1k 1.8k wrong/
 unknown/
 timeout

S
im

pl
ic

s
(2

00
5

w
in

ne
r)

Yices 2 proto (2009 winner)

<= 0.1

2x

2x

Fig. 2 A scatter plot showing a benchmark-by-benchmark comparison of the 2005 winner,
Simplics, against the 2009 winner, Yices 2 “proto”. Time limit was set to 1800 seconds. On
many benchmarks, the 2009 winner is more than 10× faster than the 2005 one; overall, it
performs better on satisfiable and unsatisfiable instances, and is much faster. Upward-pointing
triangles indicate satisfiable instances; downward-pointing triangles unsatisfiable ones.

5.3 Underlying Techniques

Most SMT-COMP entrants implemented the so-called lazy approach to SMT, where

a SAT solver is in charge of enumerating models for the Boolean part of the formula,

and a theory solver checks whether they are consistent with the background theory.

An important refinement where the theory also computes consequences of the current

partial model, called theory propagation [NO05], was introduced by the Barcelogic

team and was shown to improve performance across various divisions.

Although successful for most divisions, the lazy approach was not dominant in the

bit-vector divisions, where the large majority of entrants converted the SMT formula

to propositional logic before letting a SAT solver decide its satisfiability. The other

divisions where an eager approach proved to be competitive were non-linear arithmetic

divisions, where propositional encodings [FGM+07,ZM10] competed with ad-hoc tech-

niques [BLNM+09b].

When the underlying theory consisted of the union of several theories, the combi-

nation mechanism chosen was usually Nelson-Oppen [NO79]. Two important improve-

ments over the basic combination procedure need to be mentioned: the delayed theory

combination [BBC+05] introduced by the MathSAT team, and the model-based theory

combination [dMB08] presented by the Z3 implementers.

27

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120

C
P

U
 ti

m
e

(s
)

Number of correctly solved benchmarks

QF LRA 2006

Yices 1.0
Simplics, 2005 winner

HTP
MathSAT 3.4

CVC
CVC3 (2006)

1

10

100

1k

1.8k

wrong/
unknown/

timeout

1 10 100 1k 1.8k wrong/
 unknown/
 timeout

Y
ic

es
 1

.0
 (

Q
F

 L
R

A
 2

00
6

w
in

ne
r)

Simplics (QF LRA 2005 winner)

<= 0.1

2x

2x

 0.1

 1

 10

 100

 1000

 10000

 0 20 40 60 80 100 120 140 160 180 200

C
P

U
 ti

m
e

(s
)

Number of correctly solved benchmarks

AUFLIA 2007

Z3 0.1
Fx7

CVC3 1.2
Yices 1.0.10

Yices 1.0, 2006 winner

1

10

100

1k

1.8k

wrong/
unknown/

timeout

1 10 100 1k 1.8k wrong/
 unknown/
 timeout

Z
3

0.
1

(A
U

F
LI

A
 2

00
7

w
in

ne
r)

Yices 1.0 (AUFLIA 2006 winner)

<= 0.1

2x

2x

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140 160 180 200

C
P

U
 ti

m
e

(s
)

Number of correctly solved benchmarks

QF BV 2008

Boolector
Z3.2

Beaver-1.0
MathSAT-4.2
SWORD v0.2

Spear
CVC3-1.5

Spear v1.9 (fh-1-2), 2007 winner

1

10

100

1k

1.8k

wrong/
unknown/

timeout

1 10 100 1k 1.8k wrong/
 unknown/
 timeout

B
oo

le
ct

or
 (

Q
F

 B
V

 2
00

8
w

in
ne

r)

Spear v1.9 (fh-1-2) (QF BV 2007 winner)

<= 0.1

2x

2x

 0.1

 1

 10

 100

 1000

 10000

 100000

 0 20 40 60 80 100 120 140 160 180 200

C
P

U
 ti

m
e

(s
)

Number of correctly solved benchmarks

QF LIA 2010

MathSAT 5
Sateen-3.5, 2009 winner

CVC3 2.3

1

10

100

1k

1.8k

wrong/
unknown/

timeout

1 10 100 1k 1.8k wrong/
 unknown/
 timeout

M
at

hS
A

T
 5

 (
Q

F
 L

IA
 2

01
0

w
in

ne
r)

Sateen-3.5 (QF LIA 2009 winner)

<= 0.1

2x

2x

Fig. 3 Data about the divisions QF LRA (2006), AUFLIA (2007), QF BV (2008) and
QF LIA (2010). The cactus plot compares all entrants in the corresponding year with the
winner of the previous edition, whereas the scatter plot only compares the winners of the two
consecutive years.

28

Regarding linear arithmetic, several important developments were introduced. For

dealing with the difference logic fragment, most solvers implemented variants of Bellman-

Ford-like algorithms for negative cycle detection [NO05,WIGG05,CM06] or adapta-

tions of the Floyd-Warshall algorithm when the resulting graph was very dense. For

full linear arithmetic the first important algorithm was given by the Simplics peo-

ple [RS04], but the ground-breaking algorithm by de Moura and Dutertre [DdM06]

became the most common one. Later on, in [Gri10], dedicated techniques for the inte-

ger case were presented and proved to be successful in the competition.

Preprocessing techniques were also used by many entrants. This trend was espe-

cially common in the bit-vector divisions, where a large set of of rewrite rules was

usually applied to the initial formula before encoding it into propositional logic. An-

other successful preprocessing technique was presented by the Sateen team. Their

work [KSJ09] focused on the translation of formulas involving a large number of if-

then-else terms; such formulas occur, for example, in many benchmarks in the QF LIA

division.

Finally, several techniques were used to deal with quantifiers. Building upon the

pattern matching technique introduced by the Simplify solver, several new techniques

were developed and used in the competition by different teams: Z3 [dMB07], CVC3 [GBT09]

and Fx7 [MLK08].

This is by no means an exhaustive list of all the techniques used by the SMT-

COMP competitors, but we believe is fairly representative of the ones that have had a

significant impact.

6 Analysis of the Impact of SMT-COMP

Given the growing number of existing system competitions, it has become evident that

system competitions are attractive for many research communities. Among others, we

can find system competitions for first-order theorem provers, SAT solvers, Max-SAT

solvers, Quantified Boolean Formula (QBF) solvers, Constraint Satisfaction Problems

(CSP) solvers, termination systems, hardware model checkers, planning, timetabling,

answer set programming (ASP) tools, and package/component installation and upgrade

systems.

It is our belief that apart from determining which solver is the best performing

according to the competition rules, a system competition can and should have other

goals that benefit the research community. In the following list, we review the main

goals that we had for SMT-COMP and analyze to what extent they have been realized:

– Adoption of a common input language: this was the original reason for orga-

nizing the competition. Already after the first edition, it was clear that the com-

petition had been a success in this direction. Although some systems have their

own input format, for backwards compatibility reasons or because it somehow best

suits their needs, all SMT systems currently under development accept the SMT-

LIB language.

– Collection of benchmarks: it is evident that, at least in term of quantity, the

collection of benchmarks has been another success of the competition. Before the

competition started, there were only a few hundred benchmarks being used by the

community, and not all of them were in the same input language. The current

situation, as explained in Section 3, is completely different.

29

Researchers familiar with the competition have a slight advantage over others trying

to collect and make progress on benchmarks: users of SMT technology know that

their submitted benchmarks will become part of next year’s competition and that,

because the library is publicly available, most implementers will work hard during

the year to make their system fast on those problems. This situation encourages

people to submit their benchmarks which is a laborious task, and is often neglected

without something like a competition to motivate the effort required. However, we

should say that in some divisions the progress in benchmark collection seems to

have stopped, even though there seems to be ongoing research that could produce

new benchmarks.

– Enable system comparison: before the competition started, it was not clear how

different systems compared, either in performance or in expressivity of the input

language supported (see the paper [dMR04]). With the results of the competition,

one can get a reasonable approximation of the relative performance of various

systems on different types of problems. Moreover, the SMT-Exec service allows one

to compare, at any time of the year, any SMT solver with the ones submitted to the

competition. The only drawback is that the comparison only considers the solvers’

run-time and not other interesting parameters like, e.g., the number of decisions,

which might help, for example, in understanding whether a system is better because

it effectively prunes the search space or because it traverses it faster.

– React to the research community: it is important for a system competition

to react to the changing demands of the research community. For that purpose, a

mailing list was created and consulted for most delicate design decisions. Moreover,

running the competition online and collocating it with major conferences like CAV

or CADE and with the SMT workshop made it easier for users, implementers, and

organizers to meet and exchange opinions about the current state of the competi-

tion.

The organization has also tried to react to the fact that hot research topics change

from one year to another. Examples include the increased interest in bit-vectors

and quantifiers during some years. On those occasions, special effort was made to

collect representative benchmarks in these divisions so that the competition could

fairly reflect the topics which were more attractive to the users of SMT technology.

There remain some requests from the research community that have not yet been

reflected in the competition. For example, there have been requests for solvers

to compete on benchmarks that include features like incrementality, the ability to

produce models, and the ability to produce interpolants. We are hopeful that future

editions of the competition may address these requests.

– Give recognition to system developers: in areas where implementation plays

an important role, it is accepted that system developers do not always get the

recognition they deserve. The situation is even worse for Ph.D. students, who are

usually in charge of implementations but are typically evaluated only according

to the number of papers they publish. Competitions do give some recognition to

system developers, but it is certainly true that this recognition is sometimes too

local to the community and that systems performing very close to the winners

get almost no recognition. Unfortunately, we have to admit that the success of

SMT-COMP in addressing these issues has been very limited.

30

Besides analyzing the goals we had in mind and whether they have been fulfilled or

not, it is also important to focus on possible negative aspects that SMT-COMP might

have had on the community. Some aspects show up in any system competition and

others are more specific to SMT-COMP.

– Interesting new techniques abandoned too soon: a system competition in

which the only performance measure is the run-time encourages developers to op-

timize their systems to sometimes unexpected levels. First of all, just the fact that

researchers have incentives to spend their valuable time on low-level implemen-

tation details may be cause for concern. Second, existing systems become highly

optimized tools whose low-level details are usually either closed to other researchers

or poorly documented. In either case, the result is a significant barrier to entry for

newcomers. Finally, and perhaps most importantly, for the same reasons, techniques

that are worth exploring might be abandoned too early because there is little hope

that they can compete with existing tools in the short/mid-term.

– Systems are trained on existing benchmarks: because the benchmarks used

in the competition are publicly available, system implementers optimize their tools

by adjusting parameters according to the results they obtain on the benchmark

library. In principle, this should not be a big issue if one assumes the library to

be representative enough. However, this might not always be the case and systems

could end up being optimized in the wrong direction. As a possible way of overcom-

ing this problem, some competitions do not make all benchmarks publicly available.

Then, systems that overtrain on given benchmarks instead of trying to be robust

on all types of benchmarks can be easily detected since they underperform on the

unpublished problems.

– The scoring system encourages a focus on hard problems: assuming that

problems that the best solver can process in 60 seconds can be processed by any

other solver in less than 15 minutes, as is usually the case, it is clear that the winning

system will be the one able to solve a larger number of hard problems. Stated this

way, this situation does not look too bad, but it overlooks the importance of solving

easy problems as quickly as possible, which is crucial in some large verification

environments where thousands of simple queries are made to an underlying SMT

solver. In this case, spending one more second per query could be very costly and

hence, heavy-weight techniques like thorough preprocessing algorithms should be

abandoned in favor of light-weight methods. A change in the scoring system, where

average time is also taken into account (e.g. the efficiency measure used in CASC)

might be enough to fix this problem.

Similarly, the competition gives almost no recognition for systems that provide

additional capabilities, like having a rich and user-friendly API, proof and model

production, incremental usage, etc. These are very interesting, sometimes even

necessary, functionalities that users might want in an SMT solver, and it would be

nice if this were rewarded somehow in the competition.

– System developers might be afraid of bad performance: it is probably true

that for the winners, the time taken to prepare their system for the competition is

worth it, but this might not be the case for other competitors. A bad performance

by a given system might affect its reputation, and system developers might think

twice before they submit the system to another edition. This is of course an under-

31

standable attitude, but it defeats one of the purposes of the competition, which is

to give a snapshot of how current systems compare.

– Special work needed to adjust solvers for the competition: several strong

solvers have not re-entered the competition after victories. One possible reason was

stated above: they might be afraid of performing poorly and tarnishing their repu-

tation. Another reason might be that in order to perform well in the competition,

some (often significant) effort is required to ensure adequate performance on the

competition benchmarks. Solvers that perform perfectly well in specific research

projects might not, for various reasons, perform very well at the competition. This

extra work might not be deemed worth it once a solver is already well-known by the

community. One solution to this problem would be to make the competition as sim-

ilar as possible to the real uses of SMT solvers (e.g. use them incrementally, asking

for models, etc.) so that the extra work to enter the competition is minimized.

– Allowing the organizers to compete: this is always a delicate issue in any com-

petition. In the case of SMT-COMP, since the organizers were allowed to compete,

we tried to make the competition as transparent as possible, so that organizers

would have no advantage with respect to other competitors. However, allowing

the organizers to compete adds some restrictions to the competition (e.g. no pri-

vate benchmarks can exist). Moreover, when delicate issues come up, like deciding

whether a late patch for a simple bug can be accepted for a system submission, be-

ing an organizer and a competitor at the same time can lead to a potential conflict

of interest.

The easy solution is of course to forbid organizers to participate. However, it is

difficult to find researchers who are willing to take on the work of organizing a

system competition who are not system developers themselves. Moreover, we believe

that entrants to the competition have a better view of whether the competition is

fair or not, and which aspects of the competition need to be improved. Having an

organizer/competitor thus helps in this direction.

7 Conclusions

The first six editions of SMT-COMP have undoubtedly helped the SMT community

in various directions. First of all, the competition has been the main promoter of

the SMT-LIB language, which is now accepted by all state-of-the-art SMT solvers.

Second, SMT-COMP has witnessed how, year after year, solvers have improved their

capabilities in order to handle harder and harder problems. Finally, the competition

has become a venue that facilitates communication and the exchange of ideas among

SMT developers and between developers and users.

Acknowledgments: SMT-COMP would have not been possible without the in-

valuable support, feedback and participation of the entire SMT community, with special

thanks to Cesare Tinelli and Silvio Ranise, initial coordinators of the SMT-LIB initia-

tive. We would like to thank the organizers and programme chairs of CAV’05, CAV’06,

CAV’07, CAV’08, CADE’09 and CAV’10 for their support when hosting SMT-COMP

as a satellite event. The execution of the competition would not have been possible

without the help of Mark Bober of Washington University’s Computing Technology

Services (2007-2008) and the cluster provided by SRI International for running the

2006 edition. Hugh Brown and JJ Urich of The University of Iowa Computer Support

32

Group provided invaluable support for 2008-2010 editions of the competition. Finally,

the organizers wish to acknowledge the support of the U.S. National Science Founda-

tion, under contract CNS-0551697.

References

[Bar03] C. Barrett. Checking Validity of Quantifier-Free Formulas in Combinations of
First-Order Theories. PhD thesis, Stanford University, 2003.

[BB04] C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating
validity checker. In Rajeev Alur and Doron A. Peled, editors, Proceedings of
the 16th International Conference on Computer Aided Verification (CAV ’04),
volume 3114 of Lecture Notes in Computer Science, pages 515–518. Springer-
Verlag, July 2004. Boston, Massachusetts.

[BB09a] R. Brummayer and A. Biere. Fuzzing and Delta-Debugging SMT Solvers. In
O. Strichman and B. Dutertre, editors, 7th International Workshop on Satisfi-
ability Modulo Theories, 2009.

[BB09b] R. Brummayer and A. Biere. Boolector: An Efficient SMT Solver for Bit-Vectors
and Arrays. In Stefan Kowalewski and Anna Philippou, editors, 15th Interna-
tional Conference on Tools and Algorithms for the Construction and Analysis of
Systems, TACAS’09, volume 5505 of Lecture Notes in Computer Science, pages
174–177. Springer, 2009.

[BBC+05] M. Bozzano, R. Bruttomesso, A. Cimatti, T. A. Junttila, S. Ranise, P. van
Rossum, and R. Sebastiani. Efficient satisfiability modulo theories via delayed
theory combination. In Proceedings of the 17th International Conference on
Computer Aided Verification (CAV’05), Lecture Notes in Computer Science.
Springer-Verlag, 2005.

[BBL08] R. Brummayer, A. Biere, and F. Lonsing. BTOR: bit-precise modelling of word-
level problems for model checking. In SMT ’08/BPR ’08: Proceedings of the
Joint Workshops of the 6th International Workshop on Satisfiability Modulo
Theories and 1st International Workshop on Bit-Precise Reasoning, pages 33–
38, New York, NY, USA, 2008. ACM.

[BDL96] C. Barrett, D. L. Dill, and J. R. Levitt. Validity checking for combinations of the-
ories with equality. In Mandayam Srivas and Albert Camilleri, editors, Proceed-
ings of the 1st International Conference on Formal Methods In Computer-Aided
Design (FMCAD ’96), volume 1166 of Lecture Notes in Computer Science, pages
187–201. Springer-Verlag, November 1996. Palo Alto, California.

[Bie08] A. Biere. PicoSAT essentials. Journal on Satisfiability, Boolean Modeling and
Computation (JSAT), 4(2-4):75–97, 2008.

[Bie09] A. Biere. P{re,i}coSAT@SC’09, 2009. http://fmv.jku.at/precosat/preicosat-
sc09.pdf.

[BLNM+09b] C. Borralleras, S. Lucas, R. Navarro-Marset, E. Rodŕıguez-Carbonell, and
A. Rubio. Solving Non-linear Polynomial Arithmetic via SAT Modulo Linear
Arithmetic. In Renate A. Schmidt, editor, 22nd International Conference on
Automated Deduction , CADE-22, volume 5663 of Lecture Notes in Computer
Science, pages 294–305. Springer, 2009.

[BNO+08] M. Bofill, R. Nieuwenhuis, A. Oliveras, E. Rodŕıguez-Carbonell, and A. Rubio.
The Barcelogic SMT Solver. In A. Gupta and S. Malik, editors, Computer Aided
Verification (CAV), pages 294–298. Springer, 2008.

[BSST09] C. W. Barrett, R. Sebastiani, S. A. Seshia, and C. Tinelli. Satisfiability Modulo
Theories. In Armin Biere, Marijn Heule, Hans van Maaren, and Toby Walsh, edi-
tors, Handbook of Satisfiability, volume 185 of Frontiers in Artificial Intelligence
and Applications, pages 825–885. IOS Press, 2009.

[BST10] C. Barrett, A. Stump, and C. Tinelli. The SMT-LIB standard – version 2.0. In
Proceedings of the 8th International Workshop on Satisfiability Modulo Theories
(SMT ’10), July 2010. Edinburgh, Scotland.

[CCKL08] S. Conchon, E. Contejean, J. Kanig, and S. Lescuyer. CC(X): Semantic Com-
bination of Congruence Closure with Solvable Theories. Electronic Notes in
Theoretical Computer Science, 198(2):51–69, May 2008.

33

[CM06] S. Cotton and O. Maler. Fast and Flexible Difference Constraint Propagation for
DPLL(T). In A. Biere and C. P. Gomes, editors, 9th International Conference
on Theory and Applications of Satisfiability Testing, SAT’06, volume 4121 of
Lecture Notes in Computer Science, pages 170–183. Springer, 2006.

[DdM06] B. Dutertre and L. de Moura. A Fast Linear-Arithmetic Solver for DPLL(T). In
Thomas Ball and Robert B. Jones, editors, Proceedings of the 18th International
Conference on Computer Aided Verification (CAV’06), volume 4144 of Lecture
Notes in Computer Science, pages 81–94. Springer, 2006.

[DM06] B. Dutertre and L. De Moura. Integrating simplex with DPLL(T). Technical
report, CSL, SRI International, 2006.

[dMB07] L. de Moura and N. Bjørner. Efficient E-Matching for SMT Solvers. In
Frank Pfenning, editor, 21st International Conference on Automated Deduction,
CADE-21, volume 4603 of Lecture Notes in Computer Science, pages 183–198.
Springer, 2007.

[dMB08] L. de Moura and N. Bjørner. Model-based Theory Combination. Electr. Notes
Theor. Comput. Sci., 198(2):37–49, 2008.

[dMR04] L. de Moura and H. Ruess. An Experimental Evaluation of Ground Decision
Procedures. In R. Alur and D. Peled, editors, 16th International Conference on
Computer Aided Verification, CAV’04, volume 3114 of Lecture Notes in Com-
puter Science, pages 162–174. Springer, 2004.

[ES03] N. Eén and N. Sörensson. An extensible SAT-solver. In Proceedings of the Sixth
International Conference on Theory and Applications of Satisfiability Testing
(SAT 2003), volume 2919 of Lecture Notes in Computer Science, pages 502–518.
Springer-Verlag, May 2003.

[FGM+07] C. Fuhs, J. Giesl, A. Middeldorp, P. Schneider-Kamp, R. Thiemann, and
H. Zankl. SAT Solving for Termination Analysis with Polynomial Interpre-
tations. In J. Marques-Silva and K. A. Sakallah, editors, 10th International
Conference on Theory and Applications of Satisfiability Testing, SAT’07, vol-
ume 4501 of Lecture Notes in Computer Science, pages 340–354. Springer, 2007.

[FORS01] J. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: integrated canonizer and
solver. In G. Berry, H. Comon, and A. Finkel, editors, 13th International Con-
ference on Computer-Aided Verification, 2001.

[GBT09] Y. Ge, C. Barrett, and C. Tinelli. Solving quantified verification conditions using
satisfiability modulo theories. Ann. Math. Artif. Intell., 55(1-2):101–122, 2009.

[GHN+04] H. Ganzinger, G. Hagen, R. Nieuwenhuis, A. Oliveras, and C. Tinelli. DPLL(T):
Fast decision procedures. In Proceedings of the 16th International Conference
on Computer Aided Verification (CAV’04), volume 3114 of Lecture Notes in
Computer Science, pages 175–188. Springer-Verlag, 2004.

[Gri10] A. Griggio. A Practical Approach to SMT(LA(Z)). In 8th International Work-
shop on Satisfiability Modulo Theories, 2010.

[GTG07] M. K. Ganai, M. Talupur, and A. Gupta. SDSAT: Tight Integration of Small
Domain Encoding and Lazy Approaches in Solving Difference Logic. JSAT,
3(1-2):91–114, 2007.

[JC09] H. Jain and E. M. Clarke. Efficient SAT Solving for Non-Clausal Formulas using
DPLL, Graphs, and Watched Cuts. In 46th Design Automation Conference
(DAC), 2009.

[JHS05] H. Jin, H. Han, and F. Somenzi. Efficient conflict analysis for finding all satisfying
assignments of a boolean circuit. In In TACAS05, LNCS 3440, pages 287–300.
Springer, 2005.

[KSJ09] H. Kim, F. Somenzi, and H. Jin. Efficient Term-ITE Conversion for Satisfiability
Modulo Theories. In Oliver Kullmann, editor, 12th International Conference
on Theory and Applications of Satisfiability Testing, SAT’09, volume 4121 of
Lecture Notes in Computer Science, pages 195–208. Springer, 2009.

[LBS06] D. Le Berre and L Simon. Preface, Special Issue on the SAT 2005 Competitions
and Evaluations. Journal on Satisfiability, Boolean Modeling and Computation,
2:1–4, 2006.

[Lev99] J. Levitt. Formal Verification Techniques for Digital Systems. PhD thesis,
Stanford University, 1999.

[MLK08] M. Moskal, J. Lopuszanski, and J. R. Kiniry. E-matching for Fun and Profit.
Electr. Notes Theor. Comput. Sci., 198(2):19–35, 2008.

34

[MMZ+01] M. Moskewicz, C. Madigan, Y. Zhaod, L. Zhang, and S. Malik. Chaff: Engineer-
ing an Efficient SAT Solver. In 39th Design Automation Conference, 2001.

[Nik10] M. Nikolić. Statistical Methodology for Comparison of SAT Solvers. In O. Strich-
man and S. Szeider, editors, Thirteenth International Conference on Theory and
Applications of Satisfiability Testing (SAT), 2010.

[NO79] G. Nelson and D. Oppen. Simplification by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems, 1(2):245–57, 1979.

[NO05] R. Nieuwenhuis and A. Oliveras. DPLL(T) with exhaustive theory propagation
and its application to difference logic. In Proceedings of the 17th International
Conference on Computer Aided Verification (CAV’05), Lecture Notes in Com-
puter Science. Springer-Verlag, 2005.

[PD07] K. Pipatsrisawat and A. Darwiche. Rsat 2.0: SAT solver description. Technical
Report D–153, Automated Reasoning Group, Computer Science Department,
UCLA, 2007. http://reasoning.cs.ucla.edu/rsat/papers/rsat_2.0.pdf.

[RS04] H. Rueß and N. Shankar. Solving linear arithmetic constraints. Technical Report
SRI-CSL-04-01, SRI International, 2004.

[SBD02] A. Stump, C. W. Barrett, and D. L. Dill. CVC: a cooperating validity checker. In
In 14th International Conference on Computer-Aided Verification, pages 500–
504. Springer, 2002.

[SBH05] L. Simon, D. Le Berre, and E. A. Hirsch. The SAT2002 competition. Ann. Math.
Artif. Intell., 43(1):307–342, 2005.

[Sha02] N. Shankar. Little Engines of Proof. In L. H. Eriksson and P. A. Lindsay, editors,
International Symposium of Formal Methods Europe, FME’02, volume 2391 of
Lecture Notes in Computer Science, pages 1–20. Springer, 2002.

[SS06] G. Sutcliffe and C. Suttner. The State of CASC. AI Communications, 19(1):35–
48, 2006.

[Sut09] G. Sutcliffe. The TPTP problem library and associated infrastructure. J. Autom.
Reasoning, 43(4):337–362, 2009.

[Wan06] B. Wang. On the Satisfiability of Modular Arithmetic Formulae. In S. Graf and
W. Zhang, editors, 4th International Symposium of Automated Techonology for
Verification and Analysis, ATVA’06, volume 4218 of Lecture Notes in Computer
Science, pages 186–199. Springer, 2006.

[WIGG05] C. Wang, F. Ivancic, M. K. Ganai, and A. Gupta. Deciding Separation Logic
Formulae by SAT and Incremental Negative Cycle Elimination. In G. Sutcliffe
and A. Voronkov, editors, 12h International Conference on Logic for Program-
ming, Artificial Intelligence and Reasoning, LPAR’05, volume 3835 of Lecture
Notes in Computer Science, pages 322–336. Springer, 2005.

[Wil76] H. P. Williams. Fourier-Motzkin elimination extension to integer programming
problems. Journal of Combinatorial Theory (A), 21:118–123, 1976.

[Zha97] H. Zhang. SATO: An efficient propositional prover. In William McCune, edi-
tor, Proceedings of the 14th International Conference on Automated deduction,
volume 1249 of Lecture Notes in Artificial Intelligence, pages 272–275. Springer-
Verlag, July 1997.

[ZM10] H. Zankl and A. Middeldorp. Satisfiability of Non-linear (Ir)rational Arith-
metic. In Edmund M. Clarke and Andrei Voronkov, editors, 16th International
Conference on Logic for Programming, Artificial Intelligence and Reasoning,
LPAR’10, volume 6355 of Lecture Notes in Computer Science, pages 481–500.
Springer, 2010.

