
Monitoring Adaptable SOA-Systems using SALMon

Marc Oriol, Jordi Marco, Xavier Franch, David Ameller

Universitat Politècnica de Catalunya, Spain
{moriol,jmarco,franch,dameller}@lsi.upc.edu

Abstract. Adaptability is a key feature of Service-Oriented Architecture (SOA)

Systems. These systems must evolve themselves in order to ensure their initial

requirements as well as to satisfy arising new ones. In SOA Systems there are a

lot of dependencies between services, but each service is an independent

element of the system. In this situation it is necessary not only ensuring that the

system fulfils its requirements but also that every service satisfies its own

requirements, and dynamically adapting the system when some of them cannot

be ensured. In this paper we propose a SOA system, named Service Level

Agreement Monitor (SALMon), for monitoring and adapting SOA Systems at

run time. SALMon is based on monitoring the services for detecting Service

Level Agreement (SLA) violations. The SALMon architecture is composed of

three types of components: Monitors, which are composed of measure

instruments themselves; the Analyzer, which checks the SLA rules; and the

Decision Maker that performs corrective actions to satisfy SLA rules again.

These three types of components are mostly technology-independent and they

act as services inside of a SOA system making our architecture very scalable

and comfortable for its purpose.

1. Introduction

Service-Oriented Architecture (SOA) has become one of the most successful

architectural styles used for the development of software systems. The main

characteristic of this architecture is the construction of software solutions based on a

group of services that communicate with each other. However, this high coupling also

implies a strong dependency among the different components of the SOA system. A

failure of a service could imply the malfunction or failure of the whole system.

The emerging research challenge, then, is how we can ensure that the components

which are using these services are able to offer the same benefits and accomplishing

the user’s requirements in case that one of these services fails.

In this context, being able to build self-adaptive SOA systems is a major

undertaking. Self-adaptive SOA systems are those which are able to change

dynamically the services they use in order to keep fulfilling the Quality of Service

(QoS) requirements stated in Service Level Agreements (SLA). Self-adaptive SOA

systems demand having several alternative services to use in case that a service is not

working properly.

The construction of this kind of SOA systems requires tool support for (1)

monitoring services to continuously know their QoS, (2) determine when the SLA is

being violated, and (3) finally take the decision of using an alternative service with

the same or similar functionality.

In this paper, we present SALMon, a SOA system itself that uses a monitoring

technique to provide runtime QoS information that is needed to detect and eventually

correct SLA violations. SALMon is still under development, therefore the prototype

we present here should be considered as ongoing research. Notice that although the

architecture and interfaces of SALMon are technologically independent so that the

tool could be used to monitor any kind of services of a SOA system, we will focus in

this first preliminary version on monitoring web services.

The rest of the paper is structured as follows: first we provide a framework for

metrics definition based on previous works and the second part is dedicated to the

details of SALMon architecture. Finally there is a section for the conclusions.

2. Quality Attributes and Metrics

In our previous work [1], we identified the quality attributes of services building a

quality model [2]. Our approach is compliant with the ISO/IEC 9126-1 standard [4]

and remarkably we have added some subcharacteristics related to non-technical issues

following the advices given in [5]. This model was developed during our participation

in a ITEA European project, SODA (Services Oriented Devices & Delivery

Architectures, www.soda-itea.org), in which we had the responsibility of identifying

and classifying the characteristics needed for defining the quality of Web services.

Figure 1: Web Service Quality Characteristics.

In the proposed quality model (Figure 1) we have identified several

characteristics. Notice that, for instance, one characteristic is Efficiency and one of its

subcharacteristics is the Time Behavior. But Time Behavior itself is not a single

measurable concept, therefore we need to define attributes to decompose this

subcharacteristic. The attributes are normally dependent on what we want to measure.

In our case, since we are focusing on Web services, Response Time and Execution

Time are good examples of measurable attributes for Time Behavior.

Time behaviour

Time behaviour is the capability of the software product to provide appropriate

response and processing times and throughput rates when performing its function,

under stated conditions. In SALMon, we are interested in two particular measurable

attributes:

• Response Time: It measures the time that a Web Service takes to give a basic

response.

• Execution Time: It measures the time that a Web Service takes to execute a

certain job (a method, a process...).

Availability

 The availability is the degree to which the system is operable and in a committable

state. The user might want to ensure that a service is available.

Accuracy
 Accuracy is the capability of the software product to provide the right or agreed

results or effects with the needed degree of precision. In this case, the user could want

to monitor a concrete functionality of the web service, in this way, we talk about

functionality test.

The attributes Response Time and Availability are attributes that belong to the

web service since they are related to the whole service. If a web service is not

available, none of all its operations will be available. If the response time of the web

service is increased (e.g., because of a high demand on the service), the execution

time of all the operations of the web service will be affected accordingly. On the

contrary, Execution Time and Accuracy are attributes that belong to concrete

operations of the web service.

Once these four attributes have been identified, the next step is determining their

concrete metrics that will be subject of measure. In Table 1 we present these metrics.

Table 1: Metrics defined over the quality attributes measured in SALMon.

An important distinction is between basic metrics and derived metrics. Basic

metrics are those which must be monitored to obtain their values. Examples of basic

metrics are Current Response Time or Current Availability. Derived metrics are those

which can be obtained from a set of basic metrics. For example, the Average

Response Time is a derived metric since it can be obtained through the set of Current

Response Times in an interval of time. Another example is Recovery Time Failure

which is also a derived metric from the basic metric Current Availability. This

distinction is important since given the values of a basic metric, there is no interaction

with the monitored service to obtain the values of the corresponding derived metrics.

3. Platform Architecture Overview

The architecture of SALMon is a Service Oriented Architecture. Our platform is

composed by the following services (see Fig. 2): Analyzer, Decision Maker and

Monitor. Another type of module relevant to the SALMon architecture are the

Measure Instruments, which are part of the Monitor service. SALMon also uses a

service to store the monitoring data and a service for authentication and authorization.

Figure 2: Platform Architecture

In the rest of the section we will present this services and components in detail:

• Monitor service. It uses Measure Instruments to get the information about

QoS. Measure Instruments are components generated by the Monitor to

communicate with the services in order to get the monitoring information

that is relevant for computing the chosen metrics. This information is stored

in a data base and is also rendered to the Analyzer.

• Analyzer service. It is responsible of checking for SLA violations in concrete

SOA Systems: when a violation is detected, it is notified to the Decision

Maker service of the affected SOA System. To attain its goal, the Analyzer

manages a Monitor service.

• Decision Maker service. It selects the best treatment to solve the incidences

detected by the Analyzer in a concrete SOA system. Each Decision maker is

related with one (and only one) SOA System.

3.1. Monitor

The Monitor service is composed of several Measure Instruments for the same

SOA System. Measure Instruments are components used to get all the basic metrics

of the selected quality attributes. Derived metrics will be obtained from them. These

components are responsible of bringing the measures to the Monitor, which has the

responsibility of maintaining this information updated. The update process is an

iterative call to each Measure Instrument in different intervals of time, saving the

results in a database.

Since our approach on monitoring services is intrusive, Measure Instruments have

the responsibility to minimize the number of interactions performed with the

monitored service.

The Monitor needs the information of the service to monitor service’s metrics

(Response Time and Availability) and also information of the operations to monitor

operation’s metrics (Execution Time and Functionality Test).

To monitor the metrics of a Service, service details such as url and port are needed.

The time interval between measures to the service is also needed and some services

might require a user and a password.

In order to minimize the interaction with the monitored service, all service-metrics

share the same time interval between calls and use the same measure instrument.

Therefore, if we want to measure the basic metrics current availability and current

response time of a service, the same measure instrument is in charge of measure both

metrics in the same call.

To monitor the metrics of an operation, further information details are needed. In

particular, the name of the operation and at least one valid SOAP message request. To

test the accuracy of the operation, we need also to have the knowledge to determine

whether if a response message is valid or not. To do so, we use patterns of correct

SOAP message responses. If the message response meets the pattern, we say that the

response is a valid message, otherwise we say that it’s invalid. This approach

however, cannot state if the data given in the response is reliable but if it is well-

structured and consistent accordingly to the request.

3.2. Analyser

The Analyzer manages Monitors and checks for SLA violations in concrete SOA

systems. When a violation is detected it is notified to the Decision Maker of the

affected SOA system. In general an Analyzer can handle multiple SOA systems using

one Monitor and one Decision Maker for each one. The use of Decision Maker

services is optional but if they are not used, the SALMon user is limited to monitoring

and SLA violation detection.

The SLA can be configured manually with the interface provided by the Analyzer

or automatically with a SLA standard document for each service (e.g., WSLA [3] for

the case of Web services). We understand SLA as a set of conditions that must be true

in some time interval. A condition is composed of the evaluated metric, a relational

operator and a value for the comparison (i.e. “Current Response Time < 100ms” is a

condition that must be true for the specified service during the specified time

interval).

Defining time intervals is important since some conditions are relevant in a specific

interval of time or date. For instance, it could be possible that a service is required to

be available in a specific timetable, but we could agree that this service can be

temporally unavailable in a scheduled time for maintaining purposes.

The Analyzer is also responsible to compute the desired derived metrics from basic

metric values stored by the monitor service.

3.3. Decision Maker

The Decision Maker service has a repository of treatments and alternative services for

a concrete SOA system. It will automatically select and execute the best treatment for

the reported incidences.

Because the kind of job of this service and for security reasons, it is preferred to

place the service in the concrete SOA system where it is working.

The Decision Maker has the following responsibilities:

• To take actions when something goes wrong in the SOA system.

• To write reports of the incidences with the taken actions.

3.4 Users

There are two kinds of user in the SALMon architecture, normal user and

administrator user. Note that the kind of user is set for each service, for example one

user could be administrator of an Analyzer and a Decision Maker but only with

normal access to a Monitor service.

The normal users will be limited to the finality of each service while the

administrators have extra functionalities: management of the access to the service,

establishment of restrictions in services (e.g.. set the maximum number of Measure

Instruments in a Monitor), and set the interconnection between services.

The user of the Analyzer service must be authenticated before start working with it,

this user must be authorized to use the Monitor services. If the user wants to use

Decision Maker services, he/she must also have enough rights in each of the

monitored SOA systems. Measure instruments are property of one monitor so they

don’t need authentication.

To be able to use SALMon the user will need to have at least a normal user level in

one Analyzer and in one Monitor. The Decision Maker is optional but if the user has

no access to the Decision Maker or the SOA system has no Decision Maker service, it

will be limited to monitoring.

3.5 Use cases

As we can see in Fig. 3, SALMon is composed of 12 groups of use cases. We may

distinguish them whether if they belong to a normal user or to the administrator. In

the diagram we have also two virtual actors: Analyzer Engine is responsible of

checking SLA while Monitor Engine is responsible of measuring the metrics of the

web services. A normal user will interact directly with Analyzer service, which will in

turn, communicate with the appropriate monitor.

Figure 3: SALMon use cases

3.6 Data Model

In Figure 4 we show the data model of SALMon. To build this data model we have

extracted some ideas from the State of the Art report of monitoring web services

developed by the NESSI group [6]

Figure 4: Data Model of SALMon

4. Conclusions

In the context of SOA systems, dynamic changes are needed in order to keep

fulfilling the QoS requirements stated in SLAs. We have presented SALMon, a SOA

System which is able to monitor services, check their SLA and eventually take

decisions in order to support self-adaptation of SOA systems.

The SALMon architecture has been designed to support any kind of services. To

do so, SALMon have general interfaces which can be applied to any type of service.

However, we are focusing our first implementation in monitoring web services since

they are the most common type of service used in a SOA system. As future work we

plan to support monitoring of multiple types of services using the same monitor with

different kinds of Measure Instruments, so we will be able to monitor an entire

heterogeneous SOA system.

We have identified that some metrics are easy to monitor (e.g., response time), but

others (e.g., accuracy) need a more complex method to measure them. In this area, we

are focusing in how to determine accuracy metrics precisely. Our approach presented

is using patterns of correct responses.

Finally, our current monitoring strategy can be labeled as active measurement, it

means that we are establishing a connection to the monitored service. This method

has its benefits but it is not always the best choice because it could interfere with the

obtained QoS measurements, for this reason we plan to build measure instruments

capable to work according to conservative strategies which won't need to establish

connections but require to be placed nearer in the client or the service network.

 Acknowledgements

This work has been supported by the research projects ADICT, TIN2007-64753,

MCyT, Spain, and SODA FIT-340000-2006-312. Marc Oriol has a FPI grant bound

to the project TIN2007-64753.

References

[1] D. Ameller, X. Franch. “Service Level Agreement Monitor (SALMon)”. Composition-

Based Software Systems, 2008. ICCBSS 2008.
[2] International Organization for Standarization. ISO Standard 8402: Quality management and

quality assurance-Vocabulary, 1986.

[3] M.P. Papazoglou. “Service-Oriented Computing: Concepts, Characteristics and Directions”.

In Proceedings of the Fourth International Conference on Web Information Systems

Engineering, p.3, December 10-12, 2003.

[4] International Organization for Standarization. ISO/IEC Standard 9126: Software

Engineering – Product Quality, part 1. 2001.

[5] J. P. Carvallo, X. Franch, C. Quer. “Managing Non-Technical Requirements in COTS

Components Selection”. RE 2006.

[6] NESSI Group. “NESSI Open Framework – Reference Architecture, State of the art report”.

2008

