
EUROGRAPHICS Workshop on ... (2013), pp. 1–3
N.N. and N.N. (Guest Editors)

Crowd Rendering with per-joint Impostors

A. Beacco, C. Andujar, N. Pelechano and B. Spanlang

MOVING Research Group, Universitat Politecnica de Catalunya, Spain

Abstract
In this poster we present two methods for rendering thousands of animated characters in real-time. We maximize
rendering performance by using a collection of pre-computed impostors sampled from a discrete set of view di-
rections. The first method is based on relief impostors [BSAP11] and the second one in flat impostors [BAPS12].
Our work differs from previous approaches on view-dependent impostors in that we use per-joint rather than per-
character impostors. Characters are animated by applying the joint rotations directly to the impostors, instead of
choosing a single impostor for the whole character from a set of predefined poses. This representation supports
any arbitrary pose and thus the agent behavior is not constrained to a small collection of predefined clips. To the
best of our knowledge, this is the first time a crowd rendering algorithm encompassing image-based performance,
small GPU footprint and animation-independence is proposed.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Color, shading, shadowing, and texture

1. Introduction

Real-time rendering of detailed animated characters in
crowd simulations is still a challenging problem in computer
graphics. State of the art approaches can render up to several
thousand by consuming most of the GPU resources, leav-
ing little room for other GPU uses such as driving the crowd
simulation. Polygonal meshes deformed through skinning in
real time is suitable for simulations involving a relatively
small number of agents, since the rendering cost of each
animated character is proportional to the complexity of its
polygonal representation.

A number of techniques have been proposed to accelerate
the rendering of animated characters. Besides view-frustum
and occlusion culling techniques, related work has focused
mainly on providing level-of-detail (LOD) representations.
Unfortunately, most surface simplification methods do not
work well with dynamic articulated meshes. As a conse-
quence, the simplified versions of each character are often
created manually and they still suffer from a substantial loss
of detail. Image-based precomputed impostors [TLC02] pro-
vide substantial speed improvements by rendering distant
characters as a textured polygon, but suffer from two ma-
jor limitations: all animation cycles have to be known in ad-
vance (and thus animation blending is not supported), and
resulting textures are huge (As for each view angle and an-

imation frame an image has to be stored). Using separate
impostors for different body parts provides a more memory-
efficient approach. We also benefit from the use of LOD by
simplifying the input bone hierarchy grouping joints (letting
some parent nodes absorb small child nodes). We created
bone hierarchies with 21, 7, and 1 joint (no animation).

Figure 1: Crowd rendered with per-joint relief impostors.

Polypostors [KDC∗08] use 2D polygonal impostors for
each body part. Unfortunately, the animation sequence still
has to be known at construction time, and the character de-
composition is done manually. Our work aims at encompass-
ing the performance benefits of view-dependent impostors
with the flexibility of animation-independent approaches.
On the one hand, view-dependent impostors minimize the

submitted to EUROGRAPHICS Workshop on ... (2013)



2 A. Beacco, C. Andujar, N. Pelechano, & B. Spanlang / Crowd Rendering with per-joint Impostors

geometry to be transformed as well as per-fragment compu-
tations, and thus achieve the maximum performance while
minimizing the use of programmable hardware. On the other
hand, animation-independent approaches are more flexible
in terms of animation clips and animation blending. The two
papers presented in this poster are based on per-joint impos-
tors that are computed fully automatically.

2. Per-joint Relief Impostors

Each character is encoded through a small collection of tex-
tured boxes storing color and depth values (Figure 2). At
runtime, each box is animated according to the rigid transfor-
mation of its associated bone and a fragment shader is used
to recover the original geometry using a dual-depth version
of relief mapping. This compact representation is able to re-
cover high-frequency surface details and reproduces view-
motion parallax effectively. It drastically reduces both the
number of primitives being drawn and the number of bones
influencing each primitive, at the expense of a very slight
per-fragment overhead. We show that, beyond a certain dis-
tance threshold, our compact representation is much faster to
render than traditional level-of-detail triangle meshes. The
user study results carried out demonstrated that replacing
polygonal geometry by per-joint relief impostors produces
negligible visual artifacts [BSAP11].

Figure 2: During pre-process, color, normal and depth in-
formation is projected onto the 6 box faces. During real-
time, each character is rendered through relief mapping.

3. Per-joint Flat Impostors

Instead of using six orthogonal relief maps for each joint,
which requires multiple dependent texture accesses per frag-
ment, we use flat impostors created by sampling each joint
from multiple view directions. We compute a spherical
Voronoi map for the desired number of samples, and build
a cube map by projecting the Voronoi cells onto the cube
faces. At runtime, a single texture lookup is enough to re-
trieve the fragment color, which is one order of magnitude
faster than relief mapping.

Since our impostors are intended to be valid for any pose,
a key issue is to properly define which part of the geome-
try influenced by each joint must be represented as opaque
pixels in the corresponding impostor (mask) (see Figure 3) .

We provide an efficient algorithm for computing optimized
masks which considers how the geometry of each bone is
affected by the transformation of neighboring joints (de-
tails can be found in [BAPS12]). This approach clearly out-
performs competing animation-independent approaches for
crowd rendering, being over 5 times faster than per-joint re-
lief impostors .

Figure 3: On the left, pre-process to obtained each per-joint
per-view impostor for the head of the character after apply-
ing the corresponding mask. On the right, real time render-
ing composing the per-joint textures for a given view point.

4. Conclusions

Per-joint impostors allows us to render tens of thousands of
characters in real-time. Encoding per-joint geometry and ap-
pearance with relief maps provides the highest image quality
at the expense of a higher per-fragment overhead, which in
practice limits their applicability to distant characters. View-
depedent flat impostors are more demanding in terms of tex-
ture memory and construction time, but provide the high-
est runtime performance even for close-up characters. With
properly choosen switch distances, both representations out-
perform polygonal meshes with negligible visual artifacts.
Regardless of the particular encoding, per-joint impostors
support arbitrary animation cycles and animation blending,
a missing feature in competing per-character impostors.

References
[BAPS12] BEACCO A., ANDÚJAR C., PELECHANO N., SPAN-

LANG B.: Efficient rendering of animated characters through
optimized per-joint impostors. Journal of Computer Animation
and Virtual Worlds 23, 2 (2012), 33–47. 1, 2

[BSAP11] BEACCO A., SPANLANG B., ANDUJAR C.,
PELECHANO N.: A flexible approach for output-sensitive
rendering of animated characters. Computer Graphics Forum 30
(2011). 1, 2

[KDC∗08] KAVAN L., DOBBYN S., COLLINS S., ŽÁRA J.,
O’SULLIVAN C.: Polypostors: 2d polygonal impostors for 3d
crowds. In I3D ’08: Proceedings of the 2008 symposium on In-
teractive 3D graphics and games (New York, NY, USA, 2008),
ACM, pp. 149–155. 1

[TLC02] TECCHIA F., LOSCOS C., CHRYSANTHOU Y.: Image-
based crowd rendering. IEEE Comput. Graph. Appl. 22, 2 (2002),
36–43. 1

submitted to EUROGRAPHICS Workshop on ... (2013)


