
An automatic tool to facilitate authoring animation blending in
game engines

Luis Delicado
Universitat Politècnica de Catalunya

ldelicado@cs.upc.edu

Nuria Pelechano
Universitat Politècnica de Catalunya

npelechano@cs.upc.edu

ABSTRACT
Achieving realistic virtual humans is crucial in virtual reality appli-
cations and video games. Nowadays there are software and game
development tools, that are of great help to generate and simulate
characters. They offer easy to use GUIs to create characters by
dragging and drooping features, and making small modifications.
Similarly, there are tools to create animation graphs and setting
blending parameters among others. Unfortunately, even though
these tools are relatively user friendly, achieving natural animation
transitions is not straight forward and thus non-expert users tend
to spend a large amount of time to generate animations that are
not completely free of artefacts. In this paper we present a method
to automatically generate animation blend spaces in Unreal engine,
which offers two advantages: the first one is that it provides a tool
to evaluate the quality of an animation set, and the second one is
that the resulting graph does not depend on user skills and it is
thus not prone to user errors.

CCS CONCEPTS
• Computing methodologies→ Animation; • Software and its
engineering → Interactive games;

KEYWORDS
Realistic Animations, Authoring Animations, Unreal Engine

ACM Reference Format:
Luis Delicado and Nuria Pelechano. 2018. An automatic tool to facilitate
authoring animation blending in game engines. In Proceedings of ACM
conference on Motion Interaction and Games (MIG’19), xxx (Ed.). ACM, New
York, NY, USA, Article 4, 6 pages. https://doi.org/10.475/123_4

1 INTRODUCTION
In recent years we have seen how the game industry is creating
games where not only the main character has realistic movements,
but also all the avatars of the NPCs (Non-Player Characters) are
improving in both appearance and behaviours. In the past, we could
observe that games would only use a handful of characters which
very often had no behaviours at all (e.g. they would simply stand in
a place with at most a basic idle animation, or had a cyclic anima-
tion such as walking following a pre-defined trajectory with poor
connection between trajectory and animation). Nowadays, thanks

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
MIG’19, October 2019, Newcastle, UK
© 2016 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06.
https://doi.org/10.475/123_4

to hardware improvements in graphics cards and the availability of
popular game engines, we can find games that show many NPCs
that make the environment highly realistic and dynamic.

Human motions are in high dimensional space, and there are
many solutions in the literature that can handle character animation
synthesis successfully but at a high performance cost, which is why
they are not included in game engines. When real time is required
for large numbers of characters, it is typically necessary to reduce
the problem to a lower dimensional space. This is exactly what
state of the art game engines do, by providing GUIS to represent
animation graphs where transitions are set by the user (both the
variable triggering the transition, and the interpolation values along
the transition) and using 2D blend spaces (where the axis typically
represent velocity and turning angle, but the user can pick others
if needed). The main goal of algorithms that focus on synthesizing
animations with a low dimensional space is to find a good trade off
between performance and plausibility, so that they can be used in
real time for large groups of agents.

Academic methods that work in high dimensional space are not
yet included in popular game engines. Therefore, when a user needs
realistic animations for a game or an academic work where the
research effort is elsewhere (e.g: crowd simulation), it is necessary
to fall back to standard solutions that are included in current game
engines. One could think that current game engines, already solve
most of these problems, but this is not really the case, unless you
are an expert game developer. Game engines such as Unreal [1] or
Unity [2], offer tools with nice GUIs where the user can drag&drop
animations, and create transitions between them. But it is com-
pletely up to the user to determine what variables and values lead
the blending of animations. Very often, the results of this blending
are quite chaotic and full of artefacts. This is the main motivation
for this paper: to research the possibility of creating automatically
such animation blending spaces to ease the work of non-expert
game programmers.

In this paper we have developed an automatic method to lo-
cate animations correctly in the typical 2D blend space offered
by game engines. We also present a method to further extend the
limited parametric space of game engines, and thus achieve higher
dimensionality. The advantages of our method are twofold: (1) our
automatic allocation of animations allows the user to determine
the quality of an animation set, by highlighting problematic areas
of the blendspace or recommendations on how the resulting anima-
tions could be improved by replacing or adding certain animations;
and (2) since the animations are located automatically on the blend
space, it reduces the amount of errors introduced by misalignment
of animations or lack of user skills. We believe that this method
presents a very useful tool for game developers.

https://doi.org/10.475/123_4
https://doi.org/10.475/123_4


MIG’19, October 2019, Newcastle, UK Luis Delicado and Nuria Pelechano

2 RELATEDWORK
There has been a large amount of work in the literature on motion
blending [3] and motion graphs [4]. Motion Graphs are build by
creating a node for each pose of an animation clip, and transitions
between nodes represent smooth changes between positions. There
have been extensions to this concept focusing on increasing the
connectivity of the graph [5]. However, game engines do not repre-
sent a node per position but a full clip. Therefore, transitions are
only allowed by blending between two animation clips, and links
represent possible blends depending on the value of a user defined
variable. In order to carry out motion control for games, there are
recent locomotion control methods based on neural networks [6, 7]
that provide very impressive results. Unfortunately, these recent
techniques are not typically included in current game engines, and
thus not available for the general public.

Since many of the motion control methods are time consuming
and can only be applied to a handful of characters, there have been
other approaches that attempt to provide good animations with
less time consuming techniques, so that they can be used in real
time crowd simulation [8–10].

Other research use animation graphs to control the foot position
[11, 12]. These approaches typically solve the foot sliding issues that
appear in root simulation approaches. However, they are harder in
computer complexity because they require the use of two graphs,
one for each foot.

The work by Narang et al., achieved smooth and plausible lo-
comotive behaviours for small crowds (over 60 agents) in real
time. Collision avoidance, was computed taking into account high-
dimensional human motion and bio-mechanical constraints [13].

Animation can be based on the inverted pendulum model, where
the feet position is calculated to follow a trajectory while avoid-
ing obstacles [14, 15]. The work by Hwang et al [16] combined
an inverted pendulum model with a physical model to represent
high-dimensional character motions. Animation based on inverted
pendulum model can run in real-time only for one character.

The way animation synthesis is handled by game engines such
as Unreal[1], or Unity[2] is by providing a 2D blend space where the
use manually locates each animation clip based on two parameters
(velocity and turning angle), more parameters can be added by using
some graph representation where the user defines the conditions to
change between animations or blendspaces [17]. The reason why
the 2D blend space is simply driven by velocity and turning angle,
is because those are the main input values from the user to move
the character representing the player (so basically the player can
change speed and turn to move around a virtual environment). If
other actions are needed, such as jump, duck or crouch down, they
can be included by having a graphwith specific transitions to trigger
those animations. There are some animation tools compatible with
game engines that offer nice blending for an existing animation set,
such as SmartBody [18], however if the user needs to add its own
animations it is necessary to create a new blend space. SmartBody
is not intended to be a framework for the development of character
animation via a well-dened interface or plugging in animation
blocks, therefore it does not handle the problem of simplifying the
task of generating blend spaces for naive users. Generating good
blend spaces and animation graphs, requires users to be experts in

understanding how transitions, values of parameters and location
of animation clips within the blend space, will impact the quality
of the synthesized animations. The goal of this paper is to present
a simple yet powerful tool, to assist users to obtain good animation
results regardless of their experience or lack of. To the best of our
knowledge, this is the first paper describing a tool that has been
customized to work with the constraints imposed by state of the art
game engines. More specifically our current implementation works
with Unreal Engine 4 (UE4)[1], but note that all game engines have
a similar animation synthesis representations.

3 PARAMETRIC BLEND SPACE IN GAME
ENGINES

Current game engines provide tools to generate a parametric space
using user friendly GUIs. However, it is completely up to the user
to determine the values of the parameters that best describe each
animation and manually position them in such a parametric space.
Very often, if the user is not an expert on animation, any error or
misalignment introduced in the blend space, will lead to artefacts
in the results. Moreover, animation synthesis is a high dimensional
problem. However, game engines limit the user to represent the
animation space with a low number of parameters. Typically the
low dimensional space represents a handful of parameters to follow
trajectories, which introduces artifacts. Animations that are similar
in style in the higher dimensional space, may not be projected as
close points in the low dimensional 2D space, and the opposite,
simulations that are very different in style may be projected very
close in the 2D space. Therefore, blending two near-by points in
the 2D space may end up blending two very different animations.

The main goal of our work was to develop an automatic tool
that could extract the relevant information from the animations
(such as velocities and angles) and compute the correct position of
those animations in the blend space provided by Unreal Engine. By
doing this, we eliminate user errors introduced during the manual
set-up of the blend space. Our tool also provides useful feedback to
the user by highlighting situations that may lead to other artefacts.

Once the animations have been located as vertices in the blend
space, Unreal will automatically create a Delaunay triangulation
with those vertices, in order to cover the maximum area repre-
sented by those vertices. (combining all the Delaunay triangles
provides a convex hull). Any animation corresponding to a position
inside such convex hull will be simulated by blending between the
three animations in the triangle containing such point (using the
barycentric coordinates as blending weights [17]). Unfortunately,
this triangulation is simply based on geometrical properties and
not on the animation properties. Therefore, the edges connecting
vertices of a triangle have no information about how different those
animations may be. This issue, introduces further blending artefacts.
For example, it is well known by animators that blending opposite
animations (e.g. walking forwards with walking backwards, left
and right side steps) will result in abnormal feet movement, so if a
triangle happens to include two opposite animations, the user will
need to find a way to modify the triangulation. This can be done by
either adding more vertices in the blend space, or else modifying
the range of values considered for the X and Y axis, so that the
Delaunay Triangulation will be updated. There is thus very little



An automatic tool to facilitate authoring animation blending in game engines MIG’19, October 2019, Newcastle, UK

control from the user to modify the triangulation, and so advanced
skills are required, or else it turns into an iterative trial and error
process.

3.1 Allocate animations
The blend space provided by Unreal Engine is presented as a 2D
grid, with each axis controlled by one parameter. Typically, those
two parameters are the velocity and the angle of the trajectory. To
allocate the animation set we use the following interpretation: the
velocity is represented as the root displacement between the first
frame and the last frame over a period of time of one second, and
the rotation is represented as the angle between the torso forward
orientation at the first frame and the last frame of the animation
clip (assuming that torso orientation is aligned with the velocity
vector). Since the value of those parameters can be extracted from
each animation clip, we can automatically locate it in the exact
position of the 2D blend space grid described above.

To calculate the velocity of an animation, the animation is played
and the distance between initial and final transformations are com-
puted and divided by the time elapsed (all game engines provide
functionalities to extract such information). Similarly, the rotation
can be computed using the difference between the initial and final
orientation.

Once the values of those parameters are known, we can auto-
matically allocate the animation in the most adequate position of
the grid. Initially the implementation of the UE4 for the blend space
uses a regular grid, which means that we have a discretized space
and thus we can not allocate the animation clip in the exact position
that we wish. To achieve higher resolution, we can increase the
subdivisions of the grid, which by default is 4x4, to 100x100, thus
reducing the precision errors. After allocating all the animations,
those that are not exactly in a valid point are displaced automat-
ically to the nearest grid point. The grid dimensions should be
adjusted to our animation set.

In figure 1 we show an example for an animation set containing
16 animations. Each animation is located as a node based on its
velocity and angle. The total set of 16 nodes forms a graph which is
automatically triangulated by Unreal Engine. This representation
provides a mapping between any desired velocity and orientation
angle, and the corresponding triangle in the graph that will be used
to create the new animation by blending between the 3 animations
located at the vertices of the triangle.

3.2 Information extracted from Blend Space
Our automatic allocations of animation clips can help the user to
evaluate the quality of the animation set, and identify key ani-
mations that are missing in the current set, to improve the final
interpolated results.

Since finding or creating huge sets of animations can be cum-
bersome, we can use the automatic graph to evaluate which anima-
tion clips should be added, modified or removed. Following such
recommendations, will result in improved animation synthesis to
encompass all the locomotion behaviors needed for our characters.

There are five types of problematic triangulation effects that our
automatic method can solve or highlight (Figure 1), which are: (a)

Figure 1: Automatic blend space highlighting problematic
areas: a) Crossing axis, b) Acute angles, c) Misalignments , d)
Animations too close, and e) Uncovered zones.

Crossing axis, (b) Acute angles, (c) Misalignments, (d) Too close
animations and (e) Uncovered areas.

Our system provides an automatic solution to problem c, it high-
lights and gives recommendations to the user to solve problems
b and e, and it gives the user the choice between an automatic
solution or a guided manual one to add/delete animation clips to
solve problems a and d.

3.2.1 Crossing Axis (a). We know that two animations are oppo-
site, when they appear at different sides of either the vertical or the
horizontal main axis in the 2D blend space. So if we identify those
axis being the horizontal and vertical segments passing though
our idle animation (®v = 0 and angle of rotation α = 0), we can
easily detect those triangles with opposite animations because they
intersect with either one or both axis.

The onlyway to guarantee that there will be no triangles crossing
those edges, is by making sure that we will have 4 key animations
corresponding to the edges of the vertical and horizontal segments.
Later on, using the idle animation and each of those 4 key ani-
mations, we can create interpolated animations to avoid triangles
crossing the edges (Figure 1 shows the main axis in orange).

To create the horizontal edge, it is enough with one turning
90◦ animation (since the opposite one can be automatically cre-
ated by mirroring this animation). Therefore we will add the fol-
lowing two animations: (®v,α) = (0,−90◦) and (®v,α) = (0, 90◦).
Ideally the user should also include a walk forward and back-
ward animation without any angle, which correspond to (®v,α) =
(MaxForwardSpeed, 0◦), and (®v,α) = (MaxBackwardsSpeed, 0◦).

What must be avoided, is triangle edges crossing the main axis
with animations that are further from the axis than a given threshold
τχ (we have empirically found τχ = 5 to provide perceptually good
results). Figure 2 (left) shows an example of a situation where this
threshold is not satisfied with the horizontal axis (distance from



MIG’19, October 2019, Newcastle, UK Luis Delicado and Nuria Pelechano

Figure 2: Problem with a triangle edge (in cyan) that crosses
the main axis ®v = 0 on the left. On the right, the result af-
ter adding a new animation (cyan dot) over the axis to avoid
triangles intersecting with such axis.

both b and d to the horizontal axis is above τχ ). In this case, there are
two animations with ®v = 0 that appear in the extremes of the blend
space representation. This provokes that other animations may end
up connected crossing the horizontal axis of ®v = 0. The solution to
this problem involves including new animations over such axis to
create additional triangles as indicated in figure 2 (right). To obtain
such new animation clips the user can either add his own, or simply
allow the system to provide new ones automatically. The automatic
animation is computed by calculating the intersection between
the axis and the triangle edge (b,c). Then two blending weights
are calculated based on the relative distance from the intersection
point to the two closest points over the axis (a and d), with the sum
of those two weights being 1. Finally the new automatic animation
point is obtained by interpolating between those two animations
(a and d) with the computed blending weights. The new animation
created by interpolation, automatically modifies the triangulation,
removing the intersection with the main axis.

3.2.2 Acute angles (b). The second problem is caused by trian-
gles containing very acute angles, which also implies long edges
with small area. This can introduce blending artefacts because
there will be a vertex very close to an edge, which means that small
movements within the blend space, turn into big switches between
animation blending parameters. For example, Figure 3, on the left
side, shows such a situation. To interpolate the blue point, the
barycentric coordinates will provide a blending between the two
animations along the large edge of the triangle and 0% influence by
the animation marked with the red dot. As we then move slightly
towards the red dot, the barycentric coordinates will rapidly assign
a weight close to 1 to the red dot and almost no influence from
the other two vertices of the triangle. This will result in abrupt
interpolation changes.

This problem can be mitigated by adding a new animation that
leads to better triangle shapes, as illustrated in Figure 3. Note that
our system simply highlights this problem, so that the novice user
can understand what area of the blend space is likely to introduce
artefacts. With this information the user can try to add alternative
animations that our system will automatically locate and provide a
new triangulation.

3.2.3 Misalignment (c). The third problem that can be detected
analysing the blend space is related to the expected parameter-
ization of our animations. Unlike the previous problems, which
are due to triangulations that ignore animation properties, the

Figure 3: Problem with triangle with long edge but small
area and result of add an extra animation to reduce the long
edges and increase the triangle areas.

misalignment problem is caused by the unexpected locomotion
of an animation. When the user creates a blend space manually,
some animations are really easy to allocate correctly. For instance,
the idle animation will have parameter values corresponding to
(®v,α) = (0, 0), a forward walking or running will have α = 0, so
they correspond to very specific positions in the blend space (along
the Y axis). The problem appears when an animation seems to cor-
respond to one of those easy to allocate key positions, but it has a
small offset because it was not correctly created.

In the example used to illustrate our method, we can observe
this problem in the running forward animation (the animation on
the top of the axis α = 0). This animation was meant to be used
to have the character running forward, however our automatic
allocation shows that it has a small turning angle. The fact that the
animation clip is not located on the vertical axis, already shows the
user that this animation is not a good match for walk forward. This
means, that if the user manually allocates such animation over the
Y axis, he would introduce an error in the character trajectory after
playing this animation for a period of time.

Our method, not only highlights this problem to the user, but
it also solves it. Now that the animation is correctly allocated in
the blend space, when the user moves the character forward in a
straight line, the game engine will not use the wrong animation.
Instead it will compute a new interpolated animation between the
misaligned run forward clip and the other two in the triangle that
contains the desired locomotion parameters. The new result will
thus guarantee that the character follows the correct trajectory.

3.2.4 Too close animations (d). If the set of animations is com-
posed of animations from many different data-sets, it is likely to
have animations that appear very different (in gait, style, etc) but
with their parameter values in (®v,α) being very close in the 2D
blend space. In this cases, it is wiser not too use several animations
that fall too close in the blend space, since small changes in the
input values may result in large changes of animation behavior.
Moreover, having too many similar animations, end up having a
negative impact on performance, without increasing the locomotion
space coverage.



An automatic tool to facilitate authoring animation blending in game engines MIG’19, October 2019, Newcastle, UK

Analysing our automatic blend space, it is easy to notice those
sets of animation clips, and the recommendations would be to keep
a good representative one and eliminate the others, or else the user
could choose to create a new one that is an interpolation of the
existing ones.

In order to do this, the user can input a distance threshold, τd ,
and the system will highlight those animation that are closer than
τd . By default we use τd = 8 since we have observed empirically
that it is a good value to eliminate animations that are either too
similar, and thus do not add value to the blend space, or else are too
different despite their close proximity in the blend space, and thus
the constant switching between them results in unnatural looking
animations.

3.2.5 Uncovered areas (e). Finally, the automatic allocation of
animations allows us to identify areas of the parameter space that
will not be covered by any animation. Those areas correspond to
the space outside the convex hull of the triangulation. Once those
areas have been identified, the user can generate new nodes that
satisfy the velocities and rotation angles that are not yet covered
by the animation set.

3.3 Providing placeholders
Once all the problems have been highlighted, our system adds place-
holders into the automatic blend space. Those placeholders provide
information about nodes that should be included to fix all the pos-
sible sources of animation artefacts. Each placeholder indicates the
values of velocity and rotation that would be needed for the new
animations. With the information provided by the placeholders, the
user can create a few specific animations that will greatly enhance
the final animation synthesis or even accept the recommend ones
that the system can automatically generate for cases a, c and d.
Figure 4 shows the result after introducing the placeholder. Orange
placeholders are necessary animation clips, whereas green ones can
be considered suggestions, as they may not be necessary for the
user. For instance, placeholders in the corners for case e (coverage)
may not be needed if the user considers that there is no need for
animation outside the current convex hull. Placeholder for case d
indicates that having the two animations within the green ellipsoid
may introduce artefacts if the animations are very different at a
higher dimensionality space that is not covered by the 2D blend
space.

4 INCREASING THE DIMENSIONALITY OF
THE 2D BLEND SPACES

To incorporate styles and other locomotions where velocity is not al-
ligned with the torso (e.g. side steps), it is necessary to have a higher
parametric space. In this section we explain how we can increase
the parametric space within a game engine that only provides 2D
or 1D representations.

Taking into account the limitations of game engines, we could
use several 2D spaces with a flag that enables only one of them
at a time [6]. We can therefore use two blend spaces (both with
the parametric space based on ®v and α ), one to simulate walking
and turning with the torso oriented as the velocity vector BS1, and
another one BS2 to handle lateral steps. A switch could be used to
enable BS1 or BS2. However, by including a blend function instead

Figure 4: Result after including placeholders.

of a switch, we can have β ∈ [0, 1], and thus obtain a smooth
blending between three parameters (®v,α , β).

The difference between this approach and a real 3D blend space
is that we blend three animations from BS1 and three from BS2 , to
then blend those two results. With a 3D space, we could select a
tethraedron and blend only four animations in one step.

Styles could be handled similarly, by having a 2D blend space for
each style. However, given the difficulty of generating large data
bases of natural looking animations for each style, we investigated
how to add styles to our current database and blend spaces, without
requiring a large number of additional animations. Adding styles
to the upper body, can be easily incorporated in game engines,
by keeping a 2D blend space for the locomotion, and blending
or overwriting different styles or actions exclusively affecting the
upper body (see Unity animation controllers and Unreal animation
layers). The difficulty appears when we want to add style to the
legs movement, to simulate for example characters walking with a
limp, drunk, being agile or tired.

To add style without generating a new 2D blend space, we pro-
pose to combine style from a simpler 1D blend space with a larger
2D space containing a full range of locomotor behaviors. We simply
need to generate a 1D space with animations that walk forward and
backward in a straight line with a specific style. Since this set of
animations is significantly smaller, it is thus easier to find examples
or generate new ones. Then the velocity ®v is used to get a result
from the 1D BSstyle , and the pair (®v,α) to obtain a results from
the locomotion 2D blend space. Finally both results can be blended
with a user defined parameter style describing how intense the
style needs to be noticed in the final results.

5 RESULTS
Looking at the example used to illustrate the steps of our algorithm,
the analysis described in section 3.2, suggests that we need to add



MIG’19, October 2019, Newcastle, UK Luis Delicado and Nuria Pelechano

at least five new animations in order to improve our final animation
synthesis (see Figure 4). Since we can use a mirroring animation
to obtain symmetric behaviours, we actually only need three ani-
mations. To split the long axis, we could add two animations for
running with a slight turn left or right, to describe a curve. Next we
need an additional animation on the ®v = 0 axis (and its symmetric)
to avoid triangles cutting the horizontal axis (note that we could
also simply accepts the ones that the system can automatically gen-
erate as explained in section 3.2.1). And finally, it is recommendable
to add an animation to represent running forward with α = 0, and
remove the one that appears at the top with a misalignment.

Adding style by combining a 1D and a 2D blend space, can
improve variability to any animation set. However, there are limi-
tations in the way that this method can be incorporated in current
game engines. For example, in the case of the 1D drunk style, if we
assign 0.3 to the parameter style it will look less drunk than if we
assign 0.5. This presents a trade-off in the control between adding
styles and accuracy of the trajectory, since higher weight assigned
to style implies a lower weight for the 2D locomotor blend space.

In Figure 5 we show results of drunk trajectories combining
our 2D blend space with a new 1D space containing a walk for-
ward/backward drunk animation.

Figure 5: 1D drunk animations blended with 2D normal lo-
comotion.

Finally, as can be observed in the videos 1 our method can suc-
cessfully combine two 2D blend spaces, to achieve a larger number
of trajectories with different torso orientation.

The main advantage of our work, is that performance depends on
the game engine, since ourmethod is computed off-line and does not
increase the computational cost. We show in the videos examples
with small crowds, where we have used the same automatic blend
space for all characters, but it would be easy to add variety by
combining the main locomotion 2D blend space with other 1D
blend spaces to add style. The frame rate achieved will depend
on the game engine, since our method simply aids the authoring
animation steps previous to simulation. Our solution could work
with other game engines, as the concept of animation graphs and
2D triangulated blend spaces is the de-facto method in the industry.

6 CONCLUSION AND FUTUREWORK
This paper presents a new method to facilitate the generation and
analysis of character animation synthesis using Unreal Engine 4.
Our first contribution is an automatic method to generate blend
spaces in UE4, achieving good result regardless of users’ skills.
Furthermore, the result of our method provide a powerful tool to
1https://www.cs.upc.edu/~npelechano/videos/MiG2019.mp4

highlight relevant information about the animations quality. An
analysis of the resulting blend space, can be carried out to identify
flaws in the animation data set, such as: motions that will not be
well covered, or that will suffer from misalignment. The perceptual
quality of the resulting interpolated animations will still strongly
depend on the 3 animations chosen from this representation, but
our automatic allocation guarantees that the characters will follow
the input trajectory with precision. This is a problem inherent from
mapping the high dimensional space of human movement into a
lower one that game engines can work with to synthesis animations
in real time. The second contribution consists on increasing the
realism of character animation by combining blend spaces, either
by including style or a larger range of locomotion types.

As future work, it would be interesting to carry our perception
studies to quantify the specific properties of the animation vertices
that makes animations suitable or not to blend between them.

7 ACKNOWLEDGEMENTS
This work has been funded by the SpanishMinistry of Economy and
Competitiveness and FEDER under grant TIN201788515-C2-1-R.

REFERENCES
[1] Inc. Epic Games. Unreal engine 4. https://www.unrealengine.com/, 2018.
[2] Unity Technologies. Unity3d. https://unity3d.com/, May 2019.
[3] Andrew Feng, Yazhou Huang, Marcelo Kallmann, and Ari Shapiro. An analysis

of motion blending techniques. In ACM Conf. on Motion in Games, pages 232–243.
Springer, 2012.

[4] Lucas Kovar, Michael Gleicher, and Frédéric Pighin. Motion graphs. In ACM
SIGGRAPH 2008 classes, page 51. ACM, 2008.

[5] Liming Zhao and Alla Safonova. Achieving good connectivity in motion graphs.
Graphical Models, 71(4):139–152, 2009.

[6] Daniel Holden, Taku Komura, and Jun Saito. Phase-functioned neural networks
for character control. ACM Transactions on Graphics, 36:42:1–42:13, 2017.

[7] He Zhang, Sebastian Starke, Taku Komura, and Jun Saito. Mode-adaptive neural
networks for quadruped motion control. ACM Transactions on Graphics (TOG),
37(4):145, 2018.

[8] Nuria Pelechano, Bernhard Spanlang, and Alejandro Beacco. Avatar locomotion
in crowd simulation. International Journal of Virtual Reality, 10(1):13, 2011.

[9] Sybren A Stüvel, Nadia Magnenat-Thalmann, Daniel Thalmann, A Frank van der
Stappen, and Arjan Egges. Torso crowds. IEEE transactions on visualization and
computer graphics, 23(7):1823–1837, 2017.

[10] Tanmay Randhavane, Aniket Bera, and Dinesh Manocha. F2fcrowds: Planning
agent movements to enable face-to-face interactions. Presence: Teleoperators and
Virtual Environments, 26(2):228–246, 2017.

[11] Alejandro Beacco, Nuria Pelechano, Mubbasir Kapadia, and Norman I. Badler.
Footstep parameterized motion blending using barycentric coordinates. Comput-
ers & Graphics, 47:105–112, 2015.

[12] Sean Curtis, Ming C. Lin, and Dinesh Manocha. Walk this way: A lightweight,
data-driven walking synthesis algorithm. In ACM Conf. on Motion in Games,
2011.

[13] Sahil Narang, Andrew Best, and Dinesh Manocha. Simulating movement interac-
tions between avatars & agents in virtual worlds using human motion constraints.
In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pages 9–16.
IEEE, 2018.

[14] Yao-Yang Tsai, Wen-Chieh Lin, Kuangyou B Cheng, Jehee Lee, and Tong-Yee
Lee. Real-time physics-based 3d biped character animation using an inverted
pendulum model. IEEE transactions on visualization and computer graphics,
16(2):325–337, 2010.

[15] Shawn Singh, Mubbasir Kapadia, Glenn Reinman, and Petros Faloutsos. Footstep
navigation for dynamic crowds. Computer Animation and Virtual Worlds, 22(2-
3):151–158, 2011.

[16] Jaepyung Hwang, Jongmin Kim, Il Hong Suh, and Taesoo Kwon. Real-time loco-
motion controller using an inverted-pendulum-based abstract model. Computer
Graphics Forum, 37(2):287–296, 2018.

[17] Jason Gregory. Game engine architecture. AK Peters/CRC Press, 2018.
[18] Ari Shapiro. Building a character animation system. In ACM Conf. on Motion in

Games, pages 98–109. Springer, 2011.

https://www.cs.upc.edu/~npelechano/videos/MiG2019.mp4
https://www.unrealengine.com/
https://unity3d.com/

	Abstract
	1 Introduction
	2 Related Work
	3 Parametric Blend Space in Game Engines
	3.1 Allocate animations
	3.2 Information extracted from Blend Space
	3.3 Providing placeholders

	4 Increasing the dimensionality of the 2D Blend Spaces
	5 Results
	6 Conclusion and Future Work
	7 Acknowledgements
	References

