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A B S T R A C T

Path finding for autonomous agents has been traditionally driven by finding optimal
paths, typically by using A* search or any of its variants. When it comes to simulating
virtual humanoids, traditional approaches rarely consider aspects of human memory or
orientation. In this work, we propose a new path finding algorithm, inspired by cur-
rent research regarding how the brain learns and builds cognitive maps. Our method
represents the space as a hexagonal grid with counters, based on brain research that
has investigated how memory cells are fired. Our path finder then combines a method
for exploring unknown environments while building such a cognitive map, with an A*
search using a modified heuristic that takes into account the cognitive map. The result-
ing paths show how as the agent learns the environment, the paths become shorter and
more consistent with the optimal A* search. Moreover, we run a perceptual study to
demonstrate that the viewers could successfully identify the intended level of knowl-
edge of the simulated agents. This line of research could enhance the believability of
autonomous agents’ path finding in video games and other VR applications.

c© 2021 Elsevier B.V. All rights reserved.

1. Introduction1

Path planning for autonomous agents and robots has been2

widely applied for many decades in fields such as robotics,3

video games and populated virtual realty. In autonomous agents4

and multi-agent simulation, the problem is focused on finding5

an optimal path between two points, although often sub-optimal6

solutions are accepted if time performance is critical [1].7

Currently, most path planning methods aim at planning an8

optimization model that considers one or more features (e.g:9

distance, energy, or smoothness) and then conducting a mini-10

mization procedure to achieve an optimal path [2].11

While existing techniques give possible solutions for prac-12

tical applications, they do not typically take into account hu-13

man factors to closely simulate how humans behave in the real14

world, which could enhance the overall realism of video games.15

∗Corresponding author: Tel.: +34-93-413-7858;
e-mail: npelechano@cs.upc.edu (Nuria Pelechano)

There are many aspects of human behavior that affect route 16

choice during navigation, such as: memory, mental maps, or 17

visibility. Some of these aspects, have been included in previ- 18

ous models, such as visibility [3] or memory [4]. Studies from 19

neuroscience research have observed that mental maps are built 20

as we physically move through an environment [5]. The method 21

that we present in this paper is inspired by research from neu- 22

roscience, and its novelty lies in building agents’ mental maps, 23

following the human brain navigation research. According to 24

the theory known as “the GPS of the brain” [5] mental maps are 25

built by cells being fired in the hippocampus region of the brain 26

as we physically move through the environment. Collectively 27

these cells create a coordinate system, with a hexagonal grid 28

shape, that allows for spatial navigation. 29

When a human is looking for a path within a large environ- 30

ment, such as a city, there can be two opposite scenarios: (i) 31

The person knows very well the city, or (ii) the person has never 32

been in the city before. Of course there can be many situations 33

in between, such as the person knows very well a part of the city 34

http://www.sciencedirect.com
http://www.elsevier.com/locate/cag
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but has no information about other parts. We will first focus on1

providing algorithms for cases (i) and (ii), and then combine2

both algorithms to fit any situation in between those two cases.3

In the first situation, the person has a mental map in his mem-4

ory and will choose a path based on the previous knowledge. In5

our work, we will build this mental map based on the human6

GPS of the brain theory [5, 6]. In the second situation, when7

the person does not know the environment, he can either try8

to find the given goal position randomly or follow some vague9

knowledge (for example to simulate how humans move around10

an unknown city after looking at a map or asking for directions).11

We thus simulate how humans wander through an unknown en-12

vironment, having some vague idea of where the goals could be13

roughly located. A completely unknown environment would re-14

quire an exhaustive search such as Breath First Search or Depth15

First Search which is rarely used by humans, as we would ex-16

pect humans to ask for guidance or else have a quick glance at17

a map.18

In this paper we propose a novel path finding method for in-19

telligent agents that better simulates humans by implementing20

methods based on the human brain research. We build mental21

maps considering how humans learn about the environment and22

memorize spatial information following the GPS of the brain23

theory. In order to navigate known environments, we propose a24

path finding method that uses such mental maps. To explore un-25

known environments, we propose a naive path finding method26

which considers the confidence level regarding goal direction,27

while attempting to walk along the line of sight, to better mimic28

humans’ decision making [7]. Then we combine known and un-29

known areas to propose a novel path finding model that better30

resembles what we would expect humans to do, and show the31

resulting paths based on the levels of knowledge assigned to32

the agents. Finally, we present a user study which demonstrates33

that the resulting paths are perceived as being consistent with34

the level of knowledge assigned to the agents. We focus exclu-35

sively on path finding within a navigation mesh, since collision36

avoidance could be handled with any local movement method37

[8].38

This paper is structured as follows: in the next section, we39

introduce the theory of the GPS of the brain, followed by related40

work on path finding. The next section explains our approach41

in detail, and finally we present results and conclusions.42

2. Related work43

There are many aspects that are relevant when simulating44

autonomous agents, and thus this research gathers knowledge45

from biology, neurosience, human behavior, artificial intelli-46

gence and robotics. We will classify thus the related work, ac-47

cording to these areas.48

2.1. Human brain navigation49

In 1971, John O’Keefe [9] discovered the first key to the in-50

ner GPS in the mammal’s brain which is called place cells. He51

recorded nerve activity in the hippocampus region of the brain52

in unobstructively moving rats. He obtained single cells that53

Fig. 1. A schematic drawing of grid cell firing as the rat moves through a
square [5]. On the left, rat with trajectory, in the middle grid cells firing as
the rat moves on the floor, and on the right the hexagonal pattern formed,
which gives high spatial resolution that allows the animal to recognize its
locations and orientation.

just activated when the rat was in a certain location in the envi- 54

ronment. These places cells were active for different locations, 55

generating an inner map in the hippocampus region of the ani- 56

mal brain showing the animal where it is in the environment. 57

In 2005 May Britt and Edvard Moser [5], observed cells in 58

the Entorhinal cortex of rat brain. Here, they obtained nerve- 59

cells that were not active in just one location but fired when the 60

rats passed multiple locations. 61

Each of these cells were fired in a single spatial pattern and 62

collectively these grid cells create a coordinate system, with a 63

hexagonal grid shape, that allows for spatial navigation. Even 64

though this studies have been mostly performed with rats, this 65

nerve cell system has been observed also in rodents, bats, mon- 66

key and humans. Studies using functional magnetic resonance 67

imaging (fMRI) have provided evidence for grid-cell-like rep- 68

resentations in humans, implicating a specific type of neural 69

representation in a network of regions which supports spatial 70

cognition [6]. In 2014 the research carried out by E. Moser, J. 71

O’Keefe and M. Moser was awarded the Nobel Prize for the 72

discovery of what is known as the inner GPS of the brain. Their 73

findings provided an explanation regarding how the brain builds 74

cognitive maps, by firing neurons in a hexagonal pattern as we 75

move through an environment. Therefore, from a human sim- 76

ulation perspective, it is key to consider such hexagonal for- 77

mation, with cells being fired based on movement as a more 78

plausible model to simulate human spatial memory and path 79

finding. 80

2.2. Biologically inspired path finding 81

A large number of robots have been built that explicitly sim- 82

ulate biological navigation behaviors for obstacle avoidance, 83

such as the ones simulating the migration of seabirds [10] and 84

ant colony behavior navigation model [11]. In these cases, an- 85

imals work collectively to determine the final navigation for- 86

mation. Inspired by the social interplays in human crowds or 87

animal swarms, Savkin and Wang [12] have proposed an effi- 88

cient obstacle avoidance method in dynamic environments by 89

combining representation of the information about the environ- 90

ment. Compared to ant colony optimization were all ants con- 91

tribute to the map with pheromones, our maps are built for each 92

individual following the GPS of the brain theory. 93

2.3. Path finding by minimizing cost functions 94

Artificial potential fields (APF) [13] are generated by con- 95

sidering repulsive and attractive spaces. The obstacles will be 96
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considered as repulsive areas, and the goal position is consid-1

ered as an attractive area in the artificial potential field. The2

APF provides smooth paths, but the main disadvantage of APF3

is that it suffers from local minima problems. The concept of4

potential fields has been combined with path planning to impose5

constraints when searching for a path [14]. Influence maps and6

potential fields build maps that are shared by all the agents in7

the simulation, as opposed to our maps which are build individ-8

ually for each agent.9

Sampling Based Planning (SBP) methods [15] are the most10

important improvement in path planning Main benefits of SBP11

methods are that they have very low computational cost and12

also they have applicability to high dimensional problems with13

better success rate for complex queries. SBPs are probabilis-14

tically complete, and the paths created by these algorithms for15

the same problem are not unique.16

The A* search algorithm [16] is the most popular algorithm17

for path finding, since it has many beneficial properties. First,18

it provides an optimal path between the given start and end po-19

sitions in a scenario. Secondly, it has the ability to return a20

result in a finite time even in the case that there is no solu-21

tion for the problem. Thirdly, a suitable admissible function22

can lead to an acceptable time-consuming even for a big sce-23

nario. Today, there are many variants of A* search algorithm24

to deal with different problems and tasks, such as D* Lite[17]25

any-angle A*[18], Phi*[19] and Field D*[20], and hierarchical26

approaches [21, 22].27

Gradient-based methods [23] use a direct line to connect the28

start and goal points (even if it goes through obstacles), and then29

eliminate the obstacle points in the gradient directions. Since30

this method creates non-smooth paths, a post-smoothing pro-31

cess is required.32

Considering current path finding methods, A* search algo-33

rithm offers the possibility of being deterministic and highly34

adaptable, mostly by altering the heuristic function. A* will35

find an optimal solution, however, humans are not always likely36

of finding an optimal solution, specially when not all the envi-37

ronment is fully known. Therefore, to carry out path finding in38

partly known environments, we will use A* with a new heuris-39

tic function that considers human-like cognitive maps and ex-40

plores the environment based on the reliability of the acquired41

knowledge.42

2.4. Path finding in partly known environments43

Path finding in unknown environments has been frequently44

used in robotics, where an agent gather information from sen-45

sors while navigating the space. In video games, typically46

agents have access to all the information about the environ-47

ment. However some methods dealing with partly known en-48

vironments have been introduced to avoid having autonomous49

agents with the ”super powers” [4]. D* is an incremental search50

algorithm, which plans the shortest paths under the assumption51

that there are no obstacles between the agent position and the52

goal [24]. When obstacles are encountered, the algorithm can53

replan the route. There have been many variants of D* to op-54

timize the new search and to deal with dynamic environments55

[25].56

Simultaneous localization and mapping (SLAM) uses the 57

data captured by the externally perceived sensors to self-locate 58

and build a map of the surrounding environment at the same 59

time. Currently, there are many methods for locating and map- 60

ping (SLAM) that allow a single agent or a group of agents to 61

gather knowledge from their environment and generate the map 62

by employing different sensors like laser telemetry sensor or 63

LIDAR [26, 27, 28, 29]. 64

2.5. Path finding based on human behavior 65

There has been a large number of studies on human wayfind- 66

ing both in open and close spaces. Although there are still many 67

unknowns about the functioning of the human brain, there have 68

been some interesting findings regarding humans’ navigation. 69

Dalton [7] observed that humans appear to be attempting to 70

conserve linearity throughout their paths, choosing the straight- 71

est possible routes instead of the more meandering ones. Ac- 72

cording to Dalton, people may unconsciously prefer a straight 73

path as a complexity-minimizing strategy. Previous research by 74

Hillier [30] had already observed that people tend to follow the 75

longest line of sight that approximates their heading. Other re- 76

searchers support that humans try to minimize the angle change 77

in a route [31, 32], which corresponds to the phenomenon of 78

considering a route to be longer if it has many changes in di- 79

rection as opposed to a straighter one of identical length [7]. 80

Garling and Garling [33] observed that all pedestrians may not 81

adopt path minimization (in terms of time or distance), but it 82

appears to be a dominant characteristic, and that minor changes 83

in direction tend to be preferred over great changes in direction, 84

possibly due to an innate human tendency to avoid getting lost 85

[34]. 86

Human path finding is the result of combining many different 87

elements, such as visibility, memory, mental maps, landmarks, 88

etc. Some authors have made the effort to include some or sev- 89

eral of these aspects in their path finding models. For example, 90

Space syntax [35] simulates human trajectories based on visi- 91

bility, and then achieve simulation models that quite accurately 92

represent the real use of space in the city of London. Reiter 93

and Lebiere [3] proposed a twocomponent cognitive model that 94

combines retrieval of knowledge about the environment with 95

search guided by visual perception. Sohn et al. [4] presented a 96

wayfinding model to simulate more human-like agents, by hav- 97

ing agents with imperfect memory that could build a mental 98

map from landmarks. Their cognitive map is based on a spring- 99

mass system, where landmark memorability is encoded by the 100

mass. 101

Another interesting theory is the hypothesis of cognitive 102

graphs by Warren [36]. A cognitive graph is a network of paths 103

between places labeled with approximate local distances and 104

angles. The main difference with a metric cognitive map, is 105

that this local information is not embedded in a global coordi- 106

nate system, so spatial knowledge is often geometrically incon- 107

sistent. This closely represents the fact that humans can make 108

direction estimates with large angular errors, and distance esti- 109

mates which are largely biased by landmarks. This hypothesis 110

has been evaluated in virtual reality where participants navi- 111

gate an environment wearing a head mounted display and have 112
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to perform a series of tasks to find evidence of whereas hu-1

man memory works over Euclidean maps or cognitive maps2

[37]. The results of their experiments suggest that: either spa-3

tial knowledge is Euclidean, but too imprecise to support metric4

shortcuts to discriminable locations; or else that spatial knowl-5

edge is non-Euclidean, and best described as a labeled graph.6

This theory is still being investigated by running experiments7

with humans in VR. It will be interesting to know how direction8

and distance accuracy improves with experience. Our method9

shares some characteristics with Warren’s hypothesis, such as10

the concept of humans making direction estimates (during our11

naive search), and distance errors being reproduced with the cell12

counters (during A* with modified heuristic).13

Another aspect of human decision making that has been in-14

corporated in path finding, is the fact that humans tend to plan15

in an abstract manner and then break the problem down into its16

smaller pieces [38]. There have been several approaches sim-17

ulating this type of hierarchical path finding, where the agent18

plans a high level path and then computes the coarser details of19

the trajectory for each high level node [39, 40, 22].20

3. Human-like path finding model21

Our goal is to create a path finding model to better resemble22

human behavior. Most previous models focus on finding op-23

timal paths, smooth paths, and/or finding solutions within cer-24

tain time constraints. Some previous models have included vis-25

ibility, landmarks, memory or mental maps as representations26

of parts of the navigation mesh. Our model focuses on build-27

ing the first path finder method that resembles the human brain28

memory as a hexagonal map which is iteratively built based on29

previously visited places. The proposed method consists of two30

phases: (1) Exploration to generate the cognitive map and (2)31

path finding based on the current map information.32

Most navigation maps in the literature used for path finding,33

consists of either a regular grid of squared cells, or a polygonal34

mesh. Hexagonal grids are rare, although sometimes used be-35

cause they have the advantage that moving to an neighbouring36

cell has the same cost regardless of the direction [41]. Our work37

proposes a navigation mesh consisting of regular hexagons,38

with the goal of resembling the brain grid cells structure.39

For the case of searching for the goal in an unknown environ-40

ments, the agent needs to search with a naive approach while41

building such map. This is the human equivalent to wandering42

an unknown environment, choosing directions at each intersec-43

tion based on naive knowledge (i.e. approximate directions),44

and learning about the environment as we walk. Since we know45

that human cognitive maps are created by firing the neurons of46

the hippocampus region of the brain when the person visits a47

location in the environment, our agents will thus fire the cells48

corresponding to the location that the agent walks by. This cell49

firing is implemented with a counter that increases as the agent50

walks repetitively through a location. Therefore, the value of51

the cell counter is an indicator of how well the agent knows that52

corresponding location in the virtual space.53

Our path finding algorithm inspired by the GPS of the brain,54

will then use the value of the counters to introduce a new heuris-55

tic function for the A* search. We give higher priority to choos- 56

ing paths that move through cells with higher counter value. 57

This situation is the human equivalent to thinking about the best 58

known path and then following it. Figure 3 shows the counter 59

values of each hexagon when the agent searches the environ- 60

ment. 61

Fig. 2. Hexagon grid cell with counters. Black cells are obstacles, and the
intensity of blue represents the counter value.

Since mental maps are built from the agents’ movement, we 62

first explain how our agents explore an unknown environment 63

while building such maps, and then we propose a method that 64

uses those mental maps to carry out an A* search with a new 65

heuristic, driven by the cell counters. 66

3.1. naive exploration for unknown environments 67

When a human is located in an unknown environment for the 68

first time, he would have no mental map of the environment in 69

his brain. In order to search for a path between S and G, he 70

would have to fully explore the environment. There are well 71

known algorithms to perform a full exploration of an unknown 72

environment such as Depth First Search (DFS) or Breadth First 73

Search (BFS). However, humans do not typically perform such 74

a blind exhaustive search. Whereas we are inside a large build- 75

ing or outdoors in a city, it would be reasonable to consider 76

that humans would either have a glance at a map, or else ask 77

for basic directions. So, in order to simulate human path find- 78

ing behavior in unknown environments, we have developed an 79

algorithm that performs a naive search with some basic knowl- 80

edge of directions. Our method also assumes that humans prefer 81

to walk along the longest sight-line towards the goal direction, 82

which is a behavior that has been reported on real humans [42]. 83

Our algorithm is based on DFS but neighboring cells are not 84

explored in random order, instead, a specific order is followed 85

to prioritize two concepts: (1) choose first cells that are closer 86

to the goal direction according to the agents’ naive knowledge, 87

and (2) once a direction has been chosen, follow it for a several 88

steps to reduce the number of turns in the path. 89

Therefore, our agents’ naive exploration algorithm is based 90

on two principles: Firstly, humans are likely to perform explo- 91

ration in a sequential manner moving towards a goal G, and thus 92

our search is based on DFS with a greedy heuristic based on a 93

confidence level of the goal direction, and secondly humans are 94

likely to walk along the line of sight [7], and only reconsider 95

direction if they feel that they are not moving towards the goal 96
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(or encounter an obstacle). The idea of using visibility to walk1

along the longest line of sight, has been used in space syntax2

methods such as the work by Penn et al. [35], our model differs3

in that we do not choose the longest line of sight, but a direc-4

tion that is approximately aligned with the goal orientation, and5

then use the concept of walking along the chosen line of sight6

(thus reducing the number of turns in the trajectory) as long as7

the agent does not sense that it is no longer moving towards the8

goal direction.9

When the agent is located in an unknown environment, all10

cell counters are set to zero (no cognitive map). The agent will11

then move towards the goal position with our naive approach.12

The first step is thus to compute the forward direction for the13

agent. As shown in figure 3, each hexagon in the grid cell has14

at most 6 neighbors. In order to calculate the movement di-15

rection, we calculate the vectors ~ui, i ∈ [1, 6] which point from16

the current cell towards each neighbor, and keep those that are17

approximately in the desired direction of movement, as the set18

D(G,δ). Note that vectors pointing towards an obstacle cell will19

be discarded since they do not represent a valid agent move-20

ment.21

The set of possible directions of movement is thus:22

D(G,δ) =
⋃
~ui, such that cos(∠(~ui, ~uG)) > δ23

~uG is the unit vector from the current cell pointing towards the24

goal G. The confidence threshold, δ, is a user defined value in25

the range [−1, 0.8], and will determine the number of vectors in26

D(G,δ). The next direction ~v chosen for graph exploration is ran-27

domly picked from the set of directions D(G,δ) (note that since28

both ~ui and ~uG are unit vectors, the cosine can be efficiently29

computed using the dot product). Figure 3 shows a represen-30

tation of the vector pointing towards the goal ~uG, and the set31

of vectors that will be inserted in D(G,δ) if δ = 0.5. Note that32

when δ = −1 we would have a completely uninformed search33

similar to DFS. The key in our method is that δ represents the34

level of confidence regarding the goal direction. The larger the35

δ the more directly the agent will explore the straight line to-36

wards the goal direction. The maximum possible value of δ is37

0.8 which corresponds to an angle of 30o with respect to the38

goal direction ~vG and guarantees that there will be at least one39

possible direction in our hexagonal grid. Having a large value40

of δ will give fewer possible directions pointing towards the41

goal direction. If D(G,δ) = ∅ then the next direction ~v is chosen42

randomly among the possible directions of movement (towards43

obstacle-free cells).44

The agent will follow direction ~v until it either hits an obsta-45

cle or its trajectory appears to be moving away from its desired46

direction. This second case is done by triggering a new compu-47

tation of preferred direction every S cells. We have empirically48

found that S = 5 provides good perceptual results for our naive49

search exploration.50

This parameter can be defined by the user, or can be set to51

a range of values to provide more heterogeneous graph explo-52

ration in the case of crowd path finding. If S = 1 the agent53

would recompute its direction at every cell, whereas S = ∞54

implies recomputing direction only after a collision. The larger55

the value of S, the longer the agent walks along the previously56

chosen direction (simulating walking along the longest line of57

Fig. 3. Representation of the goal direction (~uG), with the six possible di-
rections of movement (~ui) and the circular sector indicating the directions
included in D(G,δ) for a given confidence threshold δ.

sight or minimizing turns). However, large values of S can also 58

make the agent move further away from the goal direction. 59

Figure 4 shows on the left an example path of our naive path 60

exploration algorithm (in pink) in an unknown area of the en- 61

vironment, with S = 5, and δ = −0.4, against the A* solution 62

(in green). Note that our naive exploration algorithm has the 63

agent walking along the cells whilst exploring, and thus there 64

can be some small loops in the trajectory, which can resemble 65

when a human needs to walk back to a street junction after re- 66

alizing he may not be in the right path towards the destination. 67

On the right side of Figure 4 we can see an example path with 68

with S = ∞, meaning that the agent only turns after finding an 69

obstacle cell and and δ = −1, meaning that any non-obstacle 70

neighbour can be picked for such turn. In both cases, as the 71

agent walks by the environment, the cells counters will be in- 72

creased to build its mental map. 73

3.2. Known environment 74

Path finding in a known environment can be done using the 75

agent’s cognitive map that has been built by performing many 76

searches following our naive exploration algorithm. Every time 77

an agent visits a hexagonal cell, the counter value of the corre- 78

sponding cell is increased. By increasing the counter values of 79

the cells, the agent’s knowledge about the environment is also 80

increased. In order to find a path in a familiar environment, 81

we use the A* search algorithm, but with a modified heuristic 82

function that takes into account the agent’s knowledge. 83

Given a goal position G and the starting location of the agent 84

S , we need to find the path that can get the agent from S to G 85

avoiding the static obstacles in the environment. Note that ob- 86

stacle cells will not appear in the mental map, as the agent will 87

not have walked through them previously. The agent needs to 88

find a path π = 〈S , p1, p2, ...,G〉 by running the A* search algo- 89

rithm with a modified heuristic. The main key for the A* search 90

method is to define an admissible heuristic function h(pi), so 91

that it avoids overestimating the actual cost to arrive at the goal 92

location. In this paper, we define the heuristic function h(pi) 93

from a point pi to a goal position G as follows: 94

h (pi) = ‖pi −G‖ + λi (1)
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Fig. 4. On the left, comparison of the path obtained with the naive ex-
ploration algorithm when S = 5 (in pink), and the A* optimal solution (in
green). On the right, path obtained with the naive exploration whenS = ∞,
and thus the agent only replans its direction when finding an obstacle.

where ‖pi − G‖ is the 2D Euclidean distance from the current1

position to the goal G, and the term λi is defined as:2

3

λi =

{
2 × Cmax i f ci = 0
Cmax

ci
i f ci > 0 (2)

Cmax is a user defined value, which sets an upper limit to the4

level of knowledge about a cell. Therefore, the largest heuris-5

tic would be assigned to those cells with counter, ci, equal to6

0 (unknown cells). For known cells, the heuristic value be-7

comes smaller as the counter increases, and thus known cells8

have higher priority in the A* algorithm to be selected for ex-9

ploration. When all cells have the highest counter value, our10

algorithm is equivalent to a basic A* search.11

With our proposed heuristic function, agents will find paths12

towards a goal position based on their previous knowledge of13

visited places (i.e. their cognitive map). This heuristic makes14

agents more likely to move within familiar areas of the envi-15

ronment, and only when knowing the entire environment would16

they be able to find an optimal path. Unknown cells are thus17

avoided.18

3.3. Combining the known and unknown19

Even though we have presented so far two different algo-20

rithms for path exploration, based on whether the environment21

is known or not, it is of course possible to encounter scenar-22

ios with partly known areas. In such case, both algorithms can23

be combined, so that, if the agents has knowledge about the24

area covering the space between the start and goal positions,25

then algorithm A* with modified heuristic is applied, but when26

Algorithm 1: Neuroscience based path finding

1 Procedure NeuroSciPathFinder(x,G,steps, ~dir)
2 if x = G then

// has reached the goal G

3 return
4 end if
5 if x , currentCell() then

// walk from current cell back to x to

continue exploring

6 path.walkBackTo(x)
7 end if
8 c← get counter(x)
9 c.increaseCounter(x)

10 x.visited(TRUE)
11 path.addCell(x)
12 if c = 0 then

// Exploration with naive direction

13 D←− getDirsNotVisitedNeighbors(x)
14 if steps < S and ~dir ∈ D then

// continue with current dir

15 D←− D − { ~dir}
16 steps + +

17 NeuroS ciPathFinder(x,G, steps, ~dir)
18 end if
19 steps = 0
20 for i← 0 to |D| do

// explore first directions in D(G,δ)

21 if cos(~ui, ~uG) > δ then
22 D←− D − {~ui}

23 NeuroS ciPathFinder(x,G, steps, ~ui)
24 end if
25 end for
26 for i← 0 to |D| do

// explore the rest of directions

27 NeuroS ciPathFinder(x,G, steps, ~ui)
28 end for
29 else

// A∗ with GPS counter heuristic

30 cell = A∗ withGPS Heuristic(x,G)
NeuroS ciPathFinder(cell,G,S, ~0)

31 end if
32 end
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the agent is in an unknown cell, the naive search algorithm is1

executed to further explore the environment. By alternating be-2

tween both algorithms, the agent will gradually increase its in-3

ternal cognitive map based on the GPS of the brain. The details4

of our path planning method are shown in Algorithm 1.5

4. Experimental Results6

In this section we present the results achieved for both in-7

formed and uninformed path finding, and compare against A*.8

We show the visual aspects of the paths, as well as paths length.9

We have also run a perceptual study to evaluate whether the re-10

sulting paths correctly represent the levels of knowledge of the11

agents.12

4.1. Evaluation of path lengths based on knowledge13

In order to evaluate the effect of the percentage of agent’s14

knowledge, P, on the resulting path, we have tested the pro-15

posed path finder on P = [25, 50, 75, 100]% of known cells16

which were previously visited by the agent. Figure 5 shows17

results for different percentages of agent’s knowledge. By in-18

creasing the percentage of agent’s knowledge, the length of the19

informed path (in pink) will get shorter and the path will get20

closer to the result provided by the A* search (in green).21

For the completely unknown parts of the environments (white22

cells), we should expect our agents to choose a path that appears23

rather random and is far from optimal. The random appear-24

ance is the result of agents needing to explore and thus checking25

more locations.26

In order to see the agent’s behavior as we gradually move27

from unknown to known areas, we have computed paths in dif-28

ferent regions of an environment which is only partly known.29

Figure 6 shows the resulting paths (in pink) for both our meth-30

ods combined (naive exploration and A* with GPS heuristic)31

against the A* solution (in green). As we can see in Figure 632

(left), when the agent is located in an unknown area , it first ex-33

plores a path moving roughly towards the goal direction. Our34

naive exploration method avoids the agent from moving too far35

off the goal direction by using a large confidence threshold,36

δ = 0.4, and number of steps along the line of sight, S = 6,37

which overall shows high confidence on the goal direction, but38

not knowing its exact position. Figure 6 (middle) shows how39

the path shape and length gets closer to A* when searching on40

areas of the environment that the agent knows very well (darker41

blue indicates higher counter values). Figure 6 (right) shows the42

combination of exploring initially an unknown area and then43

performing A* with GPS heuristic when entering a known part44

of the environment.45

To further understand how the algorithm parameters affects46

the visual results, Figure 7, shows paths followed by an agent47

based on the values of P, δ and S. Notice that P only affects48

the path on known areas, whereas δ and S only affect the path49

on unknown areas.50

To show the paths followed by an agent based on the per-51

centage of known cells, we show results for which we fix δ and52

S, while increasing P. Figure 7 top row shows the paths for53

a give environment with the levels of P increasing from left to54

right ( map 0:{P = 0%}, map 1:{P = 35%}, map 2:{P = 75%}, 55

map 3:{P = 100%}), while all four maps have δ = 0 and S = 5. 56

As we can see, with increasing values of P, the resulting paths 57

become shorter. The chosen values for δ and S steer the agent 58

towards the goal direction quite efficiently, and that is why even 59

for low values of P, the agent appears to explore the path quite 60

efficiently. 61

The bottom row of Figure 7 had values for δ and S 62

that better matched the level of confidence with the levels 63

of knowledge, meaning that low knowledge is accompanied 64

by less confidence on the goal direction, whereas as we in- 65

crease the knowledge, we also increase the confidence re- 66

garding the goal direction. This is achieved with the follow- 67

ing configurations: map 0: {P = 0%, δ = −1,S = 10}, map 1: 68

{P = 35%, δ = −0.7,S = 8}, map 2: {P = 70%, δ = 0,S = 6}, 69

map 3: {P = 100%, δ = 0.4,S = 4}. 70

In this case, the level of knowledge affects both the path 71

finding in known areas, but also the search on unknown areas, 72

where the agent’s ability to guess the direction towards the goal 73

also varies. As we can see in the resulting paths, the first image 74

shows a path that demonstrates very little knowledge of both 75

the map and the goal direction, and as we move towards the 76

right maps, the resulting paths exhibit more knowledge for both 77

the counter based path finder, and the naive exploration with 78

increasing confidence on the goal direction. 79

In order to show the results of the exploration part of the 80

algorithm, we have searched for paths in another environment 81

with varying values of δ and S, but with the P = 0, so that the 82

algorithm cannot run the A* with GPS counters (see Figure 8). 83

The top row shows paths with δ = −1, meaning that the agent 84

can choose any random direction because it has no confidence 85

on the goal direction; and S = 10, meaning once a direction 86

has been chosen, it will continue with the same direction for 10 87

steps, as it has no confidence on how far it may be steering away 88

from the goal direction. The bottom row shows paths with δ = 89

0.4 and S = 5 which steers the agent quite confidently towards 90

the goal even for the exploration part of the algorithm. As we 91

can see in the figure, we can obtain paths that look organized 92

(bottom) when the confidence on the goal direction is high, or 93

chaotic (top) when there is no information regarding the goal 94

direction. Note that the core of the exploration method is based 95

on DFS (but altering the order in which neighbours are visited), 96

thus it keeps track of visited and unvisited cells, so that it will 97

find a solution despite finding deadlocks such as the ones that 98

appear on the right most map of the bottom row in Figure 8. 99

As a quantitative evaluation, we can show how by increas- 100

ing the percentage of agent’s knowledge, the total path length 101

decreases. Figure 9 shows the comparison of total path length 102

of our method combining A* with GPS heuristic and naive ex- 103

ploration, against A*. The image shows how the path length 104

of our algorithm decreases as the familiarity with the environ- 105

ment increases. The paths provided by our method are almost 106

as optimal as A* when P > 75%. 107

Figure 10 shows the average path ratios as the level of 108

knowledge increases. We can observe how for no knowledge 109

(P = 0%) the path length we obtain is up to 3.6x longer, which 110

demonstrates that our naive exploration provides a solution that 111
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Fig. 5. Path length depending on percentage of agent’s knowledge, P (in pink our method and in green the A* path). P = (A)25% , (B)50% , (C)75% and
(D)100%. Blue intensity indicates level of knowledge based on how many times it has been visited before.

(A) (B) (C)

Fig. 6. Illustration of our method (in pink) and A* path (in green). Blue intensities represent agent’s level of knowledge. (A) path planing between two
points in an unknown area, (B) Path between two points in a known area and (C) path from an unknown area to a location in a known area.

is longer than the optimal solution but not too far off from it.1

When the knowledge is up to 75% the ratio is 1.07x which in-2

dicates that is very close in length to the optimal solution (ratio3

1).4

When an agent is not familiar with the environment, it will5

only run the naive search algorithm while looking for paths be-6

tween random S and G positions. Table 1 shows the average7

number of searches needed to acquire knowledge equivalent to8

25%, 50%, 75%and100% for each of the two scenarios used in9

this paper. Scenario 1 appears in figures 5, 6, 7, and 11 (top),10

and scenario 2 appears in figures 8 and 11 (bottom).11

Initially our algorithm will only run naive search, and then as12

knowledge increases it will combine naive search with the mod-13

ified A* based on the GPS of the brain heuristics. naive search14

requires less computation and thus can be calculated very effi-15

ciently, whereas the modified A* search with our new heuristic16

takes longer to compute. So, as the number of known cells in-17

creases, the length of the path decreases, but the performance18

increases due to a larger number of searches in the known ar-19

eas. Performance depends on many factors, such as the size of20

the environment or the distance between goal and search cells.21

Table 1 shows a performance analysis of average times taken22

on searches in the two scenarios that appear in this paper as23

the knowledge level increases. T1 represents the time taken 24

by the naive search algorithm, T2 the time taken by the modi- 25

fied GPS-A* and T (total) de sum of both (all times shown in 26

miliseconds). 27

Our algorithm combines two types of searches: (1) naive ex- 28

ploration and (2) a path finder with a heuristic based the GPS 29

of the brain theory, thus on the counters in the mental map. The 30

former (1) can exhibit different levels of confidence on the di- 31

rection of the goal (higher values of δ and smaller values of 32

S can move the agent quicker towards the goal), and the latter 33

(2) will get closer to A* as P increases. Having such a vari- 34

ety of paths based on knowledge, could also be interesting to 35

exhibit more heterogeneity of paths in games. Currently, game 36

engines apply the same pathfinder over the navigation mesh for 37

all agents, which leads to unrealistic simulations when having 38

a large number of agents. Our work could benefit crowd sim- 39

ulation and multi-agent path finding by providing a variety of 40

paths for the same scenario. 41

4.2. User study 42

Even though simulating human behavior is a huge challenge, 43

and there is still a lot of work to be done, we have presented 44

a method that attempts to imitate more closely how humans 45
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Fig. 7. Two example maps, each with 4 paths corresponding to increasing levels of knowledge (from left to right). The top map has a fixed δ and S, while
P increases from left to right. The bottom map modifies all three parameters to exhibit knowledge not only in terms of known cells, but also in terms of
confidence on the goal direction.

Scenario 1 (13,236 cells) Scenario 2 (9,028 cells)

P
avg. #
searches

avg. T1
Unknown
naive

avg. T2
Known
GPS-A*

Total (ms)
T1+T2

avg. #
searches

avg. T1
Unknown
naive

avg. T2
Known
GPS-A*

Total (ms)
T1+T2

0% 0 2.01 0 2.01 0 1.77 0 1.77
25% 36 1.87 0.34 2.21 22 1.08 0.73 1.81
50% 61 0.97 1.36 2.33 37 0.41 1.61 2.02
75% 102 0.32 2.48 2.80 72 0.18 2.10 2.28
100% 141 0 3.11 3.11 127 0 2.63 2.63

Table 1. Average number of searches needed to acquire different levels of knowledge about the environment for the two scenarios used in the paper. For
each scenario and level of knowledge, P, we also show how the search time (in milliseconds) is distributed between the naive search (T1) and the A* with
the modified GPS heuristics (T2).

find paths in the real world. The goal of our work was to have1

autonomous agents exhibiting a wider variety of path searches2

consistent with their level of knowledge. Therefore, besides3

evaluating path length as knowledge increases, it is also impor-4

tant to study whether the resulting paths would be perceived by5

the viewer as being more or less knowledgeable. We have run6

two perceptual studies to test whether participants can correctly7

identify the intended level of knowledge of our agents based on8

their paths.9

For the first user study, we set a fixed δ and S, while increas-10

ing P. For the second study, we use varying values for the three11

parameters. We had a total of 40 participants, 20 doing each12

study. Each study was done as a within-subjects experiment,13

and consisted of 2 environments, 4 configurations of start and14

goal positions per map, and 4 configurations of agents’ knowl-15

edge. In this study each user would see a total of 32 maps with a16

path drawn from the start position S to the goal position G, and17

was asked to determine the perceived level of knowledge about18

the environment by an agent following such trajectory. The val-19

ues that the participant had to assigned were: 0 meaning ”very 20

little”, 1 ”a bit”, 2 ”quite well” or 3 ”extremely well”. Figure 21

11 shows the 2 environments used in the study, with 4 different 22

paths corresponding to different levels of agent knowledge. For 23

each map we gathered 160 responses (20 participants x 2 envi- 24

ronments x 4 configurations of S and G) which can be seen in 25

the 4 bars above each map in figure 12. Results were analyzed 26

running a Chi-square test. 27

Experiment 1 had 4 configurations: map 0:{P = 0%}, map 28

1:{P = 35%}, map 2:{P = 75%}, map 3:{P = 100%}, all four 29

maps with δ = −0.5 and S = 5. Participants saw a total of 32 30

paths, and were asked to look at the path and rank the agent’s 31

knowledge, K , as: 0 meaning ”very little”, 1 ”a bit”, 2 ”quite 32

well” or 3 ”extremely well”. As we show in the top graph in 33

figure 12, participants ranked map 0 with mostly K = {0, 1}, 34

map 1 with K = {1, 2}, map 2 with K = {2, 3}, and map 3 35

with mostly K = {3}. We ran a χ2 and obtained a p–value ≈ 0 36

(4.23 × 10−156) indicating that there is a statistically significant 37

relationship between the map configuration and the user’s per- 38
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Fig. 8. Example map with green cells representing empty space, and grey representing obstacles. All paths correspond to P = 0, meaning that there is only
exploration (no A* with GPS heuristic). The top row shows paths with δ = −1 and S = 10, meaning that the agent chooses random directions and then
follows the decision for 10 steps, as it has no confidence on the goal direction. The bottom row shows paths with δ = 0.4 and S = 5 which steers the agent
quite confidently towards the goal.

Fig. 9. Comparison of path length for increasing levels of P

ceived level of knowledge. This means that participants either1

guessed correctly the level of knowledge for each map, or else2

they slightly overestimated it. The reason for this, is that the3

naive search made the agents move quite well towards the goal4

direction.5

We then run experiment 2, trying to assign δ6

and S with values that better matched level of7

confidence with levels of knowledge. Therefore,8

we had the following map configurations: map 0:9

{P = 0%, δ = −1,S = 10}, map 1: {P = 35%, δ = −0.8,S = 8},10

map 2: {P = 70%, δ = −0.6,S = 6}, map 3:11

Fig. 10. Ratios of average path length as P increases
{0%, 25%, 50%, 75%, 100%}, δ = 0 and S = 10, with respect to the
A* path length (using the map that appears in Figure ??).

{P = 100%, δ = −0.4,S = 4}. The χ2 test gave us a p– 12

value ≈ 0 (6.26 × 10−173) indicating again that there is a 13

statistically significant relationship between the map configu- 14

ration and the user’s perceived level of knowledge. The bottom 15

graph of Figure 12, show that for the second experiment, users 16

perceived the resulting paths as being closer to our intended 17

configuration, therefore each map level got the highest number 18

of answers matching the corresponding knowledge level 19

intended for each map. The Pearson rank correlation between 20

the map knowledge and the user’s perceived agent knowledge 21

was rs = 0.86, indicating a strong relationship between them. 22
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Fig. 11. Two example maps used for the user study, each with 4 paths corresponding to increasing levels of knowledge. The specific values for each path
finding are those described for user study 2.
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Fig. 12. Perceptual Evaluation. The top graph shows the perceived level
of familiarity for maps of increasing P, with δ = 0.5 and S = 5. The
bottom shows also maps of increasingP, but varying δ and S to also exhibit
increasing levels of confidence on the goal direction.

5. Discussion and conclusion 1

Even though simulating human behavior is a huge challenge, 2

and there is still a lot of work to be done, we have presented a 3

method that attempts to imitate more closely how humans find 4

paths in the real world. In this paper we have proposed a path 5

finding method that attempts to resemble the human’s brain 6

navigation system to simulate more human-like autonomous 7

agents. We also propose a more human-like exploration method 8

for unknown environments with vague knowledge of goal direc- 9

tion. We believe that this is the first attempt towards simulating 10

more human-like path finding. 11

Our method can work with known, unknown and mixed en- 12

vironments. The hexagonal grid navigation mesh mimics the 13

humans’ brain grid cell. Cell counters simulate the way our 14

brain keeps track of visited places as agent’s memory. The 15

proposed naive exploration uses a variation of the Depth First 16

Search (DFS) algorithm to consider vague information of the 17

environment (rough knowledge of goal direction), and builds 18

a cognitive map for the agent as it wanders the environment. 19

Path finding in known environment, is carried out by applying a 20

modified heuristic to A*. The new heuristic considers the cog- 21

nitive map counters as the agents’ memory. 22

Even though the alternating nature between exploration and 23

GPS path finding may resemble reinforcement learning, please 24

note that RL uses exploration to learn a policy, which changes 25

actions for each state based on a reward function. Our 26

method differs from this, because exploration is used to gather 27

knowledge about the environment, which then improves the 28

pathfinder by being more informed and thus having a more ac- 29

curate heuristic. 30

Our experimental results show that path length for the pro- 31

posed method converges towards the traditional A* search as 32

the agent acquires more knowledge of the environment. 33

As future work we would also like to consider memory decay 34

and other aspects of human perception that may affect the way 35

we remember places (for example based on their saliency or 36
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uniqueness). The concept of line of sight could also be used to1

include memory of landmarks that can be seen from a distance,2

even if the agent does not physically walk by them.3
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