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Abstract

Significant improvements have been achieved in machine translation (MT) over the past
few years, mostly motivated by the appearance of statistical machine translation (SMT)
technology, which is currently considered the best way to perform MT of natural languages.

The main goal of this thesis is to enhance the classical SMT models, introducing syntac-
tical knowledge in the pre-translation step by reordering the source side of the corpus. To
a great extent, our interest is in the value of syntax in reordering for languages with high
word order disparity. A secondary objective consists of determining the potential of dif-
ferent language model (LM) enhancement techniques in order to improve the performance
and efficiency of SMT systems.

We start with a comprehensive study of the SMT state-of-the-art, describing the fun-
damental models underlying the translation process, along with a brief description of the
main methods of automatic evaluation of translation quality. We emphasize phrase-based
and N-gram-based SMT, analyzing the major differences between these two approaches.

Subsequently, we concentrate on language modeling methods that have not received
much attention in the SMT community. We report on experiments in applying N-gram-
based SMT system adaptation to a speech transcription task, describe a positive impact of
accurate cut-off threshold selection both on the model size and LM noisiness, and finally
present a continuous-space LM, estimated in the form of an artificial neural network.

Moreover, we propose a novel syntax-based approach to handle the fundamental prob-
lem of word ordering for SMT exploiting syntactic representations of source and target
texts. The idea of augmenting SMT by using a syntax-based reordering step prior to trans-
lation, proposed in recent years, has been quite successful in improving translation quality,
especially for translation between languages with high word order disparity.

We provide the reader with a thorough study of the state-of-the-art reordering techniques

and introduce a new classification of reordering algorithms for SMT. We then propose a



new non-deterministic reordering strategy based on a syntactically augmented alignment of
source and target texts and automatically extracted hierarchical reordering patterns. In the
next step, we couple the novel reordering module with decoding in a deterministic way; our
goal in this is to effectively tackle both global and local reordering dependencies. Finally,
we propose a novel translation units blending scheme, combining bilingual tuples extracted
from the parallel corpora with monotone and reordered source parts.

The experiments are carried out on N-gram- and phrase-based SMT systems. We
contrast the obtained results with the ones produced by the state-of-the-art reordering
algorithms and demonstrate our methods’ improvements over alternative distortion models.

The major conclusion to be drawn from the thesis is that syntactic information is useful
in handling global reordering, and it achieves better MT performance than the standard

phrase-based and N-gram-based model.



Resum

Durant els dltims anys s’han aconseguit millores significatives en traduccié automatica
(TA), motivades en gran part per laparicié de la tecnologia basada en traduccié au-
tomatica estadistica (TAE), la qual es considera actualment la millor manera de traduir
automaticament llenguatges naturals.

L’objectiu principal d’aquesta tesi és la millora del models classics de TAE mitjancant la
introduccid de coneixement sintactic en I'etapa de pre-traduccio a través d’un reordenament
en la banda d’origen del corpus. En gran mesura, el nostre interes rau en el valor de la
sintaxi en el reordenament per a llengiies amb una alta disparitat en 'ordre de les paraules.
Un segon objectiu consisteix a determinar el potencial de diverses tecniques de millora del
model del llenguatge (ML) per tal de millorar el funcionament i el rendiment dels sistemes
de TAE.

Comencem amb un estudi exhaustiu de 'estat de la qliestié en TAE, i descrivim els
models fonamentals subjacents en el procés de traduccid, aixi com una breu descripcid
dels metodes principals d’avaluacié de TA. Fem emfasi en la TAE basada en sintagmes i
N-grames, tot analitzant les diferéncies principals entre aquestes dues propostes.

Tot seguit, ens concentrem en metodes de modelitzacio del llenguatge que no han estat
objecte de gaire atencié en la comunitat de TAE. Aixi, presentem els experiments sobre
adaptacio de sistemes de TAE basats en N-grames a la tasca de transcripcié de la parla,
descrivim un impacte positiu de la seleccién d’un llindar limit tant per a la mida del model
com per al soroll del ML, i finalment presentem un ML d’espai continu en forma de xarxes
neuronals artificials.

A més a més, proposem una nova aproximacié basada en la sintaxi per tractar el
problema fonamental d’ordenacié de paraules per a la TAE tot explotant representacions
sintactiques de textos d’origen i de desti. La idea d’augmentar la TAE utilitzant un pas de

reordenament basat en sintaxi previ a la traduccid, tal com s’ha proposat els ultims anys,

vii



ha resultat forca valida a I’hora de millorar la qualitat de la traduccid, especialment en
traduir entre llengiies amb un alt grau de disparitat en l'ordre de les paraules.

Oferim al lector un estudi detallat de I'estat de la qiiestié en técniques de reordenament
i introduim una nova classificacié d’algorismes de reordenament per a la TAE. Proposem,
aleshores, una nova estrategia de reordenament no determinista basada en un alineament
augmentat sintacticament dels textos d’origen i de desti i patrons de reordenament jerarquic
extrets automaticament. En el segiient pas combinem el nou modul de reordenament amb
la descodificacié de forma determinista, tot perseguint ’objectiu de fer front amb eficacia
a les dependencies de reordenament global i local. Finalment, proposem un nou esquema
de mescla d’unitats de traduccid, combinant tuples bilinglies extretes dels corpus paral-lels
amb les bandes d’origen monotones i reordenades.

Els experiments es duen a terme en sistemes de TAE basats en IN-grames i sintagmes.
Es contrasten els resultats obtinguts amb els que s’han mostrat mitjancant els actuals
algorismes de reordenament, i es demostren millores en els models de distorsié alternatius.

La conclusié principal que s’extreu de la tesi és que la informacié sintactica és tutil per
tractar el reordenament global i la TE assoleix un millor funcionament en base al model

estandard basat en sintagmes i en N-grames.
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Chapter 1

Introduction

This Ph.D. thesis is focused on statistical machine translation (SMT), which is a specific
approach to machine translation (MT). MT is a field of computational linguistics that
investigates the translation of texts from one human language to another, while SMT, in
contrast to many automatic rule-based translation systems, is a translation paradigm based
on statistical learning techniques.

Our world is currently in a period of globalization, which implies increasing interaction
and the intertwining of different language communities. Information globalization extends
to all corners of the world, and although English is becoming a universal second language,
users in general still feel more comfortable in their own native language. Consequently,
multi-linguality should be seen as a strategic issue for all companies aiming to play an
important role in the future information society.

Kaija Poysti’s' statement that “you can always buy in your own language, but you
must sell in your customer’s language* has become more and more relevant these days. A
modern conception of social communications must include engaging customers, including
commercial companies and users, in any information in its textual representation regardless
of geography and cultural expectations.

Another important aspect is the socio-political importance of translation in communities
where more than one language is generally spoken, as these communities often experience
a high need for routine translation. MT is particularly attractive for the European Union
(EU) since it already experiences high demands in terms of translation; as of January 1,

2007, there are 23 official EU working languages, and the EU spends more than EUR

'Ex-CEO of Trantex, one of the largest localization and translation agencies in Europe



2 Chapter 1. Introduction

1,000,000,000 on translation costs each year. In addition, the EU has sufficient funding
potential to support scientific research in MT.

The present-day information society can be easily characterized by a broad accessibility
to a great number of information resources from all over the world that are presented in
various languages. Given the lack of quick and quality translation, one confronts a language
barrier, further hampering information exchange in a multilingual context.

It would be utopian to believe that at the current state of the information society, MT
could completely substitute for human-based translation. However, it can be very useful
for translation tasks in which quality may be less important than usability. Moreover,
these imperfect MT systems can and are being used by millions of users to translate web-
pages and routine everyday documents for which translation quality is not crucial. In
these cases, the main goal is to give to the user an idea of the content. An on-going
paradigm shift in global network services involves an increase in the demand for on-line
real-time multilanguage communication, which will have a great impact on the future user
and MT technology. Considering the translation industry, the majority of the work done by
professional interpreters involves routine and non-literary translations that are not of great
cultural value, and this type of work tends to be the most appropriate for the application
of MT.

The imperfection of automatic translation, which is one of the most difficult tasks for
natural language processing (NLP), is explained by the high complexity of human languages.
Apart from that, there is no single perfect translation of a source string, as there are many
factors that influence translation tasks in addition to a great number of poorly formalizable
(or not formalizable at all) dependencies [Jur00].

The semantic concept of human languages implies additional hidden challenges that the
MT research community faces. In many cases, a word in the source language does not
mean exactly the same as its closest counterpart in the target language, i.e., the semantic
”spots” for almost each word in the target and source languages do not quite coincide.
Word homonymy and polysemy are additional problems that complicate the issue of MT.

Furthermore, a professional interpreter makes decisions about translation based not only
on the subject of the phrase, but also by involving additional in-domain knowledge that
may be contained in the preceding context. Generally speaking, any professional interpreter
can state that a good translation is not just an interpretation of words and expressions as

they are, but rather a transfer of thoughts, concepts, images and a human vision of reality,
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which are highly influenced by personal and cultural experience.
This chapter will go into detail on MT history, as well as outline the major and secondary
goals and objectives of this Ph.D. dissertation. The contributions of this dissertation and

its organization are also provided.

1.1 Machine Translation: A Historical Overview

MT can be traced back to the 19th century, when the text carved on the Rosetta Stone was
translated using a statistical approach. The Ancient Egyptian language was an enigma for a
long while, until the French scholar Jean-Frangois Champollion decrypted the signs present
on the stone in three languages, two of which were lost (Egyptian hieroglyphics, demotic
script, and well-known Greek), but each communicating the same message [Par99]. These
findings served as a starting point for a new approach to translation based on statistical
models and volumes of aligned bilingual texts.

The foundation of modern MT was laid in the early 1950s when Warren Weaver pub-
lished his outstanding paper [Weab55]. This work drew on Shannon’s information the-
ory [Sha48] and was inspired by successes in code breaking during the Second World
War [Shabl]. It posited that the decryption of codes and automatic translation share
the same universal principles.

Enthusiasm faded a decade after, when two reports were published. First, the so-
called “Bar-Hillel report* [BH60] posited that MT research set excessively ambitious and
utterly unrealistic goals and that a high-quality MT is not achievable without a complete
understanding of the translated text. Second, “the ALPAC report“ [Pie66] was published
in 1966 and stated that actual progress was in fact very poor, with ten years of research
yielding results incommensurable with the funds spent.

From the 1950s to the early 1980s, research in the field of MT was substantially re-
stricted, apart from some projects like Russian-to-English translation that were specifically
motivated by the US and Soviet governments (one example is the Systran system developed
for Russian-to-English translation with a limited vocabulary in 1970 [Tom?70]). Gradually,
MT research activities shifted to Canada, where a METEO English-French Translation Sys-
tem [Lan05] was developed at the Université de Montréal to translate weather forecasts.
MT research activities also moved to Western Europe, where the English-French version

of Systran was introduced by the Commission of the European Communities for helping



4 Chapter 1. Introduction

Europe with its heavy translation burden.

A number of mainframe translation systems for European and Asian pairs of languages
appeared in the 1980s (“Logos“ for German-to-English, English-to-French, and English-
to-Vietnamese translations, “Metal“ for German-to-English translations, and several MT
systems for Japanese-to-English and vice versa translations). From the mid-1980s, less
expensive MT systems began to appear due to reductions in microcomputers prices, the
wide availability of text processing tools and a resurrected interest in MT technology from
commercial organizations. Nearly all MT research activities at this time were focused
on the exploration of methods for linguistic analysis aimed at elaborating an MT system
based on traditional rule-based transfer and interlingua approaches (see subsection 1.2).
Attention during this period mainly emphasized MT with human assistance, which is a
modern technology of translation memory based on the ALPNET developments of that
time [Hut86].

MT got a new boost in the 1990s when the first SMT systems were developed. Its
appearance was the result of the tremendous progress made in computer technology and
software engineering in the previous few years, as M'T began to be used in personal comput-
ers and workstations as opposed to mainframes. About that time, IBM began developing
one of the first full-scale SMT solutions. Unlike previous approaches to MT, SMT performed
translations generated using statistical models based on data derived from the analysis of
bilingual text corpora (that is, a collection of texts and their reference translations). Recent
research activities have been substantially stimulated by the growing availability of parallel
corpora, thereby allowing valuable information to be extracted for a given language pair.

Currently, the general trend in MT is toward the generalization of morphologic, syn-
tactic and semantic abstractions that operate within a statistical translation system and
complement fundamental models. The driving force behind this on-going paradigm shift
is that the statistical state-of-the-art approach is limited to fully bilingual lexical exam-
ples that are extracted from parallel training data, despite the existence of many purely
statistical and hybrid translation systems with greater powers of generalization.

MT is in high demand, and it is the subject of worldwide research and development.
In 2004, the Translation Automation User Society was established; this society made an
important contribution with respect to instilling a positive mindset toward MT among the
Internet user society. It is also becoming a commercial software product, and it is at the

stage of a new business model elaboration that aims to provide increasing interaction among
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producers, sellers and customers. From today’s point of view, the future of MT is mostly

related to corpus-based techniques, while user communities have great expectations for MT.

1.2 MT approaches

There are several methodologies for MT classification, and the most popular one is based
on the level of linguistic analysis it performs. The MT pyramid suggested in [Vau68] spec-
ifies processing method comparable to that used by human translators and is presented
in Figure 1.1. Three major levels are determined: direct translation, a transfer approach,
and interlingual MT. The analysis becomes more and more complicated as one climbs up

toward the top of the pyramid.

INTERLINGUA

ANALYSIS / —— /- TRANSFER |

Figure 1.1: Machine Translation pyramid.
Pyramid shows comparative depths of intermediary representation.

e The direct translation approach represents translation without performing any lin-
guistic analysis at all. This is the simplest approach to MT, as it involves performing

“dictionary-style“ word-to-word translation. Presently, this approach is not in use.

e A transfer-based MT system realizes a deeper level of intermediary representation,
usually on the morphological (i.e., parts-of-speech (POS) analysis or lemmatization)
level or the syntactic level. The main idea of this approach is to establish a col-
lection of transfer rules (either automatically learned or human-made) that define a

correspondence between the structure of the source language and that of the target
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language. It normally consists of two steps, namely, analyses of the source language

text and target language string generation.

e The interlingual MT approach is found on the top of the pyramid and is based more
on the structural similarities of languages than on an assumed identical mapping of
meanings. According to this approach, translation is considered as a mapping between
“semantic spaces® of a particular word in the source and target languages, and the
choice of the correct translation hypothesis is conditioned by the “on-site* semantic

meaning of the word from the target language.

An interlingual MT system has access to the complete semantic scheme of the source
sentence represented in the form of neutral (that is, abstract) language, which is
used as a “bridge* between the source and target languages. An example of such
a language can be found in [Dav01], and is known as UniversalWords. It was orig-
inally proposed as a tool for informational unification over communication through
the Internet. In [Hir93], a universal language is established in accordance with dif-
ferent perspectives (i.e., sentence concept, sentence structure, and the intention and

perspective of the speaker).

Despite the fact that this approach intuitively seems to provide the best translation
quality, it suffers from many difficulties. Insurmountable problems have sometimes
been faced by researchers of interlingual MT, such as a lack of semantic language-
dependent analytical resources; a lack of tools and resources required for semantic
and morphological synthesis from the artificial abstract language to the natural one;
arbitrarily deep syntactic word representation; divergence of information contained
in the target and source training corpora that can lead to a shortage of informa-
tion required for the generation step; and the impossibility of combining parsing and

generation steps.

There is an ongoing debate regarding whether semantic information is contained in the
syntax of a language [Rap02]. This claim erases the border between the pure interlingual
and transfer-based MT paradigms.

Considering system design criteria, MT systems can be decomposed as shown in Fig-
ure 1.2.

Rule-based systems are accepted as a classical approach to MT. Translation systems

based on this approach use the set of linguistic rules (normally set by human experts)
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Machine translation

— T~

Rule-based approach Empirical approach

e o T

Translation memory Example-based approach Statistical approach

Figure 1.2: Decomposition of machine translation approaches according to design criteria.

specifically describing the translation process [Str98, Cha02]. The weak point of these
systems is that they require a great deal of linguistic knowledge, which is expensive in
terms of both time and money.

An empirical approach (EA) to MT, appeared at the beginning of the 1990s and is a
new paradigm to challenge and enrich the established rule-based MT. The appearance and
popularization of these data-driven methods is possible due to a big leap in computing
technology and availability of textual data in huge quantities. This approach is based on
the parallel corpora (pure data) and the reusing of examples of already-existing translations
to generate a final translation.

There are three major classes of EA systems: example-based MT (EMT), translation
memory, and statistical MT.

EMT and translation memory both deal with finding and matching examples that con-
tribute to a translation on the basis of their similarity with the input sequence, thereby
translating the source string on the basis of recognizing bits that have been previously trans-
lated and then sticking them together. They differ in that in translation memory, the exam-
ple extraction stage is carried out by humans during the post-editing step [Pla05, Ger02],
while EMT provides it automatically and is sometimes considered to be an extension of the
latter technology [Car98, ZhaOl]. The essence of the SMT method is to generate transla-
tions using statistical models in which parameters are estimated on the basis of bilingual
text corpora. In this way, it fundamentally differs from EMT since the ranking between

fragments is done with probabilities rather than matching measures.
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The area of written language MT is the significant part of academic research. An-
other aspect of SMT applications is closely related to the automatic speech recognition
(ASR) field, namely speech translation. In contrast to written language MT, speech tran-
scription is characterized by special peculiarities typical of recognition tasks, like noise,
non-grammatical input, spontaneous speech phenomena, and so on. There is much in-
terest in exploring new techniques in SMT and ASR integration, as indicated in [Kay92,
Kni98, Vid97a]. The ultimate goal of the SMT/ASR integration approach is to develop a

speaker-independent real-time translation system that is likely domain-oriented.

1.2.1 A statistical approach to machine translation

The modern SMT originates from work carried out by IBM in the early 1990s [Bro90a,
Bro93]. This research was inspired by experiments in the field of speech recognition, while
the ideas underlying SMT came from information theory. A statistical approach to MT is
based on the principle of translating a source sentence into a sentence in the target language
using statistical information drawn from the parallel training corpus. The problem can be
reformulated as the selection of the most probable translation from a set of target sentence
hypotheses. A detailed description of the SMT paradigm can be found in chapter 2.

Initially operating at the word level (that is, word-to-word translation), MT ignored the
context in which a word was used and could not tackle situations in which the fertility? is
less than 1, typical for translations from morphology poor (like English) to morphology rich
languages (like Spanish).

Later, this approach was deployed using algorithms, that attempted to overcome this
disadvantage by learning the translation of a sequence of source- and target-side words,
though not necessarily a linguistically motivated set (see [Zen02] for example). In the next
step, the final translation is generated by a composition of partial translations that are
subject to a certain reordering algorithm.

The present-day popularity of the SMT approach both among the MT community and

the speech recognition scientific community is mainly explained by:

e The constantly growing availability of parallel aligned corpora, along with monolingual

texts, which are necessary for high-quality target language modeling;

2The ratio of source translating sequence length to target translating sequence length. In other words,
fertility tells how many foreign words each native word produces.
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e The good performance of existent SMT systems, which have proven to be compet-
itive with or have even outperformed rule-based MT systems in various evaluation

campaigns (see Appendix C);

This technology has some clear advantages over traditional M'T methods:

e Once constructed, a SMT system can be developed for a new pair of languages given

parallel data with minimal human effort (at least in theory);

e SMT can deal with lexical word ambiguity involving context or other informational

sources;

e SMT methods are more robust to non-grammatical input or grammatical faults typical

of live speech;

e SMT algorithms can theoretically address idiomatic expressions that occur in the

training corpus;

e Ignoring the syntax of a sentence, can generate more natural translations based on

human-made examples from the training data.

Along with obvious benefits, this approach must still address one challenge: a lack of
access to the structure of the sentence. SMT does not explicitly deal with syntax, as it is
classically not involved in the translation process or in the word-reordering step, and there
are no conditioning translations for syntactically related words. The syntax of the sentence
is crucial to model many translation phenomena, such as systematic differences between
the word order of the languages following distinct word order schemes or the place of the
modifiers for nouns. For this reason, a number of possible ways of introducing syntactic
information incorporation within a SMT system have been presented over the last years.

While there is endless debate over whether SMT is better than orthodox approaches to
MT, it is obvious that most global I'T companies have clearly created a situation favorable for
SMT. Even the well-known Google Translate service provided by Google Inc. has adopted
a purely statistical approach to MT, and it recently augmented its system with a target
language structure expressed in the form of a parse tree [Zol08]. More details about the
syntax-based and statistical translation approach hybridization are provided in chapter 4.

By the late 2000s, SMT has become an area of major interest and considerable funding

from state and private institutions. Several large-scale multinational research activities,
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projects, and initiatives have been recently founded that have among their main goals
improvements to the SMT approach to speech and text translation (TC-STAR?, LC-STAR?,
MataHari®, AVIVAVOZS, etc.). These recent developments firmly establish SMT technology
both as a subject of legitimate research and as a useful application of technology.

Another important factor stimulating state-of-the-art progress in MT is the open source
software and tools that make feasible it to perform SMT experiments in a fast and simple
way, thereby providing technology access to the average user. Along with the growing
availability of language-dependent linguistic resources and tools (e.g., taggers, parsers, and
lemmatizers), specialized components of SMT software can be found, including the GIZA++
word alignment toolkit” [Och03b], the open source Moses toolkit® [Koe07a], the MARIE

decoder?[Cre05a], and so on.

1.3 Thesis outline and research contributions

This dissertation involves research performed between 2005 and 2009 at the Center of
Speech and Language Applications and Technology (TALP) at the Universitat Politecnica
de Catalunya (UPC).

The thesis consists of six chapters:

Chapter 2 outlines the current state-of-the-art SMT technology. First, it introduces
the mathematical frameworks of early word-based SMT systems and presents phrase-based
translation as a natural evolution of the original approaches, as well as the TALP-UPC N-
gram-based system as an alternative approach. It also details word alignment algorithms,
the introduction of additional feature functions and weight optimization procedures. It
concludes with a brief description of the mechanisms for M'T performance evaluation. This
chapter serves as the foundation on which the remaining chapters build.

Chapter 3 introduces a detailed description of the research, focused on language model
improvement. The first part of the chapter describes LM adaptation experiments for ver-

batim translation tasks, while the second part presents a continuous-space LM driven by

http://www.tc-star.org

“http://www.lc-star.com
Shttp://www.dcs.qmul.ac.uk/~christof/html/projects.html
Chttp:/ /www.avivavoz.es
"http://code.google.com/p/giza-pp/
Shttp://www.statmt.org/moses/
gps-tsc.upc.es/veu/soft /soft /marie/
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a neural network along with its incorporation into N-gram-based SMT. Both approaches
demonstrate a significant improvement in translation accuracy when applied to a corre-
sponding translation task. The last part of the chapter introduces an accurate LM pruning
with an optimal cut-off threshold set to the minimal count of n-grams of order n included
in the LM.

Chapter 4 focuses on a detailed study of state-of-the-art reordering frameworks and
sets the stage for the following chapter. We first review previous work that serves as
inspiration for our approach. More particularly, we briefly review state-of-the-art reordering
frameworks and syntax-based translation systems, which to a certain extent motivate the
reordering approach presented as a main contribution of the Ph.D. dissertation. We then
identify some limitations of the existing literature and describe how the word-reordering
problem is treated therein.

Chapter 5 presents research on Syntaz-Based Reordering (SBR), which is the main
contribution of this thesis. It discusses the novel distortion model, which is based on a set
of syntax-based reordering rules derived via a syntactically augmented alignment of source
and target texts. We apply a word-reordering scheme that captures local and global word
distortion dependencies. We describe the algorithms in detail, and analyze the scheme
theoretically and empirically by testing it on various translation tasks.

Chapter 6 contains conclusions drawn from the dissertation and highlights the contri-
butions of the thesis. It also suggests possible extensions of the research conducted for this
Ph.D. dissertation.

At the end of the Ph.D. dissertation are four appendices. Appendix A provides an
overview of the corpora used in the experiments. Meanwhile, the Ph.D. thesis is completed
in the context of two research projects detailed in Appendix B. Third, Appendix C de-
scribes the participation of the international evaluation campaigns in which the TALP-UPC
took part between 2004 and 2009. Finally, Appendix D references a list of publications
by the author related to the Ph.D. research.

In this Ph.D. dissertation, we make the following contributions to the SMT field:

e We introduce a novel approach to word reordering problem for SMT, which is called
Syntax-Based Reordering, similar in spirit to the modern hybrid statistical translation
systems augmented with syntax. This technique drives local and long-range word

reorderings by automatically extracted permutation patterns operating with source
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language constituents and augmenting them with non-isomorphic sub-tree transfers.
The algorithm is applied in the step prior to translation, reformulating translation
task from the plain source-to-target to the reordered source-to-target translation, which
makes a mutual word order closer to monotonic and leads to a simplification of the
translation task. Furthermore, the statistical model is enhanced with a source input

word lattice, which is used by decoder during taking decision about final translation.

e We propose to estimate a continuous-space LM (CC LM) presented in form of a
neural network, which is then used in a SMT system. We report our experiments
for a smaller translation task with a limited amount of training material, which is
the most applicable field for CC LM. An N-gram-based SMT system enhanced with
CC LM applied during the n-best list rescoring step shows a statistically significant

improvement in translation accuracy.

e We study how LM task adaptation influences overall translation system performance
and can be used in real-life applications, such as in translation of automatic speech
recognizer output. Although the approach of linear LM interpolation is not new in
itself, we show how the N-gram-based SMT system can benefit from the interpolated

task-adapted LM and report experiments on verbatim translation tasks.

e We address the problem of optimal threshold-based LM pruning by isolating its impact
on translation quality and model size for several LM pruning decisions. We show how
accurate and rational selection of the number of n-grams can positively influence not

only the model size and system processing speed but also the translation accuracy.

e We also report extensive contributions to the TALP-UPC research group’s effort in
more than 10 international evaluation campaigns in which the TALP-UPC system
was regularly ranked quite high. System construction for an evaluation competition
normally implies that different combinations of statistical methods and model pa-
rameters have been tried with the aim of maximizing translation quality for a given
translation task(s). This leads to important design decisions that are taken in each

system configuration and allows for advancing the state-of-the-art of the technology.

This research addresses several important questions that the research community is
facing regarding the impact and value of models addressing the translation process by

mainly concentrating on the distortion model and target-side LM.
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On the theoretical side, this dissertation focuses on some aspects of the hybrid distortion
model formalized through a context-free grammar representation. On the practical side,
we show via small- and large-scale experiments that the proposed algorithms improve the
accuracy of state-of-the-art SMT systems.

Note that the research developed in this Ph.D. has been published in a number of

publications, which are referenced in the appropriate chapters and in Appendix D.



Chapter 2

State of the art

This chapter provides a brief overview of modern approaches to SMT and gives a review
of the models addressing the translation process. It also summarizes the most significant
works from the rapidly growing field of SMT that are relevant to this Ph.D. research.

We first cover the mathematical foundations of SMT in §2.1; we describe the source-
channel approach followed by the first SMT system since its introduction by the IBM
research group in the early 1990s. Afterward, we present a set of feature functions that
augment the posterior probability calculation and their combination with the maximum
entropy approach.

Introduced almost 20 years ago, the word-based IBM approach to SMT has lost its
popularity nowadays as a primary translation engine, but it serves as a basis for the mod-
ern SMT framework, as it establishes relationships between words in source and target
languages. This procedure is called statistical word alignment and is outlined in §2.2.

§2.3 describes the current approaches to SMT as a natural evolution of this initial word-
based paradigm. Modern SMT systems operate with sequences of consecutive words by
considering them to be translation units rather than dealing with them as isolated words.
We describe a classical phrase-based SMT (§2.3.1), briefly outline factored translation model
(82.3.2), hierarchical (§2.3.3), and syntax-based (§2.4) approaches, and then concentrate on
a description of the N-gram-based (tuple-based) system (§2.3.4).

§2.5 concludes this chapter with a presentation of the most popular metrics used in the

automatic and human evaluation of translation quality.
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2.1 Mathematical background

In SMT we are given a source language string F = fi] = fi...fj... f; (traditionally
referred to as “French®), which is to be translated into a target language sentence F = e{ =
€1...€...er (“English*), where I and J represent the number of words of the sentences in
target and source languages. The translation problem is defined as arg maz operation, as
described by the following equation:

E =arg max { p(E|F) } (2.1)
Hence, the translation problem is formulated as choosing the translation hypothesis with
the highest probability among the set of target sentences.

Modern SMT is based on the so-called noisy-channel (or source-channel) approach [Bro90b]

according to which the equation 2.1 is decomposed using Bayes’ rule, as follows:

o v d PEIE) ()
b= gy { p(F) } (22)
= argmax { p(F|E) - p(E) } (2.3)

This decomposition into two knowledge sources allows for an independent modeling of
the target language model P(E) and bilingual translation model P(F|E). The source string
probability P(F') is usually omitted within the bounds of the arg maz operation because it
does not affect the choice of the translation hypothesis.

The translation model (TM) establishes linkages between the source and target strings,
taking into account word-to-word links; a detailed description of word alignment model can
be found in §2.2. The set of model probabilities is automatically estimated from an aligned
parallel bilingual corpus.

The target-side language model (LM) assigns probabilities to target word sequences and
is built on a monolingual dataset. Statistical language modeling has been successfully used
for many NLP applications, including speech recognition, part-of-speech tagging, syntactic
parsing and information retrieval [Roa07, Son99, Che99]. Typically, n-gram models are
used in SMT; however, alternative models exist, and more details can be found in chapter 3.

Training materials for TM and LM can vary; in real translation systems, monolingual

complements are frequently used for language modeling.
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The overall architecture of the statistical translation system in the noisy channel ap-

proach is depicted in figure 2.1.
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Figure 2.1: Noisy channel approach.

The classical noisy channel approach has been supplemented with an alternative maz-
imum entropy framework [Ber96a], which was proposed in [Pap98] for a natural language
understanding problem and successfully applied to the SMT task, as shown in [Och02b].
According to this approach, the posterior probability P(e|f) is directly modeled as a log-
linear combination of the set of feature functions and is considered a generalization of the

source-channel paradigm. Mathematically, it is expressed as follows:

¢l = argmax { p(el| 7 } (2.4)

€1

)‘mhm(e{a flJ))
! (2.5)

exp(

e

= argmax ~
e !/
' > exp( Zl )‘mhm(el{ 7f1J))
e/{/ m=
M
= arg mz}x{ Z Anhn (eh, ) } (2.6)
€1 m=1

where the feature functions h,, refer to the system models and the set \,, refers to the scaling
factors corresponding to these models. The model weight coefficients are trained according
to the maximum class posterior criterion [Och02b] or with respect to the translation quality
measured in the form of error criterion [Och03a]. The maximum entropy approach is a

generalization of the noisy channel approach that considers only two feature functions (i.e.,
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the translation and language models) and equal scaling factors. The schematic of the

maximum entropy approach is displayed in figure 2.2.

N
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Figure 2.2: Maximum entropy approach.

2.2 Word alignment

Typically, the number of words and the order of counterpart appearances in translated
sentences are different. Hence, the first challenge in statistical translation is to establish
the correspondence between the words of the target sentence and the words of the source
sentence, i.e., to model the string translation probability P(f|e). In [Bro93] this modeling
problem is addressed through a hidden variable a aimed at accounting for all possible pair-

wise alignment links between two sentences:

P(fle)=_ P(f,ale) = P(Jle) Y Plajlfi " ai e, ) - P(IA  afye, ) (27)
a j=1
where J is the length of the source sentence f, f; stands for the word of the sentence f in
position j, and a; refers to the hidden alignment of word s; describing the position in the
target sentence where the word that aligns to s; is placed. Note that alignment a; can take
on a zero value, i.e., a; = 0 with the artificial NULL word to account for the source word
that is not aligned to any target word.

Word alignment using mechanisms similar to Hidden Markov Models (HMM) specifies
the modified word order when a sentence is translated into another language and, given a

sentence and its translation, specifies links at the word level. Figure 2.3 shows a visualization
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of an alignment for a parallel English-Spanish sentence.

English:  This 1s an important matter
Spanish.: Es un asunto importante

This is an important matter

“//

Es un asunto importante

Figure 2.3: Word alignment example.

The three fundamental models developed to calculate the probability in equation 2.7

are decomposed as follows:

e Fertility model. This accounts for the probability that a target word e; generates
¢; words in the source sentence, i.e., the suggested number of source words that are

generated by each target word.

e Lexicon model. This accounts for the probability of producing a source word f; given
a target word e;, i.e., strict dependencies are suggested between source and target

words.

e Distortion model. This model tries to explain the phenomenon of placing a source
word in position j given that the target word is placed in position ¢ in the target
sentence, i.e., the reordering of the set of the source words is suggested that best
complies with the target language. This is also used with inverted dependencies and

is known as the alignment model.
Different combinations of these models are known as “IBM machine translation models “:

e IBMI - assigns a uniform distribution to the alignment probability (lexical probabilities

only);

e IBM2 - introduces a zero-order dependency with position in the source (lexicon plus

absolute position);
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e Homogeneous HMM - IBM2 modification, which introduces first-order dependencies

in alignment probabilities [Vog96, Dag94| (lexicon plus relative position);
e IBMS3 - describes the choice of a fertility ¢;, which depends only on e; (plus fertility);

e IBM4 - models relative movements conditioning the linking decision on previous link-

ing decisions (inverted relative position alignment);

e IBMS5 - limits the waste of a probability mass on impossible situations (non-deficient
version of IBMJ).

The generative process underlying IBM models calculation is illustrated in Figure 2.4.

fertility
model
lexicon
model
distortion
model

Figure 2.4: IBM models: translation.

Estimation algorithms for some of the IBM models, including fertility parameters (IBM3,
IBM4, and IBM5), usually have problems with respect to poor local optima. The algorithm
proposed in [Bro93], which mitigates this challenge, is an instance of an unsupervised learn-
ing technique, namely the Ezpectation-Mazimization (EM) algorithm [Dem?77]. It is used
to increase the likelihood of the parallel data given the model. Iterative training is initiated
with a simple model, and later on the parameters of the simple model are used to initialize
the training procedure of a more complex model.

More detailed information about IBM 1-5 Models can be found in [Och02a], and a
systematic performance comparison is presented in [Och03c].

The manual annotation of word alignments is an expensive and frustrating task. The

present-day popularity of the statistical approach to MT to a certain extent can be traced
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back to 1999, when a freely-available tool called GIZA implemented IBM models to gener-
ate Viterbi alignment!® [AO99]. This tool was released as a part of the EGYPT toolkit.
In 2001 and 2003, an improved extension of the program appeared, which was called
GIZA++11 [Och03d].

In the majority of currently available translation systems, this piece of software coupled
with the mkcls'? tool, which allows for statistical word clustering for better generaliza-
tion [Och99], is used for training statistical TMs from bitext [Mar06b, Koe07b, Ima05].

GIZA++ implements a word alignment algorithm in an unsupervised fashion. However,
recent research efforts on SMT systems seem to be shifting toward supervised and semi-
supervised alignment models [CB04, Fra06, Lam08, Moo06, Wu06].

One of the problems with the IBM models is that they generate both one-to-many
and many-to-one source-to-target alignments. Several heuristic symmetrization algorithms
have been recently proposed as supplements to these two alignments in order to decrease
the effect of incorrectly aligned multi-word units. A many-to-many alignment is usually

obtained using the following algorithm:
e An intersection of alignments;
e A union of alignments;
e Using refined symmetrization method, as described in [Och00al;
e Employing grow-diag-final-and heuristic [Koe05b].

The latter is a widely accepted and most popular strategy based on the step-by-step
extension of the intersection of original alignments, which consequently involves neighboring
left, right, top, or bottom elements (grow); the diagonally neighboring alignment points
(grow-diag); the non-neighboring one-direction aligned words (grow-diag-final); and the
alignment points between two unaligned words (grow-diag-final-and).

The data sparseness problem is crucial for word alignment, as for many other SMT tasks.
In [dGO06], this issue is addressed with linguistic classifications done before the alignment
step. Base forms (that is, lemmas), stems, and reduced verb morphology are used instead

of preface word forms, and a positive impact on translation system performance is reported.

19We use the term “Viterbi alignment® to denote the most probable alignment given the estimated IBM
models using a Viterbi search rather than the true Viterbi alignment.

"eode.google.com/p/giza-pp/

Phttp://www.fjoch.com /mkcls.html
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There are two main measures to evaluate the quality of word alignment. The most wide-
spread criteria is AER (alignment error rate), as proposed in [Och00b]. Given a manual
gold standard alignment with the criterion of sure and possible links, recall, precision, and
AER measures are defined. However, in [Fra06], it is shown that the AER measure does
not always correlate with MT accuracy, but it does with the F-measure value because of
its capacity to penalize precision and recall components. Recently, new measures of word
alignment quality have appeared [Aya06], showing quite promising results.

Since this Ph.D. thesis is not directly related to statistical word alignment evaluation,

further description of the alignment evaluation metrics falls out of the scope of the thesis.

2.3 Current SMT approaches

In this section, we briefly outline the most popular modern approaches to SMT:

e A phrase-based model operating with sequences of phrases instead of single words,

as a coherent and natural evolution of the IBM translation models (§2.3.1);

e A factored translation model taking into account additional information such as

morphology, lemmas, and so on during translating (§2.3.2);

e A hierarchical approach to SMT that intends to address the most significant prob-
lems of phrase-based translation (§2.3.3);

e An alternative to the phrase-based SMT N-gram-based approach to SMT stemming
from a finite-state perspective (§2.3.4);

A syntax-based MT system that uses source, target, or both-side parse trees (§2.4).

2.3.1 Phrase-based translation

In human-made translation, it is common to translate contiguous sequences of words as a
single unit. For example, a Spanish expression “casa blanca“ is translated into English as
“white house“. IBM translation models do not take into account local context but rather
translate the words “casa“ and “blanca“ separately and then place them in a monotone
order, without intervening words. This strategy intuitively can be improved using the
original contiguous sequence “casa blanca® as a fundamental translation element. The

appearance of an approach in which models address units longer than simple words has
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caused a groundbreaking improvement in SMT, and this data-driven paradigm has proven
to be a possible practical means to the longstanding goal of cheap MT.

13 or bilingual phrases) rather than single words

Modeling word sequences (phrases
in both the alignment and lexicon models makes sense with respect to the frequency-based
nature of natural language. Moreover, this treatment makes it possible to exploit the ability
to handle collocational relations within the sentence.

Phrases are extracted from a bilingual aligned corpus using the following two funda-

mental constraints:

1. The words in the source and target parts are consecutive,

2. They are consistent with the word alignment matrix.

The phrase extraction procedure is illustrated in Figure 2.8. The original bilingual

sentence is:

Spanish: quisieramos  lograr traducciones perfectas
English:  we would like to achieve perfect translations

This approach was first presented in [Och04] and was named the alignment template
approach. The translation process consists in grouping source words into phrases; source
phrases are mapped onto target phrases and are allowed to be generatively inserted as
lexically motivated by word context. Thus, translation is performed in a monotone phrase
order, allows for word classes and includes internal word alignment. Example of translation
procedures can be found in Figure 2.5.

A simplified version of the alignment template approach is the so-called phrase-based
SMT ([Zen02]). The simplification consists in (1) handling words ignoring word classes, (2)
ignoring internal alignment information, and (3) assuming one-to-one phrase alignments.

This can be formally expressed as shown in equation 2.8:

P(f{le1) = alel) - Y P(fulér) (2.8)
B

where the hidden variable B is the segmentation of the sentence pair in K bilingual phrases

(frléx), and a(el) assumes equal probability for all admissible segmentations.

13Hereafter, we use the term “phrase® to refer to any consecutive sequence of words that do not necessarily
coincide with their linguistic analogues.
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Source language sentence quisieramos lograr tradicciones perfectas
* * \ ¢ Source-side phrase segmentation
Source phrases quisieramos lograr traducciones_perfectas
¢ ¢ ¢ Phrase insertion
Placement of target-side <Ins> quisieramos lograr traducciones_perfectas
insertion markers ¢ * ¢ ¢ Phrase translation
Target phrases we would_like to_achieve perfect_translations
¢ Target phrase segmentation
Target language sentence we would like to achieve perfect translations

Figure 2.5: Alignment template model with monotone phrase order.

The phrase translation probabilities are commonly estimated by relative frequency over

all bilingual phrases in the corpus for both translation directions:

P(fle) = "1y (2.9
Plelf) = % (2.10)

where N(f,e) refers to the number of times the phrase f is translated by e. In addition,
N(f) and N(e) refer to the number of times the source or target phrase, respectively,
appears in the training corpus.

According to this approach, phrase-based translation is considered a three step algo-

rithm:
1. The source sequence of words is segmented in phrases;
2. Each phrase is translated into the target language using the translation table;
3. The target phrases are reordered to follow the natural order of the target language.

There are alternative methods of phrase extraction. In [Koe03], the authors look for
methods to efficiently build phrase translation probability tables. They also demonstrate

that the approach based on word alignment outperforms a syntax-based phrase generation
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method [Yam01], and a joint-probability model learning phrase translation and alignment
probabilities simultaneously from a set of parallel sentences [Mar02].

Another important question raised in [Koe03] is “How long do phrases have to be to
achieve high performance;‘ The best results were obtained when limiting the length to a
surprisingly low level (3 in the case of European Parliament'* German-English translation
task). Learning longer phrases does not yield much improvement and can even lead to
worse results. The size of phrase tables rises almost linearly with the training corpus size

(Figure 2.6).
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Figure 2.6: Different limits for mazimum phrase length. Source: [Koe03].

2.3.2 Factored translation model

A noteworthy extension of phrase-based SMT is the factored translation model, which
behaves like phrase-based models while being able to take into account morphology, lemmas,
stems, and other informative sources at the word level in the source and target languages
during decoding [Koe07b, Koe07c].

The tight combination of morphological, syntactic, or semantic information has demon-
strated to be valuable by integrating it in before or after processing steps. In a factored
translation, a word is represented as a vector of factor elements characterizing different
levels of annotation (see Figure 2.7).

The mapping of foreign words onto target language words is broken up into two steps:

14G8ee Appendix A.
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Figure 2.7: Factored translation model: input/output representation and translation process.

e Translation step: source language factors are mapped onto the target language factors

(phrasal level);

e (Generation step: target language factors are mapped onto the target language factors

and words (word level).

Then, the surface forms are generated on the target side from the translated vector
elements.

Note that in modern systems, alternative decoding paths are allowed only for unknown
words that the system is not able to translate. In other words, the model allows both
surface and morphgen (model that do morphological analysis and decomposition during the
translation process) TMs, preferring a surface model for known words and using a morphgen
model to act as back-off.

The Moses toolkit!'® is a widely-known implementation of the factored-based model.

2.3.3 Hierarchical translation

One more recent enhancement of the classical phrase-based approach to SMT is a hier-

archically structured model that defines transduction rules, which are interpretable

15 www.statmt.org/moses/
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as components of a bilingual (synchronous) formal grammar [Wu97, Chi05, Chi07, Igl09].
These models intend to address the principal limitations of phrase-based SMT, i.e., the
sparse data effect and distance-dependence of the distortion models.

In [Wu97], the twin concept of bilingual language modeling and simultaneous parallel
parsing was proposed. It involves context-free inversion transduction grammar formalisms,
which learn a grammar and simultaneously generate two trees extracted from a parallel text
without any syntactic annotations. The system models order shifts between languages and
balance needed flexibility against complexity constraints.

A hierarchical phrase-based system called Hiero was presented in [Chi05] and enhanced
with a cube pruning method used to efficiently apply LMs at the search step as described
in [Chi07]. A hierarchical structure is applied to capture translations with scope larger than
a few consecutive words. Thus, Hiero removes the limitation on contiguous phrases and
allow phrases to include indexed placeholders, thus turning the phrase-based SMT into a
parallel parsing problem over a grammar with one non-terminal symbol.

Formally, each rule from the generalized rule hierarchy'® can be expressed as follows:

N—>f1...fm/€1...6n (211)

and can be extended by another existing rule:

M — fi... fu/ej... e (2.12)

where 1 < i < u <m, 1< j < v <n and the right-hand side of the rule constitutes a

phrase pair under the word alignment, to obtain a new rule:

N — fl . fi—lefu—i-l ‘o fm/el NN 6]'_1Mk6v+1 % (213)

where k is an index for the non-terminal M that indicates a one-to-one correspondence
between the new M tokens on the two sides. Note that adjacent non-terminals are prohibited
due to “spurious ambiguity “ and over-generation issues [Chi07].

Lately, a hierarchical phrase-based translation has emerged as one of the dominant
current approaches to SMT due to an efficient combination of phrase-based translation

advantages and strengths of the hierarchical architecture that underlie any natural language.

18 Formally, equations 2.11, 2.12 and 2.13 describe a generalization of the Chiang’s approach with multiple
non-terminals. Classically, Hiero employs only a single non-terminal [Chi07].
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2.3.4 N-gram-based translation

In conjunction with the phrase-based approach, the N-gram-based approach also ap-
peared [Cas02, Cas04]. It has roots in the finite-state transducers paradigm primarily
proposed for speech translation [Vid97b, Kni98, dG02] and extends the log-linear modeling
framework, as shown in [Mar06b]. A system that follows this approach deals with bilingual
n-grams, which are the so-called tuples. Tuples are extracted from a word-to-word align-
ment and are composed of one or more words from the source language and zero or more
words from the target one.

Here, the translation procedure is regarded as a stochastic process maximizing the joint
probability p(f,e), which is approximated at the sentence level as described by the following

equation:

éf = argmax { p(ef, f{) } (2.14)

1

N
= argmax { H p((f,e)nl(fs en—zt1s--- (f e)n—l)} (2.15)
1 Un=1
where z is the length of the context.

The tuples induce a unique segmentation of the pair of sentences, as shown below. This
way the context used in the TM is bilingual, and it not only takes the target sentence into
account, but both languages are linked together by means of tuples. The TM can be seen
here as an n-gram LM of an imaginary language composed of two-language units.

The main difference between phrase-based and N-gram-based approaches lies in their
distinct representations of bilingual units, which are the components of the TM. While the
regular phrase-based SMT considers context only for phrase reordering but not for trans-
lation, the N-gram-based approach conditions translation decisions on previous translation
decisions.

The N-gram-based SMT has proven competitive with state-of-the-art systems within

recent evaluation campaigns [Kha08, Lam07b].

Tuples extraction. The size and content of tuples vocabulary strongly rely on the

particular set of word-to-word alignments. In [Ban00], tuples are extracted from one-to-one
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alignments, while in [Cas04] a one-to-many word alignment set is used.

In contrast, in all the experiments with N-gram-based SMT, we adopt an approach
according to which the wunion of the source-to-target and target-to-source alignment sets
(that is, many-to-many) is used for tuple extraction. This approach has proven efficient, as
shown in [Mar06b], where positive results are reported for some specific translation tasks.

Tuples are extracted from the parallel corpus following a set of three rules:

e Given a certain word-to-word alignment, a monotonic segmentation of each bilingual

sentence pair is produced;
e No word in a tuple is aligned to words outside of it;

e No smaller tuples can be extracted without violating the previous constraints.

Note that phrase-based SMT does not consider the last rule; hence, tuples are formally
defined as minimal length bilingual phrases that provide monotonic segmentation of the
corpus.

Figure 2.8 shows an example of tuple extraction from a bilingual sentence pair and con-

trasts it with the phrases extraction procedure (see §2.3.1).

NULL| quisieramos | lograr  |traducciones perfectas

we | would like | to achieve| perfect translations

Tuples:
1. NULL : we 2. quisieramos ; would like
3. lograr : to achieve 4, traducciones perfectas : perfect translations

Phrases:
. quisieramos - would like 2. quisieramos : we would like
lograr : to achieve 4. traducciones : translations
perfectas : perfect 6. quisieramos lograr : would like to achieve
quisieramos lograr : we would like bo achieve
traducciones perfectas : perfect translations
lograr traducciones perfectas : to achieve perfect translations
. guisieramos lograr traducciones perfectas :

would like to achieve perfect translations
. quisieramos lograr traducciones perfectas :

we would like to achieve perfect translations

ot e B S

=

—
[

Figure 2.8: Bilingual phrase and tuples extraction.
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There are two issues regarding tuple extraction procedure:

e FEmbedded words. The embedded words problem arises for the tuples that include
more than one word. A certain number of one-word units are left out of the tuple
vocabulary because they are embedded in longer units. Considering an example from
Figure 2.8, the words “perfect” and “translation® are not provided with translation

probabilities if they are not encountered in one-word tuples in the training corpus.

The solution of this problem was proposed in [dG02]. The tuple n-gram model is en-
hanced by incorporating single-gram translation probabilities for all embedded words
detected during the tuple extraction step. These unigram translation probabilities are
computed from the intersection of source-to-target and target-to-source alignments,

in contrast to the first-step tuples extraction in which union symmetrization is used.

e Source-side NULLs. One of the hardest decisions during tuples segmentation is how
to handle units with NULL on the source side. Some words linked to NULL end up
producing tuples with NULL source side (for example, NULL#we tuple in Figure 2.8).
However, no NULL input is expected to appear in tuples, and this tuple is not allowed.
This problem is solved by modifying word alignments before the tuple extraction step;
any target word that is linked to NULL is attached either to the preceding or following

word.

A challenging issue is a binomial choice between two attachment directions. Three
tuple segmentation strategies are proposed and contrasted in [dG06]. The main con-
clusion drawn from the results reported for English-to-Spanish, Spanish-to-English,
and Arabic-to-English translation tasks is that the best performance is demonstrated
by the system that regards the tuple segmentation problem around source-NULLs as
a monolingual decision relying on statistics conditioned on associated target-side POS

tags that are consistent with human intuition.

The tuples-based approach is basically considered monotonous in the sense that the lo-
cal context is modeled in a sequential order of tuples during training. Therefore, it is more
appropriate for pairs of languages with relatively similar word order schemes. Currently,
many research efforts are being made toward adapting the N-gram-based approach to lan-
guage pairs with different word orders [Cj09, Cre05c|. These recent developments will be

overviewed in chapter 4.
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Modeling. Like many other outstanding SMT systems [D()S, Mat06, Che08], the TALP-
UPC N-gram-based translation system follows a log-linear approach to inform the decoder
with probabilistic information based on a set of feature functions. Apart from the TM

presented above, the feature models typically taken into consideration are:

e A target-side LM, typically represented in the form of an n-gram model, or a
continuous-space LM trained in the form of a neural network (see chapter 3). The
model accounts for the target language statistical dependencies and favors those par-
tial translation hypotheses that are more likely to correctly constitute structured

target sentences over those that are not.

A clear-cut distinction of an N-gram-based system from a phrase-based SMT is its
unique representation of the LM; for a phrase-based system, it is an integrated part,
whereas in an N-gram-based SMT, LM is used as an additional feature since the
target language is modeled inside the bilingual n-gram model and is considered a way

of improving translation accuracy.

e A tagged target-side LM, normally implemented as an n-gram model of word
classes associated with target-side words and act as a method for reducing data sparse-
ness. The word classes can be statistically or linguistically motivated (POS) [Kha07,
Cj06a].

e A word bonus (or word penalty) model, which is implemented in order to com-
pensate for the system’s preference for short output sentences. Technically, the bonus
depends on the total number of words in the partial translation hypothesis and is

determined as follows:

Py p(tr) = exp(number of words in ty) (2.16)

e Forward and backward lexical models, provide lexicon translation probabilities
for each tuple based on the word-to-word IBM 1 probabilities. These models estimate

lexical weights according to the formula below:

Ji Iy

Preo((f,8)) = m 1_[1 z; Preui(fjle:) (2.17)
j=1i=



2.3. Current SMT approaches 31

where f; and e; are the j-th and i-th words in the source and target parts of the
tuple ( f ,€)k; Jr and Iy are the corresponding total numbers of words on either side
of the tuple. Giza++ word-to-word source-to-target and target-to-source alignments
are used in the calculation of forward and backward lexical models, respectively. Note
that the lexicon models give probabilities to tuples of different source and target length

and actually constitute complementary TMs.

Translation scheme and modeling issues. A typical training scheme for an N-gram-

based SMT system is illustrated in Figure 2.9.

j— Parallel .
1 corpus j— Additional
— monolingual
J— —— corpus
Y v
; o .
Word class extraction |« Preprocessing Preprocessing

A
-si Word alignment
Tagged target-side LM 9 Target-side LM

Lexicon models

()
K

e S

Figure 2.9: Feature models estimation scheme. Data flow diagram.

Normally, parallel data is provided as already aligned on the sentence level, i.e., only
one-to-one links (one source sentence aligned to one target sentence) are found in the corpus.
However, in some situations, additional sentence or paragraph alignment is needed, which
can be done by splitting the training sentences by full stops on both sides of the bilingual

text when the number of stops is equal.
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The preprocessing step consists in tokenization!” and the application of language-dependent
morphology reduction algorithms, especially relevant for morphologically rich languages like
Spanish or Arabic.

Morphology reduction algorithms can include:

e Contraction separation. For example, del — de el, al — a el can be used when

translating to or from the English version of the and to the, respectively;

e Postfix or suffix splitting. For example, prepositions, conjunctions, articles, and future

marker separation may be useful for Arabic-to-English translation;

e Verbal forms splitting. For example, Spanish verbs, such as mdndaselo with gloss

send to him it, can be split into three single words manda/send, se/him, and lo/it);

Equivalence word class extraction can be done statistically in a language-independent
way according to the algorithm outlined in [Och99] or linguistically using POS taggers for
the target side of the training corpus.

In the following step, word alignment is performed by estimating IBM translation models
and finding the Viterbi alignment in accordance with them. This process is carried out using
the GIZA++ toolkit or BIA tool [Lam07a).

LM, tagged LM, and TM estimation are done with the SRI LM toolkit [Sto02]. Param-
eters and configuration of monolingual LM models for words and word classes, such as the
n-gram order (history length), smoothing technique and pruning strategy, are empirically
adjusted to minimize perplexity value measured on the preselected test dataset.

Since the tuples bilingual model is implemented as a standard n-gram model dealing with
“bi-language “, widely-known language modeling problems and challenges are still relevant
for this model. TM parameters can hardly be estimated as a function of perplexity computed
on a reference. Instead, the parameters are adjusted to maximize automatically measured
system performance (see §2.5). A comprehensive study and comparative analysis of different

smoothing techniques for bilingual n-gram models can be found in [dGO06].

17Simple normalization strategies tending to reduce vocabulary size without information loss (i.e., which
can be reversed if required). For example, separating punctuation marks, classifying numerical expressions
into a single token, and so on.
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2.3.5 Decoding and optimization

Decoding In general, SMT can be interpreted simplistically to be seen as a two-fold
problem consisting in modeling and search. While modeling is the subject of this Ph.D.
dissertation, the search part of the global problem is addressed by an in-house decoder
called MARIE®® [Cre05b, Cre08a]. The tool implements a beam-search algorithm with
reordering capabilities (i.e., an input permutation graph) and allows for three different

pruning strategies:

e Histogram pruning, which limits partial-translation hypotheses to the n-best ranked

instances;

e Threshold pruning, which discards the partial-translations with the score below a

certain threshold value;

e Hypothesis recombination, which is a risk-free strategy according to which partial-
translation hypotheses are seen by a decoder as identical in case if they coincide exactly

in both the present tuple and tuple n-gram history.

Scale factors optimization. Given a set of m feature model parameters A = \; ... A\,
and a corpus of K aligned sentence pairs (fi,e1), (f2,€2),...,(fk,ex) that do not overlap
either the training set or the test dataset, let F'(A) be a real-valued scalar function that
characterizes particular aspects of a training procedure to optimize the parameters A. The
optimization problem is then formally stated as:
A = arg max F(X) (2.18)
The parameters A are estimated to minimize the translation error, using a minimum error
rate (MER) iterative strategy as described in [Och03a]. Theoretically, the estimation criteria
should be entropy maximization in the development set, but in practice, it has been proven
to be too complex computationally. Instead, the BLEU metric, or a weighted combination of
translation quality metrics applied to one or more reference translations of the development
test, are used.
The optimization procedure is performed by a tool implementing the downhill sim-

plex [Nel65] or the SPSA [Lam06] algorithms. The method uses a geometrical figure called

¥http://gps-tsc.upc.es/veu/soft /soft /marie/
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‘ consisting in N dimensions of N + 1 points and all their interconnecting line

“simplex*
segments, polygonal faces, and so on. The starting point is a set of N + 1 points in param-
eter space, which defines an initial simplex. At each step, the downhill simplex algorithm
performs geometrical operations (that is, reflections, contractions, and expansions) until a
local minimum is reached. In our case, it adjusts the log-linear weights so as to maximize

an objective function. The optimization scheme is depicted in Figure 2.10.
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Figure 2.10: Optimization scheme. Flow diagram.

Translation quality is numerically estimated over the list of n best translations of the
development dataset. Inside the inner loop, the n-best list is first generated by the decoder.
Then, the optimization algorithm is used to minimize the translation error while rescoring
the n-best list and fine-tuning the values of the set of scale factors. Once the coefficients are
optimized, a new decoding cycle is launched and an updated n-best list is produced [Ber06].

The algorithm does not guarantee that the global minimum is found. Usually a multi-
start method for global optimization is used in order to decrease the probability that the
process is trapped in local minima. A rescoring process employs the same models used in the
overall search (i.e., decoding). The algorithm converges when no improvement in translation
quality is observed or when a maximum number of translations is achieved. More details

on the optimization procedure can be found in http://www.statmt.org/jhuws/.
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2.4 Syntax-based translation

In the next lines, we give a brief overview of the translation systems that model the trans-
lation process using parse tree structures since their underlying principles are directly con-
nected to the main contribution of this Ph.D. thesis. Since a detailed presentation of several
state-of-the-art reordering techniques based on syntax can be found in chapter 4, their de-
scription will be omitted in this section.

The main motivation of syntax-based TMs is to overcome widely-known problems in-
herent in SMT, such as:

e The data sparseness problem, which is even more serious when the source, target, or

both languages are highly inflected and rich in morphology.

e Long-distance reordering, since the statistical distortion model is only based on the

movement distance that causes a computational resource limitation [Och04].

e Dependencies difficult to capture with purely statistical methods (clause restructuring

or word order scheme transformation (SOV«<VOS), for example).

Linguistic syntax is a potential solution to many of these problems, as it accurately
models many systematic differences between source and target languages. That is why
the challenge of incorporating syntactic information in a statistical framework has been
of increasing interest to many researchers in the past several years. However, a concept
that seems elegant and promising at first glance has not achieved state-of-the-art results
until recently, when the scientific community’s perseverance was awarded with the creation
of well-performing hybrid MT systems combining natural language syntax and machine
learning methods. One of these systems is presented in [MarO6a], which has obtained
state-of-the-art results in Arabic-to-English and Chinese-to-English large-size data tasks.
Another very promising algorithm integrating syntax into hierarchical SMT is implemented
in the SAMT toolkit [Ven06] (see below).

Modern syntax-based systems operating with parse trees perform translation in two
separate steps, namely parsing and decoding. They can be classified in accordance with the
way syntax is used, whether syntax is used (1) on the source side only (tree-to-string),

(2) the target side only (string-to-tree), (3) or on both sides (tree-to-tree).
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Tree-to-string and string-to-tree approaches. Tree-to-string translation systems use
source-side language. The source-side dependency parsers induce target-language depen-
dency structures, as shown in [Men05] and [Lin04b]. As an alternative, several systems
make use of target-side syntax [Mar06a, Gal06, Cha03].

In [YamO1], a set of operations on each node of the parse tree is defined, and leaf nodes
are translated. Extra words are inserted at each node, while reordering is modeled by
permutations of children nodes. This approach is criticized for its high computational costs
and poor performance when dealing with non-grammatical input typical of spoken language.

The hierarchical TM introduced in §2.3.3 does not have any linguistic motivation, and
it is induced from a parallel text without linguistic annotations. Improvements are achieved
through context-free grammar (CFG). The open-source toolkit SAMT [Zol06] is an im-
plementation of the MT system, which provides further evolution of this approach. While
Chiang’s model operates with only two non-terminals (that is, a substantial phrase category
and “a glue marker) in [Zol06, Ven06], a significant improvement in terms of translation
quality has been reported if complete or partial syntactic categories (which are derived from
the target-side parse tree) are assigned to the phrases. SAMT was also implemented for
the MapReduce model [Ven09].

Figure 2.11 shows an example of the rule extraction procedure driven by the target-side
parse tree structure with underlying word-to-word alignment. The set of initial translation

rules is augmented with more complex rules constructed using a Combinatory Categorial

Grammar (CCG) [Ste00].

Tree-to-tree approach. A number of researchers have proposed models in which the
translation process involves syntactic representations of both the source and target lan-
guages. The formal description of many of these models is based on tree transducers, which
describe operations on tree fragments rather than on strings.

There has been a good deal of research on tree-to-tree theoretical methods. Among
these studies is [Mel04] in which some important theoretical results are discussed. A com-
prehensive theoretical framework for generalized synchronous parsing and translation using
multitexts? grammars is proposed. In [J.E03], non-isomorphic tree-to-tree mappings in the

context of the synchronous tree-substitution grammar formalism are discussed, although no

www.cs.cmu.edu/~zollmann /samt

20Parallel texts between an arbitrary number of languages.
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Figure 2.11: SAMT: example of rule extraction.

results are reported. [Gra04] present a tree transducer able to compute transformations on
trees.
The complete syntax-driven SMT system based on a two-side sub-tree transfer is de-

scribed in [Ima05]. The authors propose a probabilistic non-isomorphic tree mapping model
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based on a context-free breakdown of the source and target parse trees; they extract align-
ment templates that incorporate the constraints of the parse trees; and then apply syntax-
based decoding.

The idea of using synchronous grammars in probabilistic form for MT has been recently
presented by the Computer Science Group of the Harvard University. In [Shi07] a concep-
tual basis for thinking of MT in terms of synchronous tree-adjoining grammar is provided.
In [Nes06] is shown that a probabilistic synchronous variation of tree-adjoining grammar
can be useful for SMT.

In [Wu97], a formalism called inversion transduction grammar is described and used to
parse source and target languages synchronously with an inversion ordering rule. According
to the approach proposed by Wu, CFG rules simultaneously generate both non-terminal
symbols?! and terminal symbols. A natural trade-off between translation accuracy and
computational complexity is found.

In [Cow08], a statistical tree-to-tree mapping algorithm based on aligned extended pro-
jection, which is a parse-tree syntactical structure intending to model NLP phenomena and
used as a target-language structure when mapping from source parse tree to target language,

is performed.

Hybrid MT approaches. Some hybrid MT systems utilize methods from the phrase-
based approach, for example, by improving phrasal coverage [DeNO07].

A tree-to-tree Treelet approach projects a target dependency tree onto target-language
translation using word alignment [Qui05]. Once the projection is complete, dependency
treelets are extracted, and a tree-based ordering model can be trained.

[Mar06a] present a hybrid Chinese-to-English tree transducer implementation, that uses
target-language syntax to augment source-target phrase pairs. The probabilities of these
phrases are estimated as frequency counts and are employed in the context of a log-linear
framework.

A synchronous tree substitution grammar trained from the source and target language
parse trees serves as the engine of the Tectogrammatical English-to-Czech translation sys-
tem [Boj07]. The adopted chart parsing algorithm is described in [0.07]. A probabilistic
model assigns a conditional probability to each phrase, informing the decoder how probable

is the rule applied to a given pair of slot types.

2INon-terminal symbols are shared by both languages.
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2.5 Evaluation

Research on MT has revealed many difficulties, among which performance evaluation is one
of the most challenging and subjective tasks. Human evaluation of MT output remains the
most reliable method to assess translation quality, despite its costliness and time consump-
tion. To overcome some of the drawbacks of MT evaluation, many automatic evaluation
metrics that are much faster and cheaper than human-made evaluation have been recently
introduced. However, so far, the scientific community has not accepted unified criteria for
MT evaluation, as has been the case in the ASR field?2.

This section briefly describes common evaluation metrics used for the assessment of
translation quality and the error analysis technique of MT output, which makes possible

the identification of the most prominent source of errors in a given system.

Automatic evaluation Usually, the task of automatic translation quality evaluation is
performed by producing some kind of similarity measure between the translation hypothesis
and a set of human-made reference translations, which represent the expected solution of
the system.

The commonly accepted criteria that defines the quality of the evaluation metric is its
level of correlation with human evaluation. Another reason to have automatic measure of
MT quality is that human scoring can be subjective and may vary depending on the human
and his/her particular point of view with respect the correct translation.

As shown in [Eck05], the above-mentioned automatic measures have attained good cor-
relation results at the system level, while the degree of correlation achieved at the sentence
level, crucial for an accurate error analysis, is much lower.

Nowadays, there are several automatic measures widely used. Selection of robust and
consequent evaluation criteria is of crucial importance, as MT systems are normally trained

to optimize an automatic evaluation measure.

BLEU metric. The BLEU (Bilingual Evaluation Understudy) metric has been pro-
posed by [Pap02]. It calculates the geometric mean of the precision of n-grams (n € 1,... k,
where k refers to a BLEU order) between a hypothesis and a set of reference translations
with an exponential brevity penalty factor to compensate for inadequately short translations

(i.e., shorter than references), as shown in equation 2.19:

22Word error rate - WER.
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k

> blew;
BLEU, = eap | =2—— + LP (2.19)

where bleu; and LP (length penalty) are a cumulative count, updated sentence by sentence,
and refer to the whole evaluation corpus (test and reference datasets). bleu; is computed
by dividing the matching n-grams by the number of n-grams in the test dataset, as shown

in equation 2.20:

(2.20)

blew; = log <Nmatchedi>

Ntest;
BLEU implies a very high score with a short output, so long as all its n-grams are present
as a reference. Roughly speaking, one BLEU point represents a minor but appreciable
difference in the recovery of n-grams.

BLEU is mostly a precision metric, taking recall into account in a very simple way
by considering only the measure for sentence length; this component of BLEU acts like
a cheating detector. The introduction of the length penalty component is motivated by
the idea that if a candidate receives a high score then it must match the reference in
length, in word choice and in word order. If the candidate and reference translation are of
approximately the same length, a translation must produce the same words in roughly the
same order as the references in order to obtain a high precision score.

The formula for LP calculation is as follows:

(2.21)

LP = min {0‘1 _ ShOTtest_ref_length}

Ntesty

Nmatched;, Ntest; and shortest_ref_length scores are cumulative counts and are cal-

culated as shown below:

N
Nmatched; = Z Z min {N(testn, ngr),max {N(refy ngr)}} (2.22)

n=1ngres
where S is the set of n-grams of size ¢ in sentence test,. N(sent,ngr) is the number of
occurrences of n-gram ngr in sentence sent. N is the number of sentences that must be

evaluated. test; is the i-th sentence of the test set. R is the number of different references
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for each test sentence, and ref, , is the r-th reference of the n-th test sentence.

N
Ntest; = Z length(test,) —i+1 (2.23)
n=1
N
shortest_ref length = Z min {length(refy, )} (2.24)

n=1
Note that the final score is not computed by accumulating a given sentence score, but
instead matching counts are estimated on a sentence-by-sentence basis.
Despite being a useful characteristic and de facto standard in MT evaluation, BLEU
can often unnecessarily penalize syntactically valid but slightly altered translations with
low n-gram matches. It is specifically designed to perform the evaluation on a corpus level

and can perform badly if used over isolated sentences.

METEOR. The METEOR (Metric for the Evaluation of Translation with Explicit
ORdering) score is a metric for the evaluation of MT output, which is calculated as an
averaged mean of precision and benefited recall by considering stems and synonym matching.

It was introduced in [Ban05] and [Lav08], which showed that METEOR produces ad-
equate correlation with human judgment at the sentence or segment level, thereby distin-
guishing it from the BLEU metric in that BLEU seeks correlation at the corpus level.

The evaluation algorithm consists of two steps:

1. First, a set of mappings between unigrams from the translation output and the refer-
ence translation is iteratively created. Every unigram in the translation output must
map to zero or one unigram in the reference translation and vice versa. In any align-
ment, a unigram in one sentence cannot map to more than one unigram in another

sentence.

Three information sources are used in this step: “exact® words (preface forms), stems,
and WordNet synonyms [Mil91], with the default ordering of application as appears
in the text.

2. Once the alignment is produced, the sequence of matched unigrams between the two
strings is divided into the fewest possible number of “chunks* such that the matched
unigrams in each chunk are mutually adjacent and in identical word order. Then, the

METEOR score for this pairing is computed as follows:
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METEOR = (1 — penalty) - Fean (2.25)

where

penalty =~ - frag” (2.26)

~y scales penalty value (0 < v < 1); frag = ch/m is a fragmentation fraction calculated
as a ratio between the number of chunks ch and the number of matches m. The value

of 0 determines the functional relation between fragmentation and penalty.

P-R
Fmean: 2.27
a-P+(1—a)-R (2:27)

where precision P = m/t, recall R = m/r. m refers to the number of mapped
unigrams found between two strings, ¢ refers to the total number of unigrams in the

translation, and r refers to the number of unigrams in the reference.

The free parameters in the metric, namely «, 2 and ~, are highly language dependent,
as shown in [Lav07], and must be fine-tuned to achieve maximum correlation with human
evaluations. In the framework of this dissertation, the parameters are set to the following
values: @ =0.9, 3 =3, v=0.5%

The metric evaluates a translation by computing a score based on explicit word-to-word
matches between the translation and a reference translation. If more than one reference
translation is available, the given translation is scored against each reference independently,
and the best score is reported.

The main problems with METEOR are its limited area of application (at present, it
can be used for English, Spanish, Czech, French, and German) and its evaluation speed
(METEOR performs much slower than BLEU).

Other automatic evaluation metrics. There are many other evaluation metrics
that have been recently proposed and claim a strong correlation with human intuition. In

the next few lines, we briefly outline the most important measures:

23The parameters are optimized for English. Strictly speaking, due to high need for linguistic tools, only
the English version of METEOR is fully supported at the moment.



2.5. Evaluation 43

e NIST. The NIST scoring system, developed by the National Institute of Standards
and Technology, is a sensitive metric of MT quality. It is based on the BLEU
score but weights n-grams in order to mark less informative n-grams with higher
weights [Dod02]. It is again based on n-gram precision, but it employs the arithmetic
average of n-gram counts rather than a geometric average. Consequently, the n-grams
are weighted according to their information contribution, as opposed to just counting
them, as in BLEU.

The idea behind this metric is to offer a higher evaluation if a system provides an
adequate translation of a difficult segment (that is, it obtains an n-gram match that
is rare), but to offer a lower evaluation an n-gram match that is easy. The NIST

metric has the same weak points as BLEU.

e The WER or mWER. The word error rate or multireference word error rate was
introduced in [McC04] as a standard speech recognition evaluation measure and is cal-
culated as the minimum word-level Levenshtein distance between a translation system
output and a reference translation. The WER is the minimum number of substitution,
insertion and deletion operations that have to be performed to convert the generated
sentence into the reference target sentence. In case of multiple references, a whole set
of reference translations is used. For each translation hypothesis, the edit distance to
the most similar sentence is calculated, so that the final measure for a given corpus is

based on the cumulative WER for each sentence.

e The PER and mPER. The position-independent word error rate or multireference
position-independent word error rate is a variation of (m)WER metric, alleviating the
effect of a possibly different word order between an acceptable translation hypothesis

and reference translation(s) [Til97].

e ORANGE and IQMT. Finally, there are several works devoted to designing a
uniform metric that considers information at distinct linguistic levels and permits
combining metric scores into a single measure of MT quality. In this case, automatic
evaluation is considered the application of similarity metrics between a set of candidate

translations and a set of reference translations.

The Oracle RANking for Gisting Evaluation (ORANGE) [Lin04a] is defined as the

ratio between the average rank of the reference translations within the merged list of k&
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best-produced translations and reference translations and the size of the list. However,

ORANGE does not allow the simultaneous consideration of different metrics.

The Inside Qarla Machine Translation (IQMT) evaluation framework is presented
in [GimO06]. This tool follows a “divide and conquer“ strategy so that one can define a
set of metrics and then combine them into a single measure of MT quality in a robust

and elegant manner, avoiding scaling problems and metric weightings.

Human evaluation Human-driven methods of MT evaluation require a certain degree
of human intervention in order to obtain a quality score. Manual evaluation is performed
by human judges, which are instructed to estimate the performance of a system based on a
sample of its output. For the most part and thanks to their linguistic competence, bilingual
language users are able to perform an intuitive evaluation on the quality of MT system
output and can be considered the reference for a number of language processing tasks.

However, there is also considerable variation across their ratings due to many aspects,
such as task- and domain-dependence, the evaluator level of conscious linguistic knowl-
edge, some personal evaluator preferences (such as whether the evaluator weighs content or
grammar highest) or dynamic learning from evaluation (e.g., evaluating different types of
errors would allow one to distinguish among systems that perform more or less the same).
Because of these reasons, the automatic evaluation is sometimes referred to as an objective
evaluation, while the human kind appears to be more subjective.

The three most popular strategies of human evaluation are described below:

1. Adequacy-fluency.

Accuracy and fluency is a widespread means of manual evaluation. Usually, these
measures of generated translation are evaluated according to a 1 to 5 quality scale.
Fluency indicates how natural the hypothesis sounds to a native speaker of the target
language. Adequacy is assessed after the fluency judgment is done, and the evaluator
is presented with a certain reference translation and must judge how much of the
information from the original translation is expressed in the translation by selecting

one of the proposed grades.

2. Ranking.
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A simplified approach that has been gaining popularity in the last evaluation cam-
paigns is the ranking of sentences. Annotators have to rank up to five sentences
from best to worst relative to the other choices, with ties usually allowed. As stated
in [CB07, CBO08], this approach yields both greater inter- and intra-annotator agree-

ment.

3. Post-editing.

Another trend is to manually post-edit the references with information from the test
hypothesis translations so that differences between a translation and reference ac-
count only for errors; in this case, the final score is not influenced by the effects of
synonymy. The human targeted reference is obtained by editing the output with two
main constraints; that is, the resultant references must preserve the meaning, and it

must be fluent.

In this case, we refer to the measures as their human-targeted variants, such as
HBLEU, HMETEOR, or HTER, as in [Sno05]. These measures are rooted the
paradigm of semi-automatic evaluation metrics for interactive MT, which advocates
for counting metrics like KSR (key-stroke ratio), the number of key-strokes required
to produce the single reference translation, or MAR (mouse-action ratio), which mea-

sures the number of mouse pointer movements [Civ06].

Unfortunately, despite its promising potential, post-editing evaluation techniques are

costly and cannot be used to evaluate minor system improvements.

The manual evaluation of MT output is extremely time-consuming and expensive to per-
form, and so comprehensive comparisons of multiple translation systems are rare. However,
mostly thanks to international evaluation campaigns aiming to set up a fair framework
for objectively comparing different MT systems, human evaluation metrics are also used
in order to compare different systems. An overview of the most relevant MT evaluation

campaigns can be found in Appendix C.



Chapter 3

Improved Language Modeling for
SMT

As an important part of any MT system, language modeling has not received much special-
ized attention within the SM'T community, which has preferred to focus on more specialized
translation models, decoding algorithms, and training techniques. In contrast, in other fields
of NLP, particularly in ASR, there exists a large body of research that addresses the specific
problems of statistical language modeling. To a great extent, this discrepancy is a conse-
quence of noisy experimental results and inconsistencies between a LM configuration and
a translation system performance. However, recent progress in the availability of training
data has made the application of such monolingual techniques quite promising since typi-
cally the greater amount of data is used to estimate the parameters of the LM, the better
the LM performance is.

In this chapter, we first cover major works in the area of language modeling (§3.1)
including probabilistic models and language modeling using syntactic structure. We then
present three methods of LM enhancement. In §3.2, we report on the experiments regarding
standard SMT system adaptation to the verbatim translation tasks by general and specific
target-side LMs interpolation. In §3.3, we present our experiments on threshold-based LM
pruning for LMs of different history length and describe the impact of an accurate cut-off
threshold selection for both the model size and LM noisiness.

§3.4 reports a different language modeling technique based on a continuous-space LM
representation trained in artificial neural networks (NN). For the most part, this approach

aims to improve translation quality for tasks that lack translation data. The scores produced
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by the continuous-space LM are assigned to each sentence from a pre-calculated list of
n best-translation hypotheses. In the next step, the list is rescored selecting the best

translation by taking into account the score generated by the continuous-space LM.

3.1 Related work

Techniques for language modeling can be classically decomposed in three main approaches.

Statistical language modeling

The first class of approaches includes statistical corpus-based probabilistic models, which is
a powerful and simple method for language modeling. Traditionally, statistical LMs have
been designed to assign probabilities to strings of words (or tokens, which may include punc-
tuation) according to the so-called n-gram models. These models assign high probabilities
to frequent sequences of words by considering the history of n — 1 preceding words in an
utterance. As such, they have comprised a de facto standard for language modeling in the
state-of-the-art SMT systems [Zen02, Mar06b, Che05, Ven06]. The idea behind the n-gram
model consists in dividing sentences into fragments that small enough to be frequent (and
thus appear in the corpus) but are large enough to contain some language information. The
probability of each fragment is then calculated. A sentence that contains many frequent
fragments is placed in good order and should have a high probability.

One related issue is that n-grams that do not occur in the corpus will be assigned
a zero probability and will void an entire sentence’s probability. The most prominent
technique to avoid this loss of generality is through the use of a smoothing algorithm, which
redistributes probability from observed events to unobserved ones (back-off ). There are a
lot of smoothing methods proposed over the past few years that follow different strategies
with the common idea of taking some of the probability “mass® (normally, a very small but
positive value) from the known n-grams and redistributing them to the unseen ones. An
excellent discussion of smoothing techniques for n-gram LMs may be found in [Che99].

However, one obvious disadvantage of the n-gram model is that it can not capture
the long-distance dependencies in data. Various alternative algorithms have been recently
proposed.

The skip LM [Ros94, Mar99] gets influence of words further away without increasing

dimensionality by skipping some words in the word history in a probabilistic way. It allows
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to condition word probability on the context different from the previous n — 1 words and
estimate long-range dependencies probabilistically. A widely-known SRI LM toolkit [Sto02]
includes skip LM in a package.

The trigger language model, which was described in [Lau93, Ros94, SM07], is designed
to model the fact that content words are more likely to be used repeatedly within a single
conversation than to occur evenly spread throughout all speech. In other words, a trigger
feature indicates the number of times in a conversation that a certain word is seen preceded

by a previous instance of this word.

Syntax-based language models

The second type of LMs includes syntax-based LMs incorporating syntactic structure with
the standard n-gram model. To a certain extent a bunch of publications on the syntax-
based language modeling, appeared in recent years, is explained by the recent progress in
statistical parsing.

[Cha03] demonstrates how LMs might be improved by adding syntactic structure by
rescoring a tree-to-string translation forest with a lexicalized parser comprising synchronous
context-free grammars. Other parsers operating in a left-to-right manner attempt to build
the syntactic structure incrementally while traversing the sentence from left to right [Che98,
Xu03] or make use of semantic dependencies in a maximum entropy model for accurate
language modeling [Wu99].

The model proposed in [Sar07] tends to reduce the number of out-of-vocabulary words
preserving the predictive power of the whole words for the task of SMT. It also allows
incorporation of additional available semantic, syntactic and linguistic information about

the morphemes and words into the language model.

Factored language models

Another approach to language modeling includes factored language representation, which
treat each word is not only a token, but a vector of factors that represent a variety of ad-
ditional information sources (lemmas, part-of-speech tags, etc.). According to the factored
LM, presented in [Bil03, Kir05], each word is dependent not only on a single stream of
temporally preceding words, but also on its other factors given the factorized history. This

representation is considered as an extension of the n-gram word-based language modeling
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to tightly integrate additional information, in order to exploit sparse training data more
effectively.

An alternative to the aforementioned factored model is a LM extension with lexical lin-
guistic representations (“supertags‘), associated with at least one lexical item. “Supertags®
employment assigned for each word according to Lexicalized Tree-Adjoining Grammar and
Combinatory Categorial Grammar is described in [Has07], while the usefulness of their in-
tegration into the target-side LM and the target side of the translation model is shown
in [Has08].

3.2 Language modeling for verbatim translation tasks

The challenge of adapting LM to a specific task has been largely reinvented in the last twenty
years, like many other computational problems. Language modeling is a key component
of any SMT system; however, monolingual training material available for some specific
translation tasks often is not enough to estimate a well-performed LM. The quality and
quantity of the monolingual data mostly determines the quality of the LM and, indirectly,
of the translation output.

At the same time, there are huge amounts of monolingual data available from popular
domains (news domain, for example). Many systematic distinctions between datasets from
different data domains can be considered, namely average sentence length, vocabulary, and
SO On.

These data can be efficiently used for language modeling in SMT tasks. An extended
target-side LM is obtained by considering additional information from alternative monolin-
gual sources. This LM is actually computed according to one of the algorithms that imple-
ments an interpolation of independently computed in-domain and out-of-domain LMs. In
the case of linear or log-linear interpolation, the weights of the combination are adjusted so
that translation system performance is maximized with respect to a given test dataset.

The idea of LM adaptation for SMT has been around for years. For example, in [Hil05],
information retrieval methods are used to form an adapted training corpus by selecting
sentences similar to the test set. In [Xu07], a domain-specific phrase-based system is
constructed exploiting a combination of feature weights to discriminate multiple domains.
In [Sch08], several accurately selected target-side LMs are interpolated in a linear way.

[Fos07] presented various LM combinations and analyze in detail the challenges to LM
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domain adaptation.

One of the main motivations beyond the research work presented in this section is the
opportunity to expand existing and optimized algorithms of LM domain adaptation to the
wider problem of task adaptation. Here, we try to specialize the translation system trained
on the “pre-edited“ data to a different task of verbatim speech translation by optimizing

the target LM, which is one of the features contributing to the N-gram-based SMT system.

3.2.1 Task description

LM task adaptation experiments have been conducted within the framework of the sec-
ond open evaluation campaign®® organized by the European TC-STAR project?®. Two
translation directions are considered: Spanish-to-English and English-to-Spanish.

The Spanish and English languages exhibit slightly different characteristics with respect
to word order, for example, which may affect the role of the target LM.

Three input conditions were proposed to the participants:

e An EPPS (European Parliament Plenary Session transcription) plain text run (FTE
- Final Text Edition);

e A verbatim dataset;

e The output of an automatic speech recognition system (ASR. output)?®.

The FTE of an EPPS is a main run of the evaluation. It is a manually corrected clean
transcription of Kuropean Parliament Plenary Sessions that slightly differs from the ver-
batim ones. Some sentences are rewritten. The text data do not include transcriptions
of spontaneous speech phenomena. In this context the FTE run can be described as a
“formal “-style translation of the original speeches given by politicians, which is not a ver-
batim transcription or “literal“ translation but rather a text that aims for easy readability.

Verbatim transcription includes spontaneous speech phenomena (e.g., hesitations, false-

starts, half-words, and corrections). The text data is case sensitive with punctuation marks.

2http:/ /www.elda.org/en/proj/tcstar-wpd/tes-run2.htm

ZTechnology and Corpora for Speech to Speech Translation

263ee Appendix B for details about the project’s framework, and see Appendix C for further details about
participation in the international evaluation campaigns.
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AST output is the “raw“ run that is taken directly from the automatic speech recog-
nizer. The text is also case sensitive, and punctuation marks are provided. The data are
automatically segmented at syntactic or semantic breaks.

The difference between FTE, verbatim, and ASR texts is illustrated in the example

below:

FTE: I am starting to know what Frank Sinatra must have felt like

Verbatim: I'm I'm I'm starting to know what Frank Sinatra must have felt like
ASR outuput: and i'm times and starting to know what frank sinatra must have
felt like

In this study, we deal with the verbatim run.

3.2.2 Corpora

For this study, we had two task specific training corpora at our disposal: a Spanish-English
parallel FTE corpus containing 1.3 M of running words and a smaller EPPS verbatim
monolingual corpora with 70 K words for Spanish and 73 K for English. Both corpora
belong to the same domain (i.e., plenary session transcription), but they are characterized
by different edit levels. For a detailed description of the EPPS (EuroParl) FTE and EPPS
verbatim corpora, refer to §A.1 and §A.2 in Appendix A, respectively.

For both tasks, only the first 500 sentences from the development datasets (Dev 5K )
were used to find the best combination of weights when interpolating FTE and verbatim
LMs; the same sentences were used to fine-tune the system models. Testing was conducted

over the complete test sets.

3.2.3 LM task-dependent interpolation

Two main problems need to be solved to adapt a SMT system to a particular domain or
task. The first one is how to build task-specific SMT systems when training; the second
is how to perform task adaptation during decoding. For the first problem, we adapt a
LM mixing procedure interpolating the task-dependent LMs with optimized weights. The
second problem is solved in a straight-forward way by incorporating the interpolated LM
into a set of feature models used by the decoder to replace the initial LM.

For each target language, we build two task specific LMs: Py (LM € 1,2), where P;
refers to the EPPS FTE LM, P, to the EPPS verbatim LM. Following the maximum-entropy
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LM optimization, we adjust the weight coefficients A; and Ay (A2 = 1 — A;) to obtain an
adapted LM:

P(w) :)\1'P11U+)\2~P2w (31)

where PV and P’ are probabilities assigned to the word sequence w by the LM estimated
on FTE and verbatim data, respectively.

The mixing procedure was conducting using the linear interpolation algorithm and was
implemented with the n-gram tool from the SRI language modeling toolkit [Sto02], which
allows to read the second model for interpolation purposes and adjust weight coefficients
when interpolating the principal model.

A straightforward way to optimize the weight coefficients of interpolated LMs is to use
perplexity measured on a pre-selected development corpus, which is a popular and easy
measure of LM quality. Perplexity can be intuitively interpreted as the geometric mean of
the branching factor of language [Jel97]. A language with perplexity = has roughly the same
difficulty as another language in which every word can be followed by x different words with
equal probabilities.

However, it is not absolutely clear if perplexity is a good criterion to predict improve-
ments when the LM is used in a SMT system. The LM’s lack of direct influence at the word
sequence production, aggregation and scoring steps makes it difficult to precisely correlate
the perplexity of the LM with the metric of translation quality. Without a direct link be-
tween a LM’s perplexity and the BLEU score of a translation system that uses it, guiding
the construction of a LM for translation can be difficult.

Therefore, we optimize the coefficients directly as a function of the BLEU score measured
on the output of the translation system, providing a more robust fine-tuning of the system.

However, we report perplexity results for information purposes. Even if perplexity does
not always yield a high correlation with SMT systems performance, it is still an indicator
of LM complexity as it gives an estimate of the average branching factor in a LM [Den05].

An adequate algorithm for such a task is the single-parameter Ezpectation-Mazimization
(EM) algorithm [Dem?77], which mitigates this challenge by considering it an instance of
an unsupervised learning technique. The EM algorithm was applied to optimize the BLEU
score by iteratively adjusting the weights for FTE and verbatim LMs within the optimization
loop. The EM iterative step is repeated until the improvement in BLEU is below 0.01%.

For clarity’s sake, the EM algorithm was used on each iteration only to select the values
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of Aprerym and Aperpatimg, v- Furthermore, the FTE and verbatim LMs are interpolated
using these coefficients, and the adapted LM, among other feature models under consider-
ation, is passed to the simplex optimization module to implement the standard single-loop
optimization algorithm, as described in [Cj09].

The flow diagram illustrating the optimization procedure can be found in figure 3.1.

v v
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SRI LM

t Optimization loop

EM optimization
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|BLEU score

i WP - Word Penalty model
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backward lexicon models
POS LM - target-side POS LM
TM - translation model

Final model weights

Figure 3.1: SMT system with adapted LM. Optimization procedure.
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3.2.4 System description

Results are reported for verbatim N-gram-based translation systems trained on the FTE
parallel training corpus using an adapted target-side FTE-verbatim LM in the log-linear
feature combination. A summary of the most important system characteristics for each

translation direction is presented in Table 3.1.

Verbatim run
English-to-Spanish ‘ Spanish-to-English
Word alignment GIZA++
Symmetrization Union
NULL-source tuples IBM1 model
Embedded words Yes
™ 5-gram, Kneser-Ney discounting
LM 4-gram, Kneser-Ney discounting
Other features WP, LEX1, LEX2, POS LM
POS LM 5-gram, Good-Turing discounting
Decoding Monotonic, beam=>50 (10 during optimization)
Pruning Histogram, tnb=30 Histogram, tnb=20
Reordering No ABC
Optimization criteria BLEU

Table 3.1: Verbatim system parameters.

Notes to table:

ABC' - word reordering based on alignment block classification, as described in [CjO8b],
tnb - the number of most frequent tuples for each source-side instance which are kept
when decoding.

POS TNT tagger [Bra00] and Freeling tagger [Car04] were used for English and Spanish
corpora tagging, respectively. All BLEU scores are case sensitive with punctuation marks
considered.

Notice that target-side POS LMs were not interpolated since word class data is not
informative enough to adapt a SMT system to a particular task of verbatim translation.
More details can be found in §C.1.1 and [Mn06].
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3.2.5 Experiments and results

We consider the evolution of system performance as a function of the weight combination
corresponding to the FTE and verbatim target-side LMs within the adapted LM. The
baseline (BL) is the FTE system without the use of the verbatim LM (Ayerpatimry = 0).

We also consider the use of only verbatim LM (Aprgrar = 0).

Development results. The BLEU score obtained for the development sets as a result
of the simplex optimization procedure for some FTE-verbatim LM interpolation points
are presented in Tables 3.2 and 3.3. Best scores and corresponding system configurations
are placed in cells filled with grey. Graphical representations of the obtained results are

provided in Figures 3.3 and 3.2.

FTE | VBT | BLEU Dev FTE | VBT | BLEU Dev

1.0 (BL) | 0.0 44.05 1.0 (BL) | 0.0 50.53
0.9 0.1 44.39 0.9 0.1 50.66
0.8 0.2 44.01 0.8 0.2 50.84
0.5 0.5 43.90 0.5 0.5 50.76
0.2 0.8 43.52 0.2 0.8 50.92
0.1 0.9 43.17 0.1 0.9 50.99
0.0 1.0 42.03 0.0 1.0 50.97

Table 3.2: Results for English-to-Spanish Table 3.3: Results for Spanish-to-English
system (Dev). system (Dev).
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English-to-Spanish Spanish-to-English
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Figure 3.2: Results for English-to-Spanish Figure 3.3: Results for Spanish-to-English

system (Dev). system (Dev).

The performance of the translation system varies for the different LM configurations.
The highest final BLEU score was given by the system corresponding to the “0.1 FTE-0.9
VBT*“ configuration for Spanish-to-English translation task and to the “0.9 FTE-0.1 VBT*
for English-to-Spanish task. LM adaptation allowed a gain of about 0.5 BLEU points with
respect to the baseline FTE system for the Spanish-to-English task and a gain of about
0.35 BLEU points for English-to-Spanish translation.

Test results and examples. We also investigated the BLEU scores obtained on the offi-
cial test data of the 2nd TC-STAR open evaluation campaign. The results are summarized
in Tables 3.4 and 3.5 and are depicted in Figures 3.4 and 3.5.

FTE VBT | BLEU Test FTE VBT | BLEU Test
1.0 (BL) | 0.0 44.19 1.0 (BL) | 0.0 52.24
0.9 0.1 44.46 0.9 0.1 52.49
0.8 0.2 44.48 0.8 0.2 52.83
0.5 0.5 44.75 0.5 0.5 52.81
0.2 0.8 44.06 0.2 0.8 52.87
0.1 0.9 43.62 0.1 0.9 52.72
0.0 1.0 42.71 0.0 1.0 52.63

Table 3.4: Results for FEnglish-to-Spanish Table 3.5: Results for Spanish-to-English
system (Test). system (Test).
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English-to-Spanish Spanish-to-English
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Figure 3.4: Results for English-to-Spanish Figure 3.5: Results for Spanish-to-English
system (Test). system (Test).

It can be seen that despite the absolute maxima achieved on the test and the variance
of the development corpora, the general trend of dependence and the shape of the graph
BLEU-interpolation point are consistent with results obtained on the development corpus.

In contrast to frequently observed situations, when the improvements on test data are
smaller than those on the development data, the N-gram-based system with adapted LM
outperforms the BL by ~0.6 BLEU points.

Regarding the Spanish-to-English task, the “0.0 FTE - 1.0 VBT system again out-
performs the system using FTE LM only by about 0.4 BLEU point. The optimal points
maximizing the BLEU score on the test corpus are observed near the equal-weighted con-
figuration.

Table 3.6 shows perplexity measured on a concatenation of both reference translations

of the test corpus.

Configuration Perplexity

FTE VBT || English-Spanish | Spanish-English
1.0 (BL) | 0.0 63.33 72.44

0.9 0.1 61.27 67.63

0.8 0.2 63.21 67.51

0.5 0.5 75.43 72.65

0.2 0.8 111.51 90.67

0.1 0.9 148.01 106.64

0.0 1.0 150.11 138.74

Table 3.6: Perplexity results for English-to-Spanish and Spanish-to-English systems.

A comparison of LMs done on the perplexity basis allows for contrasting LMs with
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respect to their usefulness for particular corpora. Minimal perplexity corresponds to the
lowest uncertainty of language events as described by a given LM.

As expected, the system weighting the verbatim LM more than the FTE one shows
poor perplexity for FTE data for both tasks. However, this system’s configuration achieves
surprisingly good performance for the Spanish-to-English track. In this case, translation is
driven for the most part by the bilingual TM, while a low-vocabulary and high-perplexity
specific-target LM is assigned with a low weight as a result of simplex optimization.

For the English-to-Spanish translation, the scores are more correlated with perplexity
values. This is probably due to optimization procedure imperfections, which cannot exclude
the negative factor of verbatim but only target-side LM. The best improvements were
obtained for the points close to the FTE configuration that correlate with the minimal
perplexity criteria.

In addition to perplexity and BLEU scores, we give an example of typical translations
done by the FTE and adapted N-gram-based systems. Examples show how the adapted
LM can have an influence on the translation decision and correct some errors caused by
noisy input. Apart from simple input filtration (e.g., hesitations, repeated words, and other
spontaneous speech effects removal), the adapted target-side LM manages to improve the
fluency of the translation, as shown in the Spanish-to-English example.

In case of English-to-Spanish translation, adapted LM eliminated the hesitation (“eh*)
and produced the more fluent translation of the English phrase “I have to say“, that is

“tengo que decir que ‘.

3.2.6 Conclusions

In this section of the chapter, we presented a brief study of the possible ways to improve
verbatim texts translation by means of applying modified LM to the N-gram-based trans-
lation system. The baseline translation system represents a UPC-TALP submission to the
TC-STAR 2006 Evaluation Campaign (verbatim run). We have discussed the task adapta-
tion issue in the context of SMT systems and have proposed a statistical method to build
task-specific SMT systems through task-dependent language modeling.

Here, task adaptation during the translation of test sets is implemented to solve mono-
lingual text classification problems. We have demonstrated that the proposed technique
provides better generalization for both considered target languages and corresponding trans-

lation tasks, namely English-to-Spanish and Spanish-to-English translation directions.
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Spanish-to-English

Spa.: mno , no , senor Mote , no la he recibido
Gloss: no , no , Mister Mote , no it have received
Eng. ref.: > no , Mister Mote , I have not received it . ’

FTE transl.: no , no, Mr Mote , not I have received .
Adapted LM transl.: no , Mr Mote , I have not received it .

A generated clause with wrong word order “not I have received* was corrected by the
adapted LM to the more fluent phrase “I have not received “.

English-to-Spanish

Eng.: wh I have to say that I disagree fundamentally with that approach
Gloss: eh tengo que decir que discrepo totalmente con ese enfoque

)

Sp. ref.: 7 tengo que decir que discrepo totalmente con ese planteamiento .
FTFE transl.: eh he de decir que , fundamentalmente , discrepo con este enfoque .

Adapted LM transl.: tengo que decir que , fundamentalmente , discrepo con este enfoque .

The fact that the adapted LM can also be applied to other NLP tasks raises the prospect
of using the presented algorithm for speech recognition and information retrieval.
As an alternative approach, an additional verbatim LM can be also included in the set

of functions combined in a log-linear way.
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3.3 Threshold-based target-side LM pruning

A well-known fact is that LMs can reach a tremendous size and sometimes cause a memory
overflow problem. Since a LM is an integrated component or additional feature of a trans-
lation system, it significantly affects the system performance. A LM pruning strategy is
definitely needed, as it reveals an efficiency-performance trade-off, which generally causes
performance degradation for smaller models. However, carefully determined pruning strate-
gies can significantly accelerate the translation process, save disk space, and even increase
translation quality by means of reducing system noise.

While possible ways of TM threshold pruning were shown in [dGO06], this part of the
Ph.D. research is dedicated to a target-side LM pruning strategy based on rational threshold

selection.

3.3.1 Target-side LM pruning experiments

The commonly-used strategy of counts cut-off (threshold pruning) (Goo0OOb] implies that all
n-grams occurring less than a certain number of times are discounted to zero. According
to this pruning model, long n-grams occurring less than a certain predetermined number of
times in the training material are considered as important as all n-grams that do not occur
at all.

A set of threshold values is defined for each n-gram order; in a “complete® system, the
threshold would be 1 for all the n-grams. Large counts (i.e., numbers of occurrence) are
taken to be reliable, and thus, they are not subject to any discounting. Therefore, this
strategy is efficiently used for large n values, and it has as a consequence less costly models
with improved performance. The unigram threshold is permanently set to 1, as we do not
intend to reduce n-gram vocabulary.

The issue of LM size reduction was considered in many recent works (for example, [Gao02,
Goo00a]). However, the interaction between LM pruning strategy and smoothing technique,
which is normally applied to avoid zero probability estimates for unseen data, has received
a lot less attention. The only study, to our knowledge, is [Sii07], where the results are
given in terms of perplexity and cross-entropy, and are not directly related to SMT. It is
shown in [Sii07] that n-grams seen only a few times can be discarded without significantly
degrading the LM and we expected a similar behavior in relation to final translation scores.

The LM pruning was performed using the SRI language modeling toolkit [Sto02], which
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enables users to set a minimal count of n-grams included in the LM for each n. The
experiments were conducted on the EPPS Spanish-English corpus (FTE run). Corpus
statistics can be found in §A.1 (Appendix A).

Major features of the translation system used in experiments are presented in Table 3.7.

The BLEU score is case insensitive and includes punctuation marks.

FTE run
English-to-Spanish ‘ Spanish-to-English
Word alignment GIZA++
Symmetrization Union
NULL-source tuples IBM1 model
Embedded words No
™ 4-gram, Kneser-Ney discounting
LM 3-gram, 4-gram, 5-gram unmodified Kneser-Ney discounting
Other features WP, LEX1, LEX2
Decoding Monotonic, beam=>50 (10 during decoding)
Pruning Histogram, tnb=30 Histogram, tnb=20
Reordering No ABC
Optimization criteria BLEU

Table 3.7: LM pruning experiments. N-gram-based SMT system parameters.

The experimental results both for the development and official 2006 test datasets are
shown in Table 3.8. Best scores and corresponding pruning configurations are placed in
cells filled with grey.

Experiments on the unpruned high-ordered models have not been performed due to a
lack of memory resources and decoder limitations. Consequently, the minimally pruned
system configuration includes threshold 2 for 4-gram and 5-gram LMs and threshold 1 for
low-order n-grams.

The LM configuration that provides the best trade-off between BLEU score and model
size is the 4-gram model with thresholds set to 2 for 4- and 3-grams and 1 for unigrams and

bigrams (that is, the 4-2211 system configuration).

3.3.2 Discussion and conclusions

SMT decoding can be considered a computationally intensive process in which model size
is a crucial factor that has a significant influence on decoding time. The threshold set-

ting considerably reduces the model size, while the BLEU score remains constant or even
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Pruning threshold BLUE Model size, millions

Ngramorder 97314 5 | Dev [Test | 1 [ 2 [ 3 | 4 [ 5

Spanish-to-English
- - 65.28 | 56.41 | 0.11 | 2.29 | 9.43 - -
- - 65.18 | 56.84 | 0.11 | 2.29 | 2.95 - -
- 65.20 | 56.38 | 0.11 | 2.29 | 2.95 - -
- 65.50 | 56.66 | 0.11 | 2.29 | 9.43 | 3.74 -
- 65.59 | 56.81 | 0.11 | 2.29 | 2.75 | 3.74 -
- 65.55 | 56.74 | 0.11 | 0.99 | 2.75 | 3.74 -
2 65.32 | 56.85 | 0.11 | 2.29 | 9.43 | 3.45 | 3.40
2 65.10 | 56.82 | 0.11 | 2.29 | 2.75 | 3.45 | 3.40
2 65.18 | 56.42 | 0.11 | 0.99 | 2.75 | 3.45 | 3.40

English-to-Spanish
- - 55.94 | 49.63 | 0.14 | 2.52 | 9.52 - -
- - 55.38 | 50.23 | 0.14 | 2.52 | 2.93 - -
- 55.64 | 49.79 | 0.14 | 1.03 | 2.93 - -
- 55.79 | 49.71 | 0.14 | 2.52 | 9.52 | 3.86 -
56.07 | 50.13 | 0.14 | 2.52 | 2.68 | 3.86 -
55.90 | 49.57 | 0.14 | 1.03 | 2.68 | 3.86 -
55.84 | 50.07 | 0.14 | 2.52 | 9.52 | 3.52 | 3.67
55.54 | 49.69 | 0.14 | 2.52 | 2.68 | 3.52 | 3.67
55.49 | 49.93 | 0.14 | 1.03 | 2.68 | 3.52 | 3.67

W
N = =N =N = e
NN =N DD DN =
DN NN DO

W
N = =N = =N = e
NN =N =D DN =
DN NN DO

DN DN DO

Table 3.8: LM pruning experiments. Model sizes and BLEU scores on the development and
test data.

increases.

Just as in the case of TM pruning described in [dGO06], setting thresholds to 2 produces
a very important model size reduction, whereas translation performance remains stable or
even increases for both tasks. This means that about 7 million of the 3-grams turn out
to be more useless than useful as part of the N-gram-based MT system. It allows for the
reduction of the model size without losing translation quality.

In the following experiments, the LM pruning strategy of setting the threshold 1 to
unigrams and bigrams and 2 to all the higher-order n-grams (if any) will be adopted.

Another conclusion that can be drawn from this study is that the increase in LM his-

tory length does not directly improve the system performance, as no correlation between
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LM order and final BLEU score is observed. It can possibly be explained by the specific
character of the N-gram-based system and the particular role played by the target-side LM
as an additional feature. The results presented in this section correlate with the research
findings from [Goo0Oa, Sii07] concerning effective LM pruning strategy and demonstrate
the usefulness of the threshold LM pruning when applied to SMT.

An interesting area to work on in the future is to include a threshold-based pruned LM

into the set of feature functions of the phrase-based SMT system.
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3.4 Neural network language modeling

In the third part®” of this chapter, we step aside from traditional language modeling tech-
niques and introduce a continuous-space LM based on a neural network to exploit its ability
to learn distributed representations in order to reduce the impact of the curse of dimension-
ality. We also show that this can be used to improve an N-gram-based SMT system using

an example of a small Italian-to-English translation task.

3.4.1 Motivation and computational issues
Problem discussion

Regardless of the approach that a SMT system follows, it typically takes as its basis a
maximum entropy approach in which the target language sentence is seen as distorted
by the channel conditioned by a set of feature functions in the foreign language. This
combination normally includes a target-side LM, which informs a translation decoder and
provides it with an idea of the correctness of a given sentence and, in our case, of the fluency
of the translation hypothesis.

The approach presented in this section can be considered a coherent and natural evolu-
tion of the probabilistic LMs. We propose to use a continuous-space LM that deals better
with the smoothing challenge and thereby provides better generalizations to unknown n-
grams.

While the use of a continuous-space representation of a language has been successfully
applied in recent NN approaches to language modeling [Xu04, Ben03, Cas03] and speech
recognition [Sch07a], the neural network language model (NN LM) application in the state-
of-the-art SMT systems is not so popular and can be traced back to the works done in
LIMSI?®, in which the NN LM was applied both to train a target-side LM [Sch06] in the
form of a fully-connected multilayer perceptron, as well as to smooth the probabilities
involved in the bilingual tuple TM [Sch07b].

2"This work was done in collaboration with the Department of Information Systems and Computation at
the Technical University of Valencia with F. Zamora-Martinez, M.J. Castro-Bleda and S. Espana-Boquera
28Laboratoire d’Informatique pour la Mécanique et les Sciences de I'Ingénieur
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Motivation

In this work, we address the challenge of MT by using an Italian-English parallel corpus
with a limited amount of training material (§A.3). This translation task is characterized
by an extremely limited amount of training data (about 150 K of tokens in the training
corpus), a similar but slightly different word order and distinct inflectional characteristics.

The heavy tailed structure of any modern natural language results in the fact that one
is likely to encounter new n-grams that were never witnessed during training. The n-gram
LM is often criticized because they lack any explicit representation of dependencies longer
than n — 1 tokens, while the effective range of dependency is significantly longer than this,
although long range correlations drop exponentially with distance for any Markov model.
We address the problem of LM smoothing in a continuous domain using a connectionist
LM trained in a neural network.

A major difference between classical n-gram LM and the approach we are following
to train a NN LM lies in the distinct mechanism used to implement a smoothing pro-
cess. Unmodified Kneser-Ney discounting, which is the smoothing algorithm used for the
n-gram models in the framework of the study, is an extension of absolute discounting. The
idea behind this smoothing algorithm is to optimize the LM taking into account the fact
that the lower-order model is significant only when count is small or zero in the higher-
order model [Jam00, Che99]. In contrast to interpolated smoothing models?® (for example,
Jelinek-Mercer or interpolated Chen-Goodman models described in [Che99]), Kneser-Ney
back-off model does not use information from lower-order models in determining the prob-
ability of n-grams with non-zero counts, however it does in determining the probability of
n-grams with zero counts.

Within a NN LM, posterior probabilities are interpolated for any possible context of
length n — 1 rather than backing-off to shorter contexts. We expect a better performance
from the NN LM in comparison with the n-gram LM with unmodified Kneser-Ney dis-
counting since the former allows to capture all possible n — 1-gram combinations seen in
the training corpus instead of the n — 1-grams preceding the word under consideration.

Unfortunately, a computational problem arises here. In general, a NN LM has a com-
plexity of O(N H ), where N is the size of the word vocabulary, and H is the size of the hidden
layer of the NN (which is, in practice, much smaller than the vocabulary). This complexity

quickly overwhelms modern computational resources for even average-size vocabulary tasks

298ee experimental section §3.4.4 for more details.
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and thus noticeably limits the area of NN LM application.

However, Zipf’s law [Zip49] states that given some corpus of natural language utterances,
the frequency of any word is inversely proportional to its rank in the frequency table.
Consequently, the most frequent word will occur approximately twice as often as the second
most frequent word, which occurs twice as often as the fourth most frequent word, and so
on. This observation opens the way to limit the input and output of the NN to the m most
frequent words from the vocabulary; that is, a shortlist can be created without significant
loss of generality. Therefore, the NN LM is believed to be most appropriate for tasks with
limited resources.

In our experiments, we mostly concentrate on the issue of shortlist and n-gram order
selection by searching for an optimal trade-off between NN LM training time and SMT

system performance.

3.4.2 Neural network language models
Model architecture

A NN LM is a statistical LM that follows the same equation as n-grams estimates the LM
probability for a sequence of words of length |[W| in the following way:

W]
p(w1 N w|W‘) ~ Hp(wi|wi_n+1 N wi_l) (3.2)
=1

and where the probabilities that appear in that expression are estimated within a NN. The
model naturally fits under the probabilistic interpretation of the outputs of NNs. If a NN is
trained as a classifier, the outputs associated to each class are estimations of the posterior
probabilities of the defined classes. The demonstration of this assertion can be found in a
number of places, for example, [Bis95] and [Ben03].

The training set for a LM is a sequence wjws ... wyy| of words from a vocabulary €. In
order to train a NN to predict the next word given a history of length n — 1, each input
word must be encoded. A natural representation is a local encoding following a “l-of-|Q2] ¢
scheme. The problem for this encoding regarding tasks with large vocabularies (as is often
the case) is the huge size of the resulting NN. We have solved this problem following [Ben03]
by developing a distributed representation for each word.

A general definition of a distributed representation of a word is a vector of features that
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characterizes the meaning of the word and are not mutually exclusive [Lar06]. In the case of
language modeling without additional word markers, it is transformed into a set of indices
that unambiguously characterizes the words in a vocabulary.

The idea behind NN LM is to project these word indices onto a continuous space by
using a probability estimator to smooth this space. Since the resulting probability functions
are smooth functions of the word representation, a better generalization to the unknown
n-grams can be expected.

Figure 3.6 illustrates the architecture of the feed-forward NN used to estimate the NN
LM. The input is composed of words w;_y,1,...,w;—1 of equation 3.2 (for example, the
input words are w;_3, w;_o, and w;_1 for a 4-gram).

Each word is represented using local encoding. P is the projection layer of the input
words formed by P;_,,11,..., P;_1 subsets of projection units. The subset of projection units
P; represents the distributed encoding of input words w;. The weights of this projection
layer were linked; that is, the weights from each local encoding of input word w; to the
corresponding subset of projection units P; are the same for all input words j.

H denotes the hidden layer, while the output layer O has |Q2] units, one for each word
of the vocabulary. Trained as a classifier, this NN predicts the posterior probability of each
word of the vocabulary given the word history of word w;, i.e., p(w;|w;—py1 ... wi—1).
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Figure 3.6: Architecture of the continuous-space NN LM.



68 Chapter 3. Improved Language Modeling for SMT

NN LM NN Topolo .
Vocabulary | n-gram | Input-Proj ectioanHidgél};nfOutput | # Weights
k=5 3-gram 2x2,148-2x32-64-2,148 2x68,768 + 143,788
2,148 4-gram 3x2,148-3x32-64-2,148 3% 68,768 + 145,828
k=3 3-gram 2x3,093-2x32-64-3,093 2x99,008 + 205,205
3,093 4-gram 3%3,093-3x32-64-3,093 3x99,008 + 207,253

Table 3.9: Selected NN LM configurations: size and configuration.

In order to achieve an adequate configuration in terms of topology and parameters for
each translation task undertaken by the NN LM, exhaustive scanning using a fine-tuning
set was performed. The activation function for the hidden layers was the hyperbolic tangent
function, and the softmaz function was chosen for the output units. Best configurations
used a projection layer of 32 units for each word.

To illustrate the huge sizes of the NNs used, Table 3.9 shows the topology and number
of weights of the selected NN LMs to be 2,148 words (words with less than k=5 occurrences
were discarded from the BTEC corpus) and 3,093 (corresponding to k=3), respectively.
The third columns shows the topology of the used NNs, including the number of input,
projection, hidden and output units, and the last column shows the number of weights.
First, the weights are replicated n — 1 times at the projection layer, and second, the weights

are shown at the hidden and output layers.

Rescoring

A NN LM model is integrated in the N-gram-based SMT system within a discriminative
rescoring/reranking framework, which incorporates complex feature functions by using the
entire translation hypothesis to generate a score.

During the first step, the MARIE decoder produces a list of k candidate translations3’
based on the weights vector trained over the m basic features (excluding orthodox n-gram
LM in order not to obscure the NN LM effect). Then, the statistical scores of each generated
translation candidate are rescored using information provided by the NN LM that presum-

ably should add information not included during decoding to better distinguish between

30Tn all NN LM experiments k was set to 1,000.
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higher and lower quality translations. During this step, a rescoring vector is trained over
k—+1 features and provides different, better choices for the single-best translation hypothesis.

An alternative way of incorporating NN LM into a SMT system is to use the continuous-
space LM directly during decoding. We decided not to pursue this strategy since this would

result in a dramatic increase of decoding time.

3.4.3 Experimental setup

The experiment results were obtained using the Italian-English 2006 BTEC corpus (see
§A.3), which is a collection of spoken dialogue data. Along with regular sentences, like
“Questo traghetto si sta dirigendo verso un’isola“ ( “This ferry is heading for an island. “),
it contains many colloquial or simple expressions, such as “Hm! non mi sento bene.“ ( “Hm/
I am not feeling well. ).

The Italian part of the bilingual corpus was preprocessed. This step included tagging,

lemmatization, and separation of contractions as described in [Cre06a).

3.4.4 Baseline system

The baseline system characteristics are summarized in Table 3.10. To provide reasonable
comparison with NN LM experiments, we consider the use of the regular LM for rescoring
in the same way as the NN LM (integrating the n-gram LM on the rescoring step).

Alternatively, we consider the inclusion of the regular LM as a feature in the set of
functions combined in a log-linear way during decoding (Dec). Results shown by the (Dec)
system correspond to the performance of a standard N-gram-based SMT.

Unmodified Kneser-Ney discounting was chosen to compute a smoothed n-gram LM
since it has demonstrated the best results in terms of perplexity and the final translation
score (BLEU) measured on the concatenation of the reference translations (development
dataset). We compared the original Kneser-Ney discounting with Good-Turing and Chen-
Goodman (uninterpolated and interpolated versions) discounting algorithms. Application of
the unmodified Kneser-Ney technique demonstrated significant improvement in perplexity
(=~ 12%) and translation quality according to the BLEU score (=~ 3.9%) in comparison with
alternative smoothing algorithms. Interpolation of higher- and lower-order n-grams has no
positive effect on the MT scores.

Automatic evaluation conditions were case-sensitive and included punctuation marks.
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Italian-to-English ‘

Word alignment GIZA++
Symmetrization Union

NULL-source tuples Entropy of POS distribution
Embedded words No

™ 4-gram, Kneser-Ney discounting
LM 4-gram, unmodified Kneser-Ney discounting (during rescoring)
Other features WP, LEX1, LEX2
Decoding Monotonic, beam=>50 (10 during optimization)
Pruning Histogram, tnb=30
Reordering Input reordering graph

Optimization criteria

100BLEU+4NIST

Table 3.10: Baseline system parameters. NN LM experiments.

Note to table:

Input reordering graph - word harmonization algorithm as described in [Cre06b]. More
details can be found in chapter 4.

3.4.5 Continuous-space LM experiments

We considered two key parameters of the continuous-space NN LM:

e A shortlist size defines a word frequency threshold ¢ that implies that all of the words

occurring less than ¢ times in the training corpus are discarded;

e An n-gram order limits a word history to n preceding words. 3- and 4-gram configu-

rations were tested.

When re-estimating the weight coefficients for the new log-linear model with the NN

LM, different starting points were tried, and the best set of weights resulted from the 100
BLEU + 4 NIST criteria. Table 3.11 and Table 3.12 show the BLEU, NIST and METEOR
scores when the NN LMs were integrated as a part of the combined SMT system for the

development and the test sets.

As can be observed, considerable improvements were obtained using a NN LM. The best

system configuration is highlighted in both aforementioned tables.
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BLEU NIST METEOR

Baseline 29.09 | 6.19 69.22

Dec 29.22 | 6.37 69.26

NN LM | 3-gram | 30.02 | 6.31 69.44
k=5 4-gram | 30.07 | 6.17 69.19

NN LM | 3-gram | 30.54 | 6.44 69.61
k=3 4-gram | 30.01 | 6.10 69.45

Table 3.11: Evaluation scores on the development dataset.

BLEU NIST METEOR

Baseline 24.79 5.80 63.91
Dec 24.93 5.83 64.01

NN LM | 3-gram | 25.17 | 5.86 63.70
k=5 4-gram | 25.07 5.79 63.99

NN LM | 3-gram | 25.23 | 6.02 64.10
k=3 4-gram | 25.29 | 5.81 63.63

Table 3.12: Ewvaluation scores on the test dataset.

For the development dataset, the BLEU score for the NN LM experiments is higher
than the one for the baseline system for all NN LM systems. Concerning the METEOR
score, again all of the scores produced by the NN LM systems are slightly higher than the
reference one.

Our previous experience shows that for small translation tasks with a lack of training
material, poor correlation of development and test results is frequent, although this has not
been the case in these experiments. Besides, the improvements on the test data are usually
smaller than those on the development data that was used to fine-tune the parameters.

The BLEU and METEOR scores calculated for the test dataset are improved when
the NN LM is applied in comparison with the baseline level, while the METEOR values
generated by the NN LM configurations vary around the score produced by the system
integrated with a conventional n-gram LM.

As stated in §3.2, the output sentences from a SMT system are built by aggregating

word sequences that have a high-scoring combination of probabilities provided by TM and a
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set of feature models, including LM. Therefore, this is not a clear breakdown of the impact
of the LM perplexity on the assembled translation. However, perplexity is a measure of a
LM’s predictive power, which can be used to compare how well a LM can predict the next
word in a previously-unseen piece of text.

Table 3.13 represents perplexity values for stand-alone LMs measured on the merged set

of translation references of the test corpus.

Language Model Parameters Perplexity

Conventional 4-gram - 103.52
NN LM 3-gram, k=5 281,316 88.54
NN LM 3-gram, k=3 403,221 101.08
NN LM 4-gram, k=5 352,132 91.04
NN LM 4-gram, k=3 504,277 100.71

Table 3.13: Perplexity results for different language models.

3.4.6 Discussion and example

The architecture of a SMT system implies that the smaller the amount of available training
data is, the worse is the performance of a translation system. Obviously, new or specially-
adapted methods to use limited information in more efficient way are needed. The technique
presented in this section improves the performance of a SMT system by incorporating the
NN LM when only a small amount of training material is available.

Considering the development and test data translation scores, the 3-gram k=3 NN LM
system allows a gain up to 0.3 BLEU points for the test set over the system that includes
conventional n-gram LM as a feature in the decoder (DEC'); and a gain of about 0.4 BLEU
points for the test dataset over the system that use the regular LM for rescoring (baseline).
This difference is statistically significant for a 95% confidence interval and 1,000 re-samples
using the bootstrap re-sampling method, as described in [Koe04].

Considering the NIST score, the baseline test results are exceeded for both 3-gram
systems. Concerning the METEOR score, only the 3-gram, k=3 system provides a better
LM generalization.

Perplexity values characterizing the 3-gram and 4-gram NN LMs with a word frequency
threshold set to 3 are comparable with the results shown by the conventional n-gram model.

A very important reduction (10-14 %) is observed with an increase in the size of the shortlist
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that includes the k£ most frequent words. However, as was seen in previous experiments, it
does not influence the translation results to the same extent.

The correlation of automatic and subjective human evaluation metrics (fluency and ad-
equacy) is one of the main topics in the area of MT evaluation. As was reported in [Pau06]
for small BTEC translation tasks, fluency correlates best with BLEU, while adequacy cor-
relates best with METEOR. The NIST metric has only a moderate correlation to both
subjective human evaluation metrics. Our work demonstrates the potential for the appli-
cation of NN LMs to SMT systems to improve translation fluency, while adequacy remains
the same. The positive impact of higher n-gram is not clear, and this is possibly due to
the relatively short sentences provided within the BTEC corpus. Another possible issue is
that higher n-gram order only slightly decreases translation quality, yet at the same time,
it introduces more noisy translation hypotheses.

An example of a typical sentence from the BTEC corpus is shown in Figure 3.7. The
Italian expression “Oggi abbiamo a scelta “ is translated by the baseline system as “Today we
have selection at“, whereas three of four NN LM systems provide a more fluent translation

“Today we have to choose from*“.

Source Oggi abbiamo a scelta insalata ai frutti di mare insalata di patate e insalata
mista.

References  Today we have a choice of seafood salad potato salad and wild vegetables salad.
We are serving seafood salad potato salad and wild vegetables salad today.
As for today’s salad you can enjoy seafood potato and wild vegetables.
For salad we have seafood potato and wild vegetables today.
Today’s selections are the seafood salad potato salad and wild vegetables salad.
For today we have the seafood salad potato salad and wild vegetables salad.

For today you can choose to have the seafood salad the potato salad or the
wild vegetables salad.

Baseline Today we have selection at the seafood salad potato salad and mixed salad.
3-gram k=5 Today we have to choose from the seafood salad potato salad and mixed salad.
4-gram k=5 Today we have selection at the seafood salad potato salad and mixed salad.
3-gram k=3 Today we have to choose from the seafood salad potato salad and mixed salad.

4-gram k=3 Today we have to choose from the seafood salad potato salad and mixed salad.

Figure 3.7: An example of translation.

In this section, we show the robustness of the NN LM, even for a highly limited training
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corpus. The in-domain NN LM provides a significantly better generalization of the target
language, better smoothed SMT output and enhanced improvement in the automatically-
evaluated translation scores.

A main disadvantage of the continuous-space LM is that it has a very high computational
cost. While traditional n-gram LMs can be trained in few minutes using the SRI language
modeling toolkit, it can take several days to estimate a continuous-space LM for a large-
vocabulary task. A possible solution to this problem can be the application of fast-training
techniques (lattice regrouping and the utilization of specialized NN libraries with an ability
of parallel calculation). However, at the moment, low-vocabulary tasks with a lack of

training data appear to be the most appropriate domains for NN LM application.

Related publications:

e M. Khalilov Target language modeling improvement techniques for statistical
machine translation. Proceedings of the Doctoral Consortium at the 8th EUROLAN
Summer School, pp. 39-45, Iasi (Romania), July-August 2007.

e M. Khalilov and J.A.R. Fonollosa Language modeling for verbatim translation
task. Proceedings. of the IV Jornadas en Tecnologia del Habla - the IV Biennial
Workshop on Speech Technology, pp. 83-87, Zaragoza (Spain), November, 2006.

e M. Khalilov, J.A.R. Fonollosa, F. Zamora-Martinez, M.J. Castro-Bleda and S. Espana-
Boquera Arabic-English translation improvement by target-side neural net-
work language modeling. Proceedings of HLT&NLP within the Arabic World In-
ternational Workshop at LREC’08, Marrakech (Morocco), May 2008.

e M. Khalilov, J.A.R. Fonollosa, F. Zamora-Martinez, M.J. Castro-Bleda and S. Espana-
Boquera Neural Network Language Models for Translation with Limited
Data. Proceedings of the 20th IEEE International Conference on Tools with Arti-
ficial Intelligence, pp. 445-451, Dayton, Ohio (USA), November 2008.




Chapter 4
Word reordering problem

One of the most challenging problems facing MT is how to place the translated words in
such order that they fit the target language. Some languages, like English or Spanish, have
relatively restrictive word orders and follow more monotone mutual word order than, say,
Chinese and English. Others, for example Slavic or Baltic languages, allow more flexibility
in word order, which, in many cases, serves to define the relationship between the actions
and the entities.

Divergent glottogony of languages is the main reason for the word ordering problem,
especially when dealing with Asiatic and European languages. Study of the origins of the
languages can help to understand different ways in which languages arrange the constituents
of their sentences relative to each other, but it offers limited help in finding a solution for
the reordering problem.

The phrase and to a greater extent the tuple internal reordering, in conjunction with
distance-based distortion, implying restrictions in the search space of translation units, has
provided SMT with improved robustness in local reordering, when the words to be reordered

are adjacent or close within the sentence.
Spanish-to-English

Spa.: un programa espicifico y local
Gloss: a program specific and local
Eng. ref.: ’ a specific and local program ’

Figure 4.1: Ezxample of short-distance (local) reordering.

Figure 4.1 demonstrates a typical difference in Spanish and English word order: the
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Spanish adjective usually comes after the noun, unlike its English counterpart. So, in order
to allow for monotone translation, the original Spanish phrase should be transformed to "un
espicifico y local programa’, which is not a natural word sequence in Spanish.

The problem is especially important if the distance between words that should be re-
ordered is high (long-distance or global reordering); in this case, the reordering decision is
very difficult to make based on statistical information, due to the dramatic expansion of
the search space with the increased number of words involved in the search process®!.

Long-distance reordering is exemplified by Figure 4.2 for Arabic-English®? language pair,
where A Elnt/announced’, which is a typical verbal structure in Arabic, should move to the

right to obtain the English word order, as seen in the gloss.
Arabic-to-English

Ar.: AEFEInt Ajhzp AIAEIAm | bEwp fy syrAlywn  An
Gloss: announced press release by mission in sierra leone that

Eng. ref.: 7 a press release by the mission to sierra leone announced that ... ’

Figure 4.2: Example of long-distance (global) reordering.

A monotone SMT system often suffers from weakness in the distortion model, even if
it is able to generate correct word-by-word translations. The problem here is that one
syntactic and semantic unit in the source language might appear in a different position in
the target language. There are no powerful mechanisms incorporated within a monotone
SMT system to efficiently handle different word order if this word order disparity is not
found within the limits of a multiword translation unit (internal reordering), as shown in
Figure 4.3. The system implicitly memorizes each pair of source and target phrases in the
training stage.

For the majority of translation tasks, however, word reordering disparity cannot be
modeled with standard translation units, and additional extended techniques need to be
employed.

This distortion-restricted rearrangement of translation units, conducted by the decoder

or done prior to the translations, is called external reordering.

31Global/local reordering classification is extremely subjective and is mostly determined by the level of
computer technology development, which limits the capability of the distance-based reordering model. At
the moment, a regular SMT system defines the constraints of the distance-based distortion such that a
sequence of five to seven words might be involved in the word reordering process.

32Hereafter, all the Arabic translations are provided in the Buckwalter transliteration [Buc94]
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Figure 4.3: Example of internal reordering.

One of the fundamental processes underlying any natural language is a linguistic topol-
ogy defined in terms of the finite verb (V), its subject (S) and its object (O). Different
languages follow different word topology schemes. For example, English is mostly SVO,
Spanish more often - SVO (although non-SVO orders are extremely common in native va-
rieties of Spanish), while VSO is the most frequent order in Arabic, but SVO is almost
equally common.

Topological disparity leads to particularly bad translation performed by monotone SMT
systems and to the need for global reordering models with the capability to model long-
range dependencies. Because a monotone translation approach often cannot deal with the
necessary reordering to resolve such disparities, we used a parse tree structure in our own
work. A detailed description of our parse tree approach will be given in chapter 5.

The word reordering problem has attracted a great deal of attention recently. There
have been abundant publications on purely statistical techniques dealing with the word
reordering challenge, as well as on approaches involving lexical information (context) or
using additional information to reorder the target words in such a way that they fit the
target language.

In this chapter, we will take a closer look at the state-of-the-art reordering models
employed in phase-based and N-gram-based SMT, and we will describe the empirical clas-

sification of the most well-known distortion models for SMT.

4.1 State-of-the-art reordering approaches

In practice, a reordering model operates on a sentence level and is carried out based on word-
reordering rules derived from the training corpus or motivated by the structural differences

between the source and target languages.



78 Chapter 4. Word reordering problem

Figure 4.4 presents the ways word reordering is approached in modern SMT systems.
Due to the high complexity of many of the reordering methods, there are no clear criteria to
determine the boundaries between categories; therefore, this classification is very subjective,

and some of the considered algorithms cannot be unambiguously categorized.

Reordering methods

S

| Reordering without using syntax

| Reordering with the use of syntax

| Syntax-based deterministic reordering |

T~

Reordering with the use of Reordering with the use of
source language syntax syntax of both languages

| Source-side monotonization | Reordering in rescoring |

| Constrained reordering search

| Syntax-based non-deterministic reordering |

Figure 4.4: Classification of state-of-the-art reordering algorithms.

Alternatively, reordering models can be divided into two large groups depending on
the reordering units with which the algorithm operates. Some of the methods (mostly
dependent on the reordering of the phrase pairs from the alignment matrix) operate with

bilingual units (phrases or tuples), others with words.

4.1.1 Statistical reordering methods
Constrained Reordering Search

In most cases, the generation of a translation hypothesis is computationally expensive. A
brute force approach to reordering looks through all possible combinatorial permutations of
the processed sets of source sentence words (construction of a fully reordered search graph),
which results in a dramatic increase of decoding time with longer sentences. As shown
in [Kni99], the search problem is NP-hard if arbitrary word reorderings are permitted.
On the other hand, a polynomial-time search algorithm can be obtained if the reordering

constraints are defined in an appropriate way.
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Reordering constraints aim to limit the search space with minimal loss of generality dur-
ing decoding and to introduce a balance between computational efficiency and translation

quality. The possible ways to restrict word reorderings are briefly discussed below:

e The IBM constraint is intended to make the search feasible by introducing restrictions
of the search space at the word level in the spirit of the IBM constraints [Ber96b,
Til03]. A coverage vector is kept to mark the source positions that have already been
placed. At each step, the selection of the next word to place is made among the first

k yet-uncovered word positions.

e The ITG (Inverse Transduction Grammar) constraint, proposed in [Wu96, Wu97],
allows a polynomial-time search algorithm. This constraint has been demonstrated
to be useful for SMT, as shown in [Ben04]. The input sentence is interpreted as a
sequence of word blocks. For each two adjacent blocks, a decision is taken either to
invert the original order, or to leave it as is. A systematic comparison of the ITG and

the IBM constraints can be found in [Zen03].

e A notable evolution of the ITG constraint is the maximum entropy model, trans-
forming the reordering prediction into a classification problem, providing phrasal re-
ordering depending on context, while its generalization capability is based on features

automatically learned from a parallel text [Xio06].

e The local constraint, presented in [Kan05], has proved to be very efficient for language
pairs in which words are only shifted a few positions to the left or to the right. This
constraint is a simplification of the IBM constraint allowing for local permutations
only. Here, the next word must be contained within the first k£ words, starting from

the first uncovered position.

e The MaxJumps constraint numerically limits the number of reorderings and the

locality boundaries specified by two parameters [Cre05d]:

— m - a maximum distance measured in words, that a source word, phrase, or tuple

can be reordered (a distortion limit)

— Jj - a maximum number of “jumps“ within a sentence (a reordering limit)

This algorithm requires the bilingual units (tuples, in particular) to have been ex-

tracted with using the unfolding technique described in detail in [Cre05d]. It allows



80 Chapter 4. Word reordering problem

the generation of shorter tuples, increasing the system’s reordering flexibility if a
decoder is enhanced with reordering capabilities and, at the same time, alleviating
the problem of embedded units (see §2.3.4). A comparative example of regular and

unfolded tuples extraction is provided in Figure 4.5 for Spanish-to-English translation.

e —— P e emmm e e m— - W e fee feeeSssssssssssssss==== T
1 n L} n n n nt

el ::principio::de:: estabilidad relativa::es::un-' principio legal fundamental

n L}

n L )

n n
thewprinciple v1of 1 relative stability mis 1 a
n L} 1 n

Regular tuples: Unfolded tuples:
el#the el#the
principio#principle principio#principle
de#of de#of
estabilidad relativa#relative stability estabilidad#stability
es#is relativa#relative
un#a est#is
principio legal fundamental# un#a

fundamental legal principle principio#principle

legal#legal

findamental#fundamental

Figure 4.5: Bilingual tuples extracted with reqular and unfolded methods.

The problem of word reordering has been approached since the origin of the modern era
of MT: [Ber96b] introduced in their alignment models what they called distortion models,
in an effort to include in their SMT system a solution for the reordering problem.

Word class-based reordering patterns were part of the alignment template system [Och04]
and the classical phrase-based system [Koe03]; the RWTH template system [Ben04] follows
a similar approach. While local reorderings within alignment templates are fixed in training,
reordering of alignment templates tends to be ITG restricted for difficult translation tasks.
Non-monotonic phrase alignments are penalized depending on the word distance between
successively translated source phrases.

The main criticism of this approach is that it shows poor performance for pairs of
languages with very distinct word order; it is explicitly appropriate primarily for local
reorderings [Cre08a]. Another clear disadvantage of this technique is that the orientation
of the phrase alignments and the contexts of the source and target phrases are not taken

into account.
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More recently, several attempts have been made to introduce global reordering into an
SMT system. In [Nag06], the reordering is predicted based on the current phrase pair
and the previous one, through introducing four types of reordering patterns, namely MA
(monotone adjacent), MG (monotone gap), RA (reverse adjacent), and RG (reverse gap).

The modern state-of-the-art translation system Moses, along with a distance-based
distortion model [Koe03], implements the so-called lexicalized reordering [Til04, Til05,
Koe05b]. According to this model, in the first step the boundaries of bilingual phrase
clusters of words are established. Later on, a probabilistic and lexicalized MSD (Monotone-
Swap-Discontinuous) block-oriented model is learned from training data. During decoding,
translation is viewed as a monotone block sequence generation process with the possibility
of swapping a pair of neighbor blocks. Again, this approach is context-dependent, and re-
ordering patterns are related to a set of particular phrases, which means it can be subject
to the data sparseness problem.

Summing up the ideas presented in the constrained reordering approaches, all the al-
gorithms can be divided into two classes: content-independent reordering models, e.g.
distance-based or flat reordering models, which learn nothing for use in reordering from
parallel corpora, and content-dependent reordering models, such as lexicalized reordering
models, which are totally dependent on bilingual phrases and are not enhanced with gen-
eralization capabilities.

A boosting approach to MT that has gained many adherents over the past few years
is the concept of hierarchical phrase-based SMT [Chi05, Chi07, Wat06, Igl09] described
in §2.3.3. Classically, systems following this approach do not use any kind of syntactic
information except for a synchronous context-free grammar. The hierarchical orientation
model efficiently captures long-distance dependencies, introducing some lexical evidence
without fully lexicalizing the translation/reordering rules by converting subphrases to vari-

ables, which are then used in other levels of the model hierarchy.

Reordering in the rescoring stage

A less popular but nevertheless efficient approach to modeling word-reordering phenomena
consists of identifying the n best list instances expressed in the correct target-side word
order. In the first step, the list of n-best translations is generated with a SMT system.
The rescoring algorithm is then applied to the list, in which each translation hypothesis is

enriched with a score provided by an appropriate additional feature function.



82 Chapter 4. Word reordering problem

An example of a system using a reordering model operating with a set of automatically
extracted patterns can be found in [Che06]. The reordering rules take advantage of POS
or plain words, while generalization is achieved by the system’s capability to swap a pair of
blocks consisting of several consecutive words.

The features used in rescoring can be equally syntactical. We classify this set of reorder-

ing algorithms as syntax-based non-deterministic methods, described in §4.1.2.

Source-side monotonization

In classical phrase-based translation, the input sentence s is translated into the output
sentence ¢t. The translation process is considered as a three step algorithm: (1) the source
sequence of words is segmented into phrases, (2) each phrase is translated into the target
language using a translation table, (3) the target phrases are reordered to fit the target
language.

A rather popular class of reordering algorithms involves the monotonization of the source

“ZGI‘O 113

part of the parallel corpus prior to translation (deterministic approach). Thus, a
step in which the input is rearranged, intended to simplify the translation task, is inserted
before segmentation. Reordering is not integrated with the translation system and is placed
outside the system in order to make the source sentence word order resemble that of the
target language. The majority of the reordering models that incorporate this preprocessing
step do use the syntax structures of the source and/or the target languages and are described
in §4.1.2.

However, many modern translation systems follow more advanced approaches, using
special structures such as word lattices or confusion networks containing the k best reorder-
ing hypotheses coded in a directed graph. Though founded on the same idea, reordering
graphs and confusion networks neither follow the same objective nor can be used for the
same goals. The former are used to couple reordering and SMT decoding, while the latter
are aimed at coupling speech recognition and MT. In the process of decoding the confu-
sion network, one word of each column is picked and used as the input word. Thus, input
sentences of different lengths can be hypothesized using the special service word. However,
reordering cannot be implemented using the confusion network approach without additional
constraints.

Pre-translation reordering models can be defined and applied following different deter-

ministic and non-deterministic criteria exploiting statistically learned rules as described
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below:

e Corpus monotonization. Some of the approaches operating within the statistical
framework use IBM alignments to reorder the input sentences and produce a new
bilingual pair, composed of the reordered input sentence s’ and the output sentence t,
whose translation (decoding) is monotonous. An example illustrating the aforemen-

tioned reordering strategy can be found in Figure 4.6.

Plain source sentence (s): S1 S2 S3 S4 S5

v

Reordering

\

Reordered source sentence (s’): S2 S1 S5 S4 S3

v

Decoder

\

Target sentence (t): T1 T2 T3 T4 T5

Figure 4.6: Source-side monotonization prior to translation.

A strength of this approach is that information in a reordering rule concerns a differ-
ence between source and target word order, thereby modeling the cross-language word
order transfer. Consequently, better mutual word order is achieved and the transla-
tion task is simplified. Another advantage is that an accurate source-side shifting of

words makes it possible to account for global phenomena as local [Zwa07].

The idea stems from the work described in [Nie04], where the use of combined morpho-
syntactic information for improving translation quality in frameworks with scarce
resources has been successfully tested. In [Pop06a], POS tag information is used to
rewrite the input sentence between Spanish-English and German-English language

pairs.

One more example of a word order monotonization strategy can be found in [Cj06b],

where a technique called Statistical Machine Reordering (SMR) was presented. Here,
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a monotone sequence of source words is translated into the reordered sequence using
SMT techniques. In theory, this approach is intended to tackle long-range reordering.
In practice, however, a number of long-distance dependencies are not considered due
to high sparseness of data. In contrast to the work of Nielen and Ney, reordering here
is treated as a purely statistical process, and no syntactic knowledge of the language
is used. Generalization is achieved by using statistical word classes and POS tags.
The impact of different types of word classes on the final translation score is analyzed
in [Cj07a].

Notice that, within the corpus monotonization framework, word order harmonization
can in principle be done equally well on the target language as on the source side of
the bicorpus. The only reason to choose the latter way is the target-side LM, which
is much more robust when estimated on a large amount of unreordered monolingual

data.

Input reordering graph.

A coherent evolution of the previous approach is done in a non-deterministic fash-
ion and consists of providing the decoder with multiple word orders compressed with
the help of a reordering (permutation) graph, represented in the form of a word lat-
tice [Cre08a, Koe07b], or confusion networks [Ber05, Ber07]. These representations
differ in the methods used to code topological complexity. Structural constraints im-
ply different space efficiency characteristics, but they nevertheless provide a strict

permutation of the input words.

To infer new possible reorderings, word graph structures are used instead of word
sequences themselves as the input to the SMT system. They can be considered a gen-
eralization of the previous approach, allowing for a number of alternative reorderings
of the source side of the training corpus. Consequently, the translation module has
access to both the original word order and the reorderings predicted by a certain set

of rewrite rules.

Figure 4.7 depicts the idea of a multi-way input reordering graph, where multiple

word order options are coded.

Almost all of the approaches that can be found within the field of deterministic mul-
tiple reorderings use syntax in one form or another and will be described in sec-

tion §4.1.2. However, some of the algorithms are purely statistical or are implemented
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Plain source sentence (s): S1 S2 S3 S4 S5

v

Reordering
S2 S3 S4
Reordering graph: S1 w@—>@—> S5
< : S4 53
S2 S1
S5 S4
S3

Decoder

v

Target sentence (t): T1 T2 T3 T4 T5

Figure 4.7: Source input graph.

with the use of morphological information, as in [Cre06b], where a linguistically mo-
tivated reordering model employs monotonic search graph extension. Another sig-
nificant work is [Cj08a], where coupling of the SMR algorithm and the search space
extension via generating a set of weighted reordering hypotheses has demonstrated a

significant improvement in translation quality.

4.1.2 Reordering models based on syntax

Recently there has been growing optimism in the MT community about the use of syntax to
improve SMT. The first class of research efforts has been concentrated on the development of
complete syntax-based systems with the use of statistical models, or of hybrid SMT systems
enhanced with syntactical models (briefly described in §2.4). Another class of algorithms
includes the methods designed to address the crucial disadvantage of SMT, that is, little or

no use of syntactical information in handling the word reordering problem.
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The intuitive concept is that use of the syntactical information from the source, target,
or both languages seems to be able to thoroughly handle long-range dependencies and
accurately model many systematic differences between the word orders of languages [Bon94].
Traditional clump-based SMT models are not expected to handle all possible reorderings,
but instead search for the correct reordering option within a limited distortion space. The
distortion model provides only a control of the reordering combinations attempted by the
decoder.

On the other hand, reordering error can be minimized by means of POS tags, or, more
probably, by utilizing structural analysis of different languages. In this vein, a great impetus
has been given to syntax-driven reordering by recent advances in the field of NLP, namely
in natural language tree bank parsing [Cha00, Col99], which has facilitated incorporation
of syntactic information into MT for the purpose of improved handling of reordering. Fur-
thermore, exploiting the generalization power of synchronous context-free grammars proved
to be helpful for statistical reordering and led to significant improvements, such as those
shown in [ZhaO7a, Ven06].

Motivated by the lack of robustness in global reordering as performed by phrase-based
SMT, syntax-driven systems are more relevant for translation between languages with very
different word order structures. On the other hand, it is believed that short-range reorder-
ings are modeled adequately by local phrases [Li07, ZhaO7b]. Shorter reorderings done on
adjacent words that belong to different phrases can be also modeled with the help of syn-
tactical structure, since it does not matter how many words are spanned by the swapping
constituents [ElmO08].

An empirical MT system including syntax-based reordering usually contains three mod-
ules: a syntactical analysis module, a reordering module, and an MT module, as depicted
in §4.8. In the syntactical analysis step, constituent or dependency trees are generated for
the target or source and target languages; the reordering module infers word or word-block
permutations relying on the information provided by the parse tree(s); finally, the MT
module handles translation with or without some sort of higher linguistic knowledge.

One potential solution is a pre-translation step of reordering the source sentence so
that its word order resembles that of the target language. As in the statistical framework,
the syntax-driven reordering models that can be found within the state-of-the-art can be

divided into deterministic and non-deterministic approaches.
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Statistical analyzer —) Reordering module _) Translation module

A

Figure 4.8: Architecture of empirical MT systems exploiting syntaz-based reordering model.

Deterministic reordering models based on syntax

In recent years, a number of works modeling reordering in a deterministic way and employing
syntactical information to mutually monotonize the source and target languages have begun
to emerge. Here, the reordering process is performed in a separate modular element outside
the SMT system. Translation is augmented by using syntactical algorithms that exploit
manually written language-dependent rules or automatically extracted patterns driven by
the syntactical structure of the languages.

In the next step, the rules are applied to the source part of the same training corpus,
changing the structure of the source sentence so that it more closely matches the word
order of the target language. This reordering simplifies the translation task by reducing the
average length of bilingual units encountered when translating an unseen set.

Examples of clause restructuring performed with hand-crafted reordering rules for German-
to-English and Chinese-to-English tasks were presented in [Col05] and [Wan07], respectively.
In these works, the emphasis is placed on the distinction between German/Chinese and En-
glish clause structure, recombining the most prominent reordering candidates. In [Zwa07],
the natural language tendency to minimize the distance between a head and its depen-
dents derived from the dependency trees is exploited to automatically reorder source-side
constituents.

Beyond the aforementioned works, other tree-to-string restructuring models were also
introduced. For example, in [Ber96b], the authors present an approach for French where the
phrases of the form NOUN1 DE NOUN2 were reordered prior to translation; in [Nie04],
the input of a German-to-English SMT system is rearranged so that the verbs are combined

with their associated particles, and also the question sentences are reordered.
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In [Xia04], a set of automatically extracted POS rules is learned from a dependency-
parsed parallel corpus prior to translation and then is applied to a French-to-English trans-
lation task. Rewrite patterns operate on context-free rule productions and are acquired

automatically.

Non-deterministic reordering models based on syntax

A non-deterministic way to address reordering limitation with the use of syntax is to gener-
ate an input word lattice comprising different paths of syntactically motivated reordering,
providing the decoder with alternative, possibly weighted, suggestions.

An example of a system performing reordering in this way can be found in [Cre07b],
where syntactic structure on the source side is exploited to automatically learn rules, which
are then used to reorder the input into a word lattice in an unweighted manner, slightly
expanding the monotonic search space.

In [ZhaOT7b], a similar strategy is proposed to address the word reordering problem
through a source input graph. Here, the set of reordering hypotheses is defined using an
intermediate syntax between POS and parse tree (chunks) as the basic reordering units.

A non-deterministic weighted approach was successfully applied in [EIm08], where au-
tomatically extracted syntactically motivated rewrite patterns are first combined in the
weighted lattice of alternative translations, reflecting the structural structure of the lan-
guages, and then integrated in phrase-based SMT.

Very recent ideas to handle long-range reordering involve combining continuous (VVIMP
VMFIN PPER — PPER VMFIN VVIMP) and discontinuous (VAFIN * VVPP —
VAFIN VVPP *) POS reordering rules in a word lattice. This work is done in the spirit
of hierarchical model framework [Nie09].

In [ZhaO7b, Dye08, Rot07, Cre08b], the authors take similar approaches to encode
multiple source-side word segmentations in a lattice, using POS and chunk tags to generalize
the reordering rules. These models mostly differ in the way the weights are assigned to

different reordering patterns.
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4.2 Research contribution in the field of syntax-based word

reordering

This chapter has presented a comprehensive tutorial overview of word reordering algorithms
for SMT. We aimed to cover a wide variety of modern reordering systems; therefore, some
parts of the discussion have been left abstract.

It is well understood that word reordering is of crucial importance to SMT and is cur-
rently considered one of the most difficult problems in MT. Because of the differences in syn-
tactic and informational structures across languages, grammatical or dependency relations
may not always be preserved during the translation process. These changes consequently
lead to the generation of systematic reordering errors by any purely statistical orthodox
SMT system.

It is clear that, at the current stage of SMT technology evolution, the issue cannot be
considered completely resolved by the use of state-of-the-art methods, mostly due to their
limitations in handling long-distance reorderings. There are still many hurdles and open
questions in the field of word reordering for SMT: some reordering algorithms involve no
parsing and very little linguistics in the reordering process, which makes them weak in
guiding long-distance movements. Other methods exploit syntactical information, which
is certainly a potential solution to global reordering. However, the use of syntax is not a
universal panacea for reordering: syntax-based models are typically criticized for frequently
failing in the handling of non-syntactic phrase pairs (phrase pairs that are not subsumed
by any syntax subtrees) [Li07, Zha07b].

In order to confront the reordering challenge, we propose a novel approach called Syntax-
based Reordering (SBR), described in detail in the next chapter. This reordering mechanism
was initially presented in [Kha09] and is the primary contribution of this Ph.D. research to
the field.

SBR can be classified as a deterministic approach with the use of both-side syntax, which
is additionally combined with a state-of-the-art statistical non-deterministic method [Cre08a]
to better handle local reordering dependencies. This approach is designed in the spirit of
hybrid MT, integrating the syntax transfer approach and statistical methods to achieve
better MT performance than the standard state-of-the-art models.

Our goal in developing SBR is twofold. The first motivation is to integrate syntactic

information with the SMT approach to long-distance reordering, preserving the strength of
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statistical techniques in local reordering.

Furthermore, we intend to enrich the reordering power of syntax-based reordering by
incorporating extra reordering patterns that are beyond the scope of one-level tree transduc-
tion. Thereby, better-formed reordering rules with multi-level subtrees on the source side of
the parallel corpus are incorporated into extended tree transduction, providing longer than
regular (in most cases, binary) displacements.

A detailed description of the SBR approach, along with an analysis of its strengths and

limitations, can be found in chapter 5.



Chapter 5
Syntax-based reordering

In this chapter, we develop an approach to handling the fundamental problem of word
ordering for SMT33. We propose to alleviate the word order challenge including morpho-
syntactical and statistical information in the context of a pre-translation reordering frame-
work.

In particular, we suggest a word reordering technique which tackle:

1. the long-distance reordering problem in a deterministic way, by converting the source
portion of the parallel corpus into an intermediate representation, in which source

words are reordered to more closely match the target language;

2. short-range reorderings in a non-deterministic way using POS information and an

input graph model, as described in the literature [Cre07a).

Our major interest is in the value of syntax in word reordering for SM'T. For this purpose
we examine the proposed approach from the theoretical and experimental points of view,
analyzing its advantages and limitations in comparison with some of the state-of-the-art
methods described in chapter 4.

This chapter describes the initial results of applying the syntax-based model to trans-
lation tasks with a great need for reordering (Chinese-to-English and Arabic-to-English).

We first investigate sparse training data scenarios, in which the translation and re-

ordering models are trained on a sparse bilingual data. We then scale the method to a

33Much of this chapter is written with extremely useful suggestions by Mark Dras
(http://www.ics.mq.edu.au/~madras/)
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large training set and demonstrate that the improvement in terms of translation quality is
maintained.

The chapter is organized as follows:

e First, in §5.1 we review the architecture and modeling of the proposed syntax-based
reordering system and provide details about rule extraction, generalization, and ap-

plication.

e In §5.2 we describe how to couple multiple word reorderings with a translation system,

with the objective of handling local reordering dependencies through an input graph.

e §5.3 evaluates the contribution of our model to the performance of N-gram-based
and phrase-based SMT systems, presenting the baseline systems and experimental
setup along with the obtained results. In §5.3.5, we present a novel technique that
demonstrates how a purely generalized (i.e., with no lexical information involved)

syntax-based reordering system can help to improve the N-gram-based SMT.

e Finally, §5.4 is a summary of the chapter, providing analysis of resulting data and

highlighting the main conclusions drawn.

5.1 Syntax-based reordering framework

This section introduces the Syntaz-Based Reordering (SBR) approach. Like other prepro-

cessing methods, it splits translation into two independent stages:

S—8 —-T (5.1)

where a sentence of the source language S is first reordered with respect to the word order of
the target language, and then the reordered source sentence S’ is monotonically translated
into a target sentence T

SBR deals with the S — S’ part of the equation 5.1. Once the reordering of the training
corpus is ready, it is realigned, and the monotonized alignment is used to extract information
for the particular translation task S’ — T'. The latter is thought of as a simplification of the
original translation task S — T due to a shorter minimal length of bilingual units, which

are more likely to be found when translating an unseen set.
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Local and long-range word reorderings are driven by automatically extracted permuta-
tion patterns operating with source language constituents and underlain by non-isomorphic
sub-tree transfer. The target-side parse tree use is optional, but it greatly affects system
performance: it is considered as a filter constraining the reordering rules to the set of pat-
terns covered by both the source- and target-side sub-trees. Apart from the reordering
rules representing the order of child nodes, a set of additional rewrite rules based on a deep

top-down sub-tree analysis is considered.

5.1.1 Motivation and sources of inspirations
Objectives

The clear objective of developing an MT system is to meet the growing demand for high-
quality translation. As described in the previous chapter, one of the most common sources
of errors for MT is the highly challenging problem of correct word order.

Our main goal is to create a model capable of placing the translated words in the natural
order of the target language. The importance of reordering models as preprocessing in SMT
can be found in many sources; however, in contrast with many distance-based methods, in
our approach the emphasis is placed on the long-distance reorderings, which are difficult
to capture with standard n-gram language models. Although statistical distortion models
achieve the best results within a certain distortion limit and do not incorporate any linguistic
analysis, it has been recognized that syntactic information can be efficiently used to capture
global reorderings. This is, especially the case for translation tasks that deal with a pair
of languages, one of which is a European language and the other an Asian or Semitic
one [Wan07].

Approach

As described in §4.1, some translation systems employ deterministic reordering, where by
word reordering is done as a preprocessing step aimed at transforming the order of the source
sentence to make it closer to the target language. Another approach is non-deterministic,
in which the decoder is provided with multiple reordering options.

Among the rationales behind the idea of a deterministic approach is that, in many cases,
and especially when the sentences are long, the search space containing the permutations is

too wide, even with constraints introduced to restrict the number of alternative reorderings.
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In addition, we will show that a multi-step pruning is efficient enough to provide an accurate
choice of a single-best reordering hypothesis. In this step, we aim to develop an extended tree
transducer, which takes into account only the word order, without performing word/clump
translation directly.

On the other hand, the deterministic approach is claimed to be problematic in a statis-
tical framework in that it makes hard decisions about word order that cannot be undone
during decoding [AO06]. The deterministic approach implies that reordering and decoding
are two independent processes, whereas intuition tells us that the choice of reorderings is
not independent of other translation factors; consequently, reordering mistakes cannot be
corrected by the decoder.

These concerns convinced us to find an intermediate way to combine the clear advan-
tages of the deterministic approach without losing the simplicity and compatibility proposed
by the non-deterministic strategy. We propose to use a two-step integrated approach, in
which we apply a deterministic syntax-based algorithm in the first stage and then construct
a POS-based input graph of possible reordering permutations. Finally, we feed this lattice
to the word lattice decoder, which provides a better final translation because it takes into
account the dynamic relationship between word selection and the reordering option. A re-
ordering system built in this way can be considered a compromise between two fundamental

approaches and is expected to demonstrate robustness with respect to training errors.

Inspiration

Our work is heavily inspired by the approach proposed in [Ima05], in which a complete
syntax-driven SMT system based on a two-sided sub-tree transfer is described.

In this approach the researchers constructed a probabilistic non-isomorphic tree mapping
model based on a context-free breakdown of the source and target parse trees and used both
Japanese and English parsers to limit the computational complexity of syntax-based SMT.
They then extracted alignment templates that incorporated the constraints of the parse trees
and applied syntax-based decoding. Three tree-mapping models were used to calculate the
final score of the translation model, namely: source and target tree mapping models, and
the tree-to-tree transfer mapping model.

One prominent advantage of the proposed method is that not only hierarchical syn-
tactically motivated reorderings but also the monotonic phrases handled in conventional

phrase-based SMT (the authors call them “flat“ phrases) can be directly applied to the
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translation.

This approach succeeds in outperforming a phrase-based SMT baseline in a Japanese-
to-English BTEC translation task by about 15% in terms of BLEU score and by about 8 %
according to human evaluation. It is also shown that the exclusion of the “flat* phrases
from the TM leads to a significant degradation in translation quality (up to 11 % in terms
of BLEU score for the BTEC task).

We propose to use a similar non-isomorphic sub-tree mapping to extract reordering
rules, but instead of involving the rules directly in the translation process, we use them to
monotonize the source portion of the bilingual corpus. We expect an efficient combination
of the probabilistic tree-to-tree mapping, explicitly involving syntactic information in the
word reordering process, and the powerful techniques developed for purely statistical MT.

Another source of inspiration was the work presented in [Xia04], in which the authors
propose a system for French-to-English translation, based on the principle of automatic
rewrite pattern extraction using a parse tree and phrase alignments. Although the afore-
mentioned approach and the SBR technique share the idea of sub-tree transfer, the former
differs in many ways from the one that we used in the deterministic stage of our algorithm.
Among other distinctions, we use a more complete lexical model underlying the sub-tree
syntax transfer, which, apart from direct structural divergences, involves elementary re-
ordering structures that cannot be captured within one-level production. We also propose
a different generalization probabilistic model that makes use of lexical information based on
three linguistic levels of generalization and that is not restricted to operations on syntactic

tree structure nodes.

Training and testing steps

A block diagram of the training and testing processes of the SMR, deterministic model can
be found in Figure 5.1. During the training step, three sets of reordering rules are extracted
from the initial fully lexicalized rules and then processed separately. During reordering
of unseen data, a set of potentially applicable rules is first extracted from the space of
reordering rules found in the training step, then this array of candidate patterns is filtered
and sorted, and finally it is applied to the source-side parse tree. All the above-mentioned

procedures are described in detail in the following sections.



96 Chapter 5. Syntax-based reordering

Lexicalized Rule counting Rule filtering Final set of
rules and sorting and pruning lexicalized rules

Rule counting Rule filtering Final set of
and sorting and pruning part. lex. rules
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(a) Training stage.

Original Selection of o : i aati Reordered
applicable rules Filtering Sorting Application corpus

(b) Testing stage.

Figure 5.1: Block diagram of the training and testing processes of the SBR deterministic
model.

5.1.2 Notation

SBR operates with source and target parse trees that represent the syntactic structure of a

string in source and target languages.

This representation is usually formally defined as

~—

where N is a set of nonterminal symbols (corresponding to source-side phrase and part-of-
speech tags); T is a set of source-side terminals (the lexicon); R is a set of production rules
of the form n — ~, with n € N and v a sequence of terminal and nonterminal symbols; and
S € N is the distinguished symbol.

The reordering rules then have the form

n0Q0. .. nQk — ng,Qdy . .. ng, Qdy, [ no((wo,0---W0,70))5 - - - M (Wr 0w, 7,)) [P (5.3)

where n; € N for all0 < i < k; (dp...dg) is a permutation of (0...k); no((wo0...wo,15))s - - - »
M ((Wk,0-.- Wk, 7, )) 1S a source-side lexicon, where the non-terminal n; spans the substring
w;o...w;, of the length J; +1 and i € [0, k]; and p is a probability associated with the

rule3?,

34Notice that in the framework of this dissertation, the vertical bar (“|“) is used to separate the transduc-
tion, lexical and probabilistic components of reordering rules.
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5.1.3 Reordering rule extraction
Concept

The SBR system requires access to source and target language parse trees, along with the
source-to-target and target-to-source word alignments intersection. We extracted a set of

bilingual patterns allowing for reordering as described below:

(1) Align the monotone bilingual corpus with GIZA++ and find the intersection
of the direct and inverse word alignments, resulting in the construction of the

projection matrix P (see below);
(2) Parse the source and the target parts of the parallel corpus;

(3) Extract reordering patterns from the parallel non-isomorphic trees based on
the word alignment intersection, considering POS and constituents equally and

saving lexical information about all the elements of the pattern.

Step 2 is achieved using external tool (Stanford parser). Steps 1 and 3 need more

detailed explanation, which can be found below.
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Figure 5.2: Example of reordering rules extraction (Example 1).
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Figure 5.2 shows an example of the generation of two lexicalized rules for a Chinese-
English bilingual phrase 5.4 (we use this phrase for further explanation and call it Ezample

1), where Sf P refers to sentence-final particle:

Zh: & W BT H
Gloss: whole all include  SfP (5.4)

Eng. ref.: 7 includes everything ’
In this example, “#B/all“ should move to the right of the Chinese block “E1% | /include“
to get the English word order as seen in the gloss.
Notice that the first word “4/whole“ is a Chinese redundant adverb, which is not trans-
lated into English (optionally, the second word “#f/all“ can be omitted during translation).

Reordering rules, which can be directly extracted from the presented structure, are:

ADVP®@0 VP@1 — VP@1 ADVPQO | ADVPQO << # >> VPOl << fiE T >>
AD®0 VP@1 — VP@1 AD®O | AD@O << #b >> VPO << flfE T >>

The rules are equivalent, since constituents ADVP and AD are a unary chain (see below)
for which reordering rules are extracted for each level in this chain.

An instance of a more complex syntax transfer can be found in Figure 5.3. It illustrates
the algorithm’s potential for capturing long-distance permutations for the following sentence
5.5 (Example 2), where BA is an indicator of a verbal construction, forming an SOV clause:

Zh:  F OB AR EESE M ik % R
Gloss: 1 ~BA his  telephone and address give you (5.5)
Eng. ref.: 7 1 give you his telephone number and address ’

The extracted rule reflects the divergence between Chinese and FEnglish languages in
clause construction, which is out of the scope of the distance-based model. To generate
an ideal translation into English, immediately after translating the first word “F&/I“, the
decoder needs to move across six source words and translate the last sequence “45 11/ give
you“ to get the correct word order. However, swapping NP and VP constituents in this case
will help to generate the correct translation.

For this sentence, the only extracted rule is:
NP@0 VP@1 — VP®@1 NP®O | NP@O << fi Y] FLIESHS 1 il >> VPOL << 45 R >>

This pattern implements an NP<-VP swap transformation, modeling the ordering of the

VP in respect to the previous NP constituent and lexical filling of both constituents.
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Projection matrix

Bilingual content can be represented in the form of words or sequences of words, depending
on the syntactic role of the corresponding grammatical element (constituent or POS).

Given two parse trees and a word alignment intersection, a projection matrix P is defined
as an M x N matrix such that M is the number of words in the target phrase; N is the
number of words in the source phrase; and a cell (i,j) has a value based on the alignment
intersection — this value is zero if word 7 and word j do not align, and it is a unique
non-zero link number if they do.

For the tree in Figure 5.2,
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Figure 5.3: Example of reordering rules extraction (Example 2).
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The schematic representation of the reordering block, describing the orientation within the

matrix P, can be found in Figure 5.4.
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Figure 5.4: Word reordering for the translation direction of Chinese into English (Ezample

1),

For the tree, which can be found in Figure 5.3, the projection matrix is:
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The corresponding block orientation scheme is provided in Figure 5.5.
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Figure 5.5: Word reordering for the translation direction of Chinese into English (Exzample

2).

If a word that is aligned in only one direction appears in the branch that is considered a
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candidate to be involved in a reordering pattern, it does not change the alignment projection

matrix.

Alignment and sub-trees interaction

Each non-terminal from the source and target parse trees is assigned a string, which we
call alignment intersection ordering (AIO). It carries information about elements from the
alignment intersection that are contained in its child nodes, taking into account the order
of their appearance in the tree. For example, the AIO string assigned to the source-side
internal node VP* in Figure 5.2 is “1 2“ (we define this string as AIOyp+) and to the
target-side VP is “2 1“ (AIOy p). This information is used to indicate the source-side nodes
that are to be reordered according to the target-language syntactical structure. Reordering
patterns are extracted following the source and target-side AIOs as shown in Figure 5.2 (we
call them “main rules®).

If more than one non-zero element of the projection matrix is reachable through the
child nodes, the AIO has a more complex structure, providing information about elements
from the alignment intersection belonging to one or another child node. An example for

the bilingual sentence 5.6 can be found in Figure 5.6.

Zh: AR HE A4 RE HiF H
Gloss: you need what don’t hesitate tell me (5.6)

Eng. ref.: ’ don’t hesitate to tell me what you need ’

IP

/\
NP VP

T~ T~
VP NP ADVP VP

PN [ | PN
NP W PN cCS W PN

| | | | |
P|N WE e RE &F &
| M @2 B [ H

K
[l

Figure 5.6: Example of complex AIO structure.

Here, the sub-tree I P is assigned with the AIO;p = “(1 2) 3%, meaning that it has two

child nodes: the first contains the elements 1 and 2 from the alignment intersection, and
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the second, element 3 (we call this subsequence “closed“). The reordering system considers
nodes assigned with one or more children equally discerning the nodes with different-order

alignment elements.

Unary chains

Given a unary chain of the form X — Y, rules are extracted for each level in this chain.
For example, in Figure 5.2, the unary chain is “ADV P — AD — ...“ and the directly
extracted reordering rules are equivalent since the node ADVP leads to the leaf through the
node AD and does not have other edges. In Figure 5.3, the unary chains are NP — PN for
the Chinese tree and NP — FW for the English tree.

The role of target-side parse tree

Conceptually speaking, the use of target-side parse tree is optional. Although reordering is
performed on the source side only, the target-side tree is of great importance: the reordering
rules can be extracted only if the words covered by the rule are entirely covered by a node
both in the source and in the target trees. It allows for more accurate determination of the

coverage of the rules and their limitation.

5.1.4 Non-isomorphic tree mapping

There are many nodes for which a comparison of AIOs indicates that a sub-tree transfer
can be done, but segmentation of child nodes is not identical. This phenomenon stems
from the well-known problem of non-isomorphism between source and target trees, which
limits the transduction capability of synchronous systems. It was shown in [Gal04, Gra04]
that one-level structures often lack expressive power and that many common translation
patterns fall outside the scope of the child-reordering model.

In many recent syntax-based and hybrid MT systems only isomorphic trees have been
essentially assumed [YamO01, Als00]. However, in fact many trees are not isomorphic. Fig-
ure 5.7 illustrates this situation. AIO strings assigned to the root nodes of the trees contain
the same elements, but segmentation and order of appearance of elements do not coin-
cide. These sub-trees cannot be directly used for pattern extraction; hence, more in-depth
analysis is required.

To alleviate the problem of incomplete coverage, systems employing enhanced expressive
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power and primarily based on synchronous grammars have been proposed [Shi90, Eis03].
Another attempt to move to more robust grammars that adapt to the parallel training
corpus was done in [Hua06]. Here, the idea of extended domain of locality that spans
multi-level sub-trees on the source side of the corpus, first presented in [Jos97], was used to
implement an extended tree-to-string transducer.

We implement the strategy to address discrepancies between source and target parse
trees through postorder source-side tree traversal with the aim of capturing multi-level
sub-trees. In addition to using a set of elementary trees with enumerated “anchors® from
alignment intersection, we also look into the corresponding target-side sub-trees spanning

the same set of alignment elements.

IP AL (12) (34) SBARQ A1 3(412)
Z B
Nlp /Y-P\ W";NPAI: 3 SQanar
cp! vC NP A WP VBZ NP AL 4(12)
i L
1 > what s
AT B e R
1 ] DT 1S NN IN NP’
NP VP [-1 DIT NlN I I |AI: 4 I Al: 12
| the newest color in
B N ade W fro Bt (1 (@ O N

131 14]
| I I | this season
DT NN AD VA m @

| | |
=S ) ‘i!% kil
mr R =

Figure 5.7: Example of “secondary“ rule extraction.

Extracted rules:

NP@0 DP@1 NP@2 — DP@1 NP@2 NPQ@O | NP@O << iX{> ZETi >> DPO1 << 4 >> NP@2 << Hifi >>
NP@0 DP@1 NN@2 — DP@1 NN@2 NP@O | NP@O << iX> ZH1 >> DPOL << fF4 >> NNO2 << Hifs >>
NP@0 DT@1 NP@2 — DT®@1 NP@2 NP@O | NP@O << X &I >> DTOL << 4 >> NP2 << Hift >>
NP@0 DT@1 NN@2 — DT@1 NP@2 NN@O | NP@O << X4 ZETj >> DTO1 << fI4 >> NNO2 << Hiff >>

CP@0 DP@1 NP@2 — DP@1 NP@2 CP@0 | CP@0 << X/~ & & # i) >> DPOL << fI4 >> NP2 << Hift >>

CP@0 DP@1 NN®@2 — DP@1 NN®2 CP@0 | CPQO << X~ ZE1 & #1 i >> DPOL << 4 >> NN@2 << Hift >>

CP@0 DT@1 NP@2 — DT®@1 NP@2 CP@0 | CP@0 << X/ ZET i #1 i) >> DTOL << fF4 >> NP2 << Fift >>
CP@0 DT@1 NN®@2 — DT@1 NN@2 CP®0 | CP@0 << X~ ZET i # Y >> DTOL << fF4 >> NN@2 << Hift >>
NP@0 DP@1 NP@2 — DP@1 NP@2 NPQO | NP@O << X~ ZET fix # i) >> DP@1 << 4 >> NPO2 << Hifi >>
NP@0 DP@1 NN@2 — DP®@1 NN®2 NP®@0 | NP0 << iX/~ Z=i & # ] >> DPOL << ff4 >> NN@2 << Hifs >>
NP@0 DT@1 NP@2 — DT@1 NP@2 NP@O | NP@O << iX/ > & £ #7 7 >> DTO1 << ft4 >> NP@2 << Hift >>

T BT >> DTEL << 14 >> NN@2 << Bift >>

NP@0 DT@1 NN@2 — DT@1 NN@2 NP@0 | NP@O << jX/~ Z&

We adopt the following six-step algorithm for each parent node from the source-side
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parse tree:

1. Find the AIO sequence for the source-side top-level element (in the example, the IP
node is assigned “(1 2) (3 4)“).

2. Look down through the target-side tree, finding AIOs for each node.

3. Find all target-side “closed“ (see §5.1.3) subsequences for the source-side AIO found

113

in step 1. In the example, it is the subsequence “(1 2)

4. Find all target-side isolated nodes corresponding to the elements that were not covered

in step 2. In the example, these elements are “3“ and “4“.

5. Extend the set of source-side nodes found in steps 2 and 3 with equivalent branches.
Since the words that are not presented in the alignment intersection do not affect
the projection matrix, “equivalence” means here that all the branches spanning the
elements from the given instance are considered equally (for example, elements N P!

are equivalent to the nodes IP*, CP! and NP?).

6. Place them in order corresponding to the target-side AIO and construct the final

reordering patterns ( “secondary rules“).

To illustrate the limitations incurred by a target-side parse tree, the potential reordering

pattern, referring to the top node in the Chinese tree
NP@0 VP@1 — VP@1 NP@O | NP@O << X4~ =T &t T i) >> VPOL << =& 4 Bt >>

is not allowed due to distinct source- and target-side tree coverage.
The strategy of “secondary “ rule extraction specifically allows extending the set of initial

rules extracted for the Example 1 with the following fair patterns:

ADVP@0 VV@1 AS@2 — VV@0 AS@2 ADVPQO | ADVPQO << # >> VVO1 << ffE >> AS02<< | >>
AD@0 VV@1 AS@2 — VV@0 AS@2 AD@O | AD@D << #f >> VeI << fff >> AS@2<< T >>

It is worth noting that the latter pattern is a rewrite rule, employing only POS tags,
where each raw word relates to a corresponding lexical category. This class of rules is a
special case of the SBR framework modeling one-by-one word permutations, where each
block that is subject to reordering consists of only one word.

For Example 2, the extended set includes 12 new “secondary rules® capturing word

order regularities within four lower level product:
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DNP®@O NP@1 VPQ@2 —
VP@2 DNP@O NP@1 | DNP@O << i i >> NP@1 << HIEEHY Al ik >> VP2 << 4 Rk >>

NP@0 DEG@1 NP®@2 VP@3 — VP©@3 NP@O DEG@1 NP@2 |
NPQ@O << fifi >> DEG@1 << HJ >> NPQ@2 << HIESTE Ml {Eht >> VPO3 << %4 1R >>

PN@0 DEG@1 NN@1 CC@3 NN®@4 VV@5 PN@6 — VVO5 NP@6 PN@O DEG@1 NN@1 CC@3 NN®@4 |
PN@O << fifi >> DEGO1 << HJ >> NN@2 << HIfi5ig >> CCO3 << Ml >> NNO4 << fEit >>
VVO5 << 45 >> PN@6 << /8 >>

5.1.5 Rule organization

Once the list of fully lexicalized reordering patterns is extracted, the number of times
each rule occurred is counted, and the set of initial rules is sorted. Then, all the rules
are progressively processed, reducing the amount of lexical information. Initial rules are
iteratively expanded such that each element of the pattern is generalized until all the lexical
elements of the rule are represented in the form of fully unlexicalized categories. Hence,
from each initial pattern with N lexical elements, 2V — 2 partially lexicalized rules and 1
general rule are generated. An example of the process of delexicalization can be found in

Figure 5.8. Generalized elements of partially lexicalized rules are marked as “NON*.
Initial rule:

NP@0 DP@1 NP@2 — DP®@1 NP@2 NP®O | NP@O << iX{> ¥ >> DP@L << 14 >> NPO2 << Hifi >>

Partially lexicalized rules:

NP@0 DP@1 NP@2 — DP®@1 NP@2 NP@0 | NP@O << X4 ZTj >> DP@1 << NON >> NPO2 << NON >>
NP@0 DP@1 NP@2 — DP®@1 NP@2 NP®0 | NP@0 << NON >> DP@1 << fI4 >> NP@2 << NON >>
NP@0 DP@1 NP@2 — DP@1 NP®@2 NP@0 | NP@0 << NON >> DP@1 << NON >> NP@2 << #iff >>
NP@0 DP@1 NP@2 — DP®1 NP@2 NP®0 | NP@0 << NON >> DP@O1 << ft4 >> NP@2 << Hifs >>

NP@0 DP@1 NP@2 — DP@1 NP®@2 NP@0 | NP@O << iX{> ZTJ >> DP@1 << NON >> NP@2 << Hitt >>

NP@0 DP@1 NP@2 — DP®@1 NP@2 NP@0 | NPQO << X~ Z¥ >> DP@1 << fI'4 >> NP@2 << NON >>

General rule:

NP®@0 DP@1 NP®2 — DP®@1 NP@2 NP®@0O

Figure 5.8: Examples of lexical rules expansion.

Thus, three types of rules are finally available:
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1. Fully lexicalized (initial) rules
2. Partially lexicalized rules and

3. Unlezicalized (general) rules

In the next step, these three sets of rules are processed separately: patterns are pruned
and ambiguous (see below) rules are removed. We apply different pruning strategies to
different groups of rules, introducing three independent thresholds: k., for fully lexicalized
rules, kyq+ for partially lexicalized rules, and Kgepe, for general rules. All the rules from the
corresponding set that appear fewer than k times are directly discarded. The probability of
a pattern is estimated from its frequency in the training corpus, and only the most probable
rule is stored.

In this version of the reordering system, only the single-best reordering hypothesis is
used in other stages of the algorithm, so the rule output functioning as an input to the
next rule can lead to situations reverting the change of word order that the previously
applied rule made. Therefore, the rules that can be ambiguous when applied sequentially
are exhaustively searched and pruned according to the higher probability principle?”.

For example, for the pair of patterns with the same lexicon (which is empty for a general

rule), such as

NP@0 VP@1 — VP@1 NP@O p; and VP@0 NP@1 — NP@1 VP®O po

which lead to a recurring contradiction,

NP VP — VP NP — NP VP

the less probable rule is removed.
The same strategy is adapted to the overlapping rules leading to a contradiction in the

set of applicable patterns, such as,

ADVP®@0 NP@1 VP@2 — VP@2 NP@1 p3 and VP@0 NP@1 — NP@1 VPQO p,

where the filtering decision is made depending on the values p3 and p4.
Finally, there are three resulting parameter tables analogous to the “r-table“ as stated
in [YamO1], consisting of POS- and constituent-based patterns allowing for reordering and

monotone distortion.

35Computational impact is not an issue here since the brute-force search space is constrained to the set
of rules applicable to a given sentence.
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5.1.6 Source-side monotonization

Rule application is performed as a bottom-up parse tree traversal following two principles:
(1) The longest possible rule is applied; that is, among a set of nested rules, the rule
with the longest left-side covering is selected. For example, in the case of the appearance

of an NN JJ RB sequence and presence of the two reordering rules

NNe@ JJe1 — ... and

NN@O JJ@1 RBO2 — ...

the latter pattern will be applied.

(2) The rule containing the maximum lexical information is applied; that is, when
there is more than one alternative pattern from different groups, the lexicalized rules have
preference over the partially lexicalized, and partially lexicalized rules have preference over
general ones.

Figure 5.9 shows the reordered source-side tree corresponding to the Example 1 with

the applied pattern :

ADVP@0 VP@1 — VP@1 ADVPQ0 | ADVPQO << # >> VPOl << 3% T >>

IP
/\
NP IP
| /\
DT VP SP

I /\ I
£ vp  adwe @

-] A [l
s

W AS AD
I I I
aE T W
21 [ M

Figure 5.9: Reordered source-side parse tree (Example 1).

The resulting reordered Chinese phrase more closely matches the order of the target

language and is considered as a result of the sub-tree transfer (see phrase 5.7):
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Plain Zh: 4 AET] B
Reordered Zh: 4 A4 T ot (5.7)

Gloss:  whole include all SfP

Eng. ref.: 7 includes everything ’

Another parse tree with swapped branches is shown in Figure 5.10. This is an illustration

of a long-distance source sentence reordering performed by the SBR algorithm corresponding

to the Example 5.5 with the applied lexicalized pattern

NP@0 VP@1 — VP@L NP@O | NP@O << fii ) HIESH Ml f:hk >> VPOL << %4 £ >>

IP

/\
NP VP

| /\

PN BA IP

*oE

[ /""\* _______ Lo P

NP

X
= PN NP DEG NN CC NN

E|<] EﬂiﬁL%ﬁ% o Rk

i
(7] P|N ] 31 4 5]
s
(2]

Figure 5.10: Reordered source-side parse tree (Example 2).

Two blocks of Chinese words “45 17/ give you® and “fih § HLIESHS FI E4E/ his tele-

phone and address* are swapped, which leads to a monotone mutual word order (see phrase

5.8):

Plain Zh: & {8 |ff () BIESH A A4k || % IR
Reordered Zh: & 8 |45 K| fth 7 RIS F1 b
Gloss: 1 BA give you his telephone and address

Eng. ref.: 7 1 give you his telephone number and address ’

(5.8)
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Once the reordering of the training corpus is ready, it is realigned, and a new, more
monotonic alignment is passed to the SMT system. In theory, the word links from the
original alignment can be used; however, from our experience, running GIZA-++ again

results in a better word alignment since it is easier to learn on the modified training example.

5.2 Coupling SBR and decoding

To improve the reordering power of the translation system, we implemented an additional
reordering as described in [Cre08a]. Multiple word segmentations are encoded in a word
lattice, which is then passed to the input of the decoder, containing reordering alternatives
consistent with the previously extracted rules.

A word lattice is defined as a direct acyclic graph

G=(V,E) (5.9)

with one root node ng € V and one goal node ny € V. V and E are, respectively, the set
of nodes and edges of the graph GG. Edges are labeled with source-side words.

The decoder takes the n-best reordering of a source sentence coded in the form of a
word lattice. As stated before, this approach is in line with recent research tendencies in
SMT, as described, for example, in [Hil08, Xu05].

In other words, the TM described in 5.1 is transformed as represented by Equation 5.10:

S—8 —-nx8S =T (5.10)

where n x S’ is a word lattice, compactly representing the n-best reorderings of the source-
side sentences S’.

Originally, word lattice algorithms did not involve syntax in the reordering process;
therefore, their reordering power is limited at representing long-distance reordering. Our
approach is designed in the spirit of hybrid MT, integrating syntax transfer approach and
statistical word lattice methods to achieve better MT performance on the basis of the latest
TMs used in the field.

During training, a set of word permutation patterns is automatically learned following
given word-to-word alignment. Since the original and monotonized (reordered) alignments

may vary, different sets of reordering patterns are generated. Note that no information
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about the syntax of the sentence is used: the reordering permutations are motivated by the
crossed links found in the word alignment, and, consequently, the generalization power of
this framework is limited to local permutations.

In the step prior to decoding, the system generates a word reordering graph for every
source sentence, expressed in the form of a word lattice. The decoder processes the word
lattice input instead of the single-best hypothesis, extending the monotonic search graph
with alternative paths.

Figure 5.11 illustrates that local reordering permutations “#F/all* < “B1¥& T /include*
from Example 1 can be captured with an input graph exploiting morpho-syntactic infor-
mation (POS tags). The path in a lattice 5.11 “1 — 2 — 6 — 7 — 14 — 15 generates
a reordered sequence that is equivalent to the permutation proposed by the SBR method,
and this particular sequence can be correctly reordered, thereby extending the monotonic

search graph with a word lattice for the monotonic train.

BfE RS i

SERY o

Lol
I SN
7T~

Figure 5.11: Word lattice for Example 1.

By contrast, Figure 5.12 shows an example of a word lattice that does not capture the
NP < VP reordering. There are no paths presented in the graph that could model the
correct word order.

However, if SBR is applied, the generated word lattice produces a different and better
set of reordering hypotheses, as shown in Figure 5.13. The “45 1%/ give you*“ clump is placed
just after the second word in the sentence, and the set of reordering hypotheses includes
the correct sequence, leading to monotonic decoding (path “1 -2 -3 -5 —8 — 13 —
18 — 22 — 26 — 30%).
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Figure 5.12: Word lattice without SBR reordering applied (Ezample 2).
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Figure 5.13: Word lattice with SBR reordering applied (Exzample 2).
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5.3 Experiments and results

This section details the experiments carried out to evaluate the performance of the SBR
approach. To understand the value in terms of accuracy and efficiency of the proposed re-
ordering framework, two directions and four translation tasks have been employed, namely,
small and large Chinese-to-English tasks (details can be found in §A.5 and §A.4, respec-
tively), and small and large Arabic-to-English tasks (§A.7 and §A.6).

The main reason that the Chinese-to-English and Arabic-to-English translation tasks
were chosen as a main experimental field is because European languages are not so crucial
for the global (long-distance) reordering problem as the translation between Asian/Semitic
languages and English. Both Chinese and Arabic languages differ from English in many
cases, and the corresponding translation tasks can be characterized by a high level of demand
on word reordering. On the other hand, the reordering needs for Arabic-to-English and
Chinese-to-English translation are very different and can shed light on the universality of
the proposed reordering scheme.

We report on two sets of experiments with phrase-based and N-gram-based models

driving the translation process.

5.3.1 Data

The major motivation to conduct experiments on corpora of different size is to obtain empir-
ical results on unseen (or partially seen) examples using a word reordering method derived
from the generalization model. Application of SMT to language pairs lacking parallel data
is an interesting challenge, widely discussed in recent literature [Pop06b, CB6a]. In the
framework of the study, we intend to understand the impact of the proposed generalization
algorithm on the translation accuracy using the limited resources and discuss implications
for efficient reordering on the example of the BTEC corpus from the tourist domain, which
is traditionally proposed in IWSLT evaluation campaigns.

We also perform experiments on large corpora from the news domain (NIST translation
tasks) and thereby show that the SBR method scales for a larger training set and that the
improvement is maintained.

In particular, Chinese-to-English experiments were performed on the BTEC’07 cor-

pus (§A.5) and NIST’06 (§A.4) material. In Arabic-English experiments we used the
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BTEC’08 corpus (§A.7) along with a 1-million-sentence extraction from the NIST’08 cor-
pus (§A.6), which was provided to the NIST evaluation campaign in 2008.

Apart from the quantity of training data, the corpora under consideration differ in
average sentence length (ASL), which is the key corpus characteristic in global reordering
studies. We expect that the need for longer distance reorderings would be clearer in longer
sentences, as in the NIST corpus, but we also include the BTEC corpus to see whether
there is an effect on shorter sentences as well.

Comparative sentence length statistics for BTEC and NIST training material are pro-
vided in Table 5.1.

‘ ‘ Chinese-to-English ‘ Arabic-to-English ‘
BTEC NIST BTEC NIST

Arabic | English | Arabic | English | Chinese | English | Chinese | English
ASL | 8.46 9.05 31.62 31.77 6.66 7.22 25.80 26.71

Table 5.1: Average sentence length for BTEC and NIST corpora.

5.3.2 Common details

The following paragraphs describe parameters that are common for experiments with phrase-

and N-gram-based systems.

Preprocessing. Language independent preprocessing consists of standard filtering pro-
cedures. Some sentence pairs are removed from the training data to allow for better per-
formance of the alignment tool and monolingual parsers.

Sentence pairs are removed according to the following two criteria:

e Fertility filtering: removes sentence pairs with a word ratio larger than a predefined

threshold value (3 in all the experiments).

e Length filtering: removes sentence pairs with at least one sentence of more than 100

words in length. This helps maintain bounded alignment computational times.

English data preprocessing. English preprocessing included lower-casing; splitting

oL

off contractions such as “’s“, “we®, “II“, “'m

attached to words. English POS tags (48 POS tags) were obtained with the Penn treebank

13

; and separation of punctuation marks

Stanford parser [Kle03], which was used in this step as a POS tagger.
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Chinese data preprocessing. The Chinese portion of the corpora was re-segmented
with the ICT-CLAS tool [Zha03]. The Chinese POS tags (32 tags) were obtained with the

Stanford parser.

Arabic data preprocessing. Arabic preprocessing was performed using the combi-
nation of morphological analysis and disambiguation (MADA toolkit) [Hab05] and a general
tokenizer TOKAN [Hab06] for disambiguation and tokenization. For disambiguation, only
diacritic unigram statistics were employed. For tokenization, we used the D3 scheme. The
scheme splits the following set of clitics: w+, f+, b+, k+, [+, Al+, and pronominal clitics.
The Arabic POS tags (26 POS tags) were obtained with the Stanford parser on all taggable

tokens.

Word alignment. Word-to-word alignment for both directions was generated with the
standard GIZA+-+ package and 50 statistical word classes. The intersection of direct and
inverse word alignments is used in SBR training.

Tuples and phrase translation probabilities, along with lexical weights, are calculated
on the extended alignment matrix using the grow-diag-final method. Rather than using

preface forms of English words, we used English stems following the point from [dG06].

Parsing. The SBR system requires access to source and target language parse trees,
along with the intersection of source-to-target and target-to-source word alignments. In the
framework of the study we used the Stanford parser as an NLP parsing engine in Arabic-
to-English and Chinese-to-English experiments?0.

The Stanford parser was trained on the respective treebank sets: the English treebank
is provided with 14 syntactic tags, the Arabic treebank has 23 syntactic categories, and the

Chinese treebank operates with 44 constituent categories.

Language model. The target-side LM was estimated using the SRI language modeling
toolkit to calculate all N-gram LMs (including the N-gram-based TM).

The values and features that vary from those that are provided in this section, as

well particular tools and parameters for each set of experiments, are summarized in the

36Generally speaking, the system permits using any other natural language parser allowing for different
formal grammars for the source and the target languages.
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corresponding section.

5.3.3 Experiments with phrase-based SMT

In the first set of experiments, we assessed the impact of the proposed reordering method
on phrase-based SMT performance. We trained a translation system with the 2008 version
of Moses, following the guidelines provided on the Moses site in all the points except for

reordering model usage.

Experimental setup

Baseline system characteristics that were used in the set of phrase-based experiments are

summarized in Table 5.2.

‘ ‘ Chinese-to-English ‘ Arabic-to-English
Word alignment GIZA++
Symmetrization GDF (intersection for SBR)
™ Phrase-based, max.length=20 (Moses default)
LM 4-gram, modified Kneser-Ney discounting with interpolation
Decoding Monotonic, beam=50 (10 during decoding)
. No (plain configuration
Reordering Lexicalized reordei"ing [Til04] %baselz’ne) configuration)
Optimization criteria BLEU

Table 5.2: Phrase-based system parameters. SBR experiments.

The scores considered are: BLEU scores obtained for the development set as the final
point of the MERT procedure (Dev); and BLEU and METEOR scores obtained on the
test dataset (Test). Automatic evaluation conditions were case-insensitive and punctuation

marks were taken into account.

Core experiments

As stated earlier, we experimented on Chinese-to-English and Arabic-to-English transla-
tions in the news and tourism domains, which, apart from the topic, differ in amount of
training material and average sentence length. Both translation tasks convey local and
global reorderings.

Five SMT systems were contrasted considering the set of experiments carried out on the

phrase-based system:
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1. Baseline refers to the Moses baseline system; the training data are not reordered, and

a lexicalized reordering (MSD) model [Til04] is applied with default parameters;

2. The Plain+ WL system is the standard Moses configuration with lexicalized reorder-
ing capabilities turned off; the input of the decoder is represented as a POS-based
word lattice, trained and built in accordance with the reordering framework presented
in [Cre08al;

3. Plain+SBR refers to the monotonic system configuration with syntactically reordered
source parts, only isomorphic sub-tree transfer (“main® rules) are considered; the

development and test datasets are monotonically decoded;

4. In the Plain+SBR+NI configuration SBR implements both isomorphic (“main “ rules)
and non-isomorphic (“secondary “ rules) sub-tree transfer; development and test datasets

are monotonically decoded;

5. The Plain+SBR+NI+ WL system employs a complete circle of the SBR reordering
including syntax-based source-side monotonization (isomorphic and non-isomorphic
sub-tree transfer considered); a word graph input sentence representation provides

the decoder with various reordering paths.

Table 5.3 presents BTEC results for the Chinese-to-English and Arabic-to-English tasks.
Table 5.4 shows the results obtained on the NIST corpus. Best scores are placed in cells
filled with grey.

The Plain+ WL configuration shows the effect of Crego’s algorithm applied on an unre-
ordered data and can be seen as an alternative baseline system.

Accurate selection of specific values for the cut-off thresholds for each group’s set of
rules is of critical importance in the SBR system. Apart from its use as an instrument
to eliminate noisy patterns, which can appear as a result of alignment or parsing errors,
in some cases a pruning mechanism drives the process of reordering rule application and
establishes a balance between more specific and less specific patterns. Aggressive pruning of
general and partially lexicalized rules increases the system’s accuracy. On the other hand,
such pruning decreases its generalization capability.

Results of comparative experiments conducted to empirically determine the optimal
combination of cut-off thresholds for BTEC and NIST tasks are provided in §5.3.6. In all
BTEC experiments, fully lexicalized rules are not pruned (kj., = 0); rather, the threshold
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Egener is set to 3 and kpqr¢ = 1. In Arabic-to-English NIST experiments the cut-off param-
eters are set to the values: ki = 1, kpart = 5, Kgener = 5; and in Chinese-to-English NIST

experiments they are set to kjep = 1, kiex = 7, kgener = 9.

Discussion of BTEC results. The results for the Chinese-to-English BTEC task show
a promising potential for the SBR algorithm. Non-isomorphic tree mapping impacts nega-
tively on translation performance to a negligible degree (—0.05 BLEU and —0.17 METEOR
points on the test set). However, the introduction of word lattice results significantly im-
proves translation accuracy and allows the gain of ~ 1.3 BLEU points on unseen data.
We explain such a marked improvement in translation quality by the effect introduced
by additional local reordering dependencies captured by the word lattice trained on the
pre-reordered text, which were not considered when the input graph was trained on the

unreordered text.

\ | dev | test BLEU | test METEOR |
BTEC ZhEn experiments

Baseline 48.52 47.21 68.33
Plain+WL 48.31 47.07 68.14
Plain+SBR 48.75 47.52 68.59
Plain+SBR+NI 48.79 47.47 68.56
Plain+SBR+NI+WL | 48.90 48.78 68.85
BTEC ArEn experiments
Baseline 48.46 47.10 68.10
Plain+WL 48.17 46.71 67.62
Plain+SBR 48.91 47.76 67.75
Plain+SBR+NI 48.71 47.49 67.33
Plain+SBR+NI+WL | 48.65 47.43 67.27

Table 5.3: Summary of the BTEC experimental results carried out on the phrase-based SMT
system.
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‘ ‘ dev ‘ test BLEU ‘ test METEOR ‘
NIST ZhEn experiments

Baseline 55.52 49.29 65.10
Plain+WL 55.54 49.18 65.12
Plain+SBR 55.49 49.87 65.71
Plain+SBR+NI 55.60 50.03 65.82
Plain+SBR+NI+WL | 55.65 50.12 65.91
NIST ArEn experiments
Baseline 48.84 48.91 59.64
Plain+WL 48.21 48.50 59.18
Plain+SBR 49.09 49.22 59.75
Plain+SBR+NI 49.13 49.38 60.19
Plain+SBR+NI4+WL | 49.86 49.43 60.17

Table 5.4: Summary of the NIST experimental results carried out on the phrase-based SMT
system.

Arabic-to-English results for the BTEC task are not so definite; the best system config-
uration is Plain+SBR, and degradation of translation performance is observed simultane-
ously with introduction of NI and WL features. However, the statistical significance test®’
of BLEU scores reveals that translation scores shown by all Arabic-English BTEC systems
including SBR are very similar and do not differ statistically (in this case, the statistical
significance interval is about +0.5 BLEU points). By contrast, the performance shown by
the best SBR system (Plain+SBR) statistically differs from both baseline configurations in
terms of BLEU score measured on the test dataset.

A phenomenon of lack of correlation between development and test results similar to
the one described in §3.4.5 can be observed by analyzing Table 5.3 (see Plain+SBR and
Plain+SBR+NI systems for the Chinese-to-English task). Although the simplex optimiza-
tion algorithm converges at a higher point (Plain+SBR+NI), test results are negligibly

worse.

37 All statistical significance calculations supporting a better comparison among different systems are done
for a 95% confidence interval and 1000 resamples, following the guidelines from [Koe04].



5.3. Experiments and results 119

Discussion of NIST results. NIST results are clearer and thus easier to analyze. As in
the case of the BTEC task, application of the SBR technique demonstrates an improvement
in translation quality according to automatic scores.

Plain+SBR+NI+ WL is found to be the best system configuration analyzing both sets
of NIST experiments. Although results shown by SBR systems are very similar, the most
significant observation is that introduction of SBR reordering (with non-isomorphic tree
transfer capabilities) leads to a performance improvement over the baseline configuration
by about 0.7 BLEU points for Chinese-to-English (1.4 %) and by about 0.5 (1.1%) for
Arabic-to-English. These observations are statistically significant for the NIST tasks (the
thresholds are 0.6 BLEU points and +0.5 BLEU for Chinese-to-English and Arabic-to-
English NIST tasks, respectively). The METEOR score also increases with an increase in
reordering system complexity, supporting the BLEU results.

Another important conclusion that can be drawn from the comparison of non-deterministic
systems trained on the unreordered and reordered data ( Plain+ WL and Plain+SBR+NI+WL)
is that the introduction of syntactically motivated reordering capabilities in a non-deterministic
way leads to a significant improvement in the score of about 1 BLEU point and 0.8-1 ME-
TEOR points in both directions, which is a numerical expression of an aggregate effect of

isomorphic and non-isomorphic SBR introduction.

Syntax-based rewrite rules. As mentioned above, SBR operates with three groups
of reordering rules, which are the product of complete or partial delexicalization of the
originally extracted patterns. The groups are processed and pruned independently. Basic
rules statistics for both translation tasks can be found in Table 5.5 and 5.6 (all the numbers
are provided after pruning and employing cut-off values from the previous paragraph; for
further information concerning pruning strategy refer to §5.3.6).

The majority of the reordering rules consist of two or three elements. In the case of the
Arabic-to-English BTEC task no patterns comprise more than three nodes. Considering
Chinese-to-English BTEC translation, a few rules contain more than 3 elements (3.2 % of
lexicalized patterns, 5.5 % of partially lexicalized and 19.4 % of general rules).

Rules for the NIST task involve more elements in the reordering process (up to 8). In
addition, there are some long lexicalized rules (7-8), generating a high number of partially
lexicalized patterns.

This rule distribution can be explained by the fact that the Stanford parser tends to
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Group ‘ # of rules ‘ Voc ‘ 2-element ‘ 3-element ‘ 4-element ‘ [5-8]-element ‘

BTEC experiments

Specific rules 703 413 406 7 - -
Part. lex. rules 1,306 432 382 50 - -
General rules 259 ) ) - - -

NIST experiments

Specific rules 9,896 6,715 5,891 472 72 259
Part. lex. rules | 172,374 | 52,945 41,878 7,816 1,010 2,241
General rules 1,053 515 180 90 72 30

Table 5.5: Basic reordering rules statistics (Arabic-to-English).

‘ Group ‘ # of rules ‘ Voc ‘ 2-element ‘ 3-element ‘ 4-element ‘ [5-8]-element

BTEC experiments

Specific rules 2,874 1,663 1,609 45 9 -
Part. lex. rules 3,688 2,912 2,750 158 4 -
General rules 519 103 83 18 2 -
NIST experiments
Specific rules 22,395 14,802 10,173 2,495 1,827 307
Part. lex. rules 210,604 77,590 53,652 10,821 7,720 5,397
General rules 928 433 361 39 21 12

Table 5.6: Basic reordering rules statistics (Chinese-to-English).

generate a deep tree structure with few nodes on each level. Longer rules are principally
produced by the non-isomorphic mapping algorithm, tending to reconstruct the target-side
word order structure by placing source-side sub-trees in the proper order. On the other
hand, very few multi-node sub-trees are generated by the Stanford parser, which are more
likely to appear when longer sentences are parsed.

Repeatability of rules is about 10 % higher for the BTEC tasks; in particular, 59.3 % and
57.8 % of all extracted rules are unique to the case of BTEC Arabic-English and Chinese-
English translation tasks, respectively, versus 67.8 % and 66.09 % for the corresponding
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tasks using the NIST corpus.

Tables 5.7 and 5.8 show some examples of reordering rules from each group.

Specific rules

1A NN@O NP@1 — NP@1 NN@O | NN@0 << Asm >> NP@1 << +y >> | 2.7E-2
2A | DTNN@O DTJJ@1 — DTJJ@1 DTNN@O | DTNN@O << AlAmm >>DTJJ@1 << AlmtHdp >> | 5.2E-2
3A NN@O NP@1 — NP@1 NN@0 | NN@0 << Asm >> NP@1 << +k >> | 2.6E-2
4A NN@Q JJ@1 — JJ@1 NN@O | NNO@ << ymyn >> JJ1@ << +k >> | 2.4E-2

Partially lexicalized rules

5A NN@O NP@Q1 — NP@! NN@O | NN@0 << NON >> NP@1 << +k >>| 9.0E-2

6A NN@o JJ@1 — JJ@1 NN@Q | NN@Q0 << NON >> JJ@1 << +k >> | 5.9E-2

TA DTNN@O DTJJ@1 — DTJJ@1 DTNN@(O | DTNN@O << NON >>DTJJ@1 << AlmtHdp >> | 1.7E-8
8A NN@O NNP@! — NNP@1 NN@O | NN@0 << NON >>NNP@1 << $rm >> | 1.7E-3

General rules

9A NN@g Jjj@1 — JJ@1 NN@O | 3.9E-1

10A JJ@0 NN@! PP@2 — NN@1 JJ@0 PP@2 | 9.6E-2
11A RT@0 VBP@1 NPQ@2 — PRT@0 NPQ@2 VBPQ@1 | 6.5E-2
12A NN@OQ NNP@1 — NNP@1 NN@O | 3.4E-2

Table 5.7: Examples of Arabic-to-English reordering rules.

Reordering rules can be driven by POS tags only (see lines 2A, 6A, or 9A, for example),
syntactic constituents only (2B, 3B, 8B), or by both categories simultaneously (3A, 4A, 8A).
Patterns can be monotone, without violating source-side order (3B, 4B, 10B) or swapping
all or some of the rule elements (5A, 2B, 8B). They can include a single token as a reordering
element (1A, 1B) or involve a sequence of tokens in the reordering process (2B).

It is worth noting that 7A is a delexicalized version of the rule provided in 2A with

generalized determiner-noun box, and 12A is a fully delexicalized version of 8A.

Translation examples and discussion. FExamples 5.11-5.13 demonstrate how two re-
ordering techniques interact within a sentence taken from the NIST corpus with a need for
both global and local word permutations for an Arabic-to-English translation task. Exam-
ples of SBR application are highlighted in bold, while translated clumps that need local
reorderings are underlined.

Ar. plain: AElnt Ajhzp AIAEIAm | bEvp AlAmm AlmtHdp fy syrAlywn  An

Gloss: announced press release by mission nations united in sierra leone that ... (5.11)

Eng. ref.: ' a press release by the united nations mission to sierra leone announced that ... ’

Baseline: ’ the media and the united nations of mission in sierra leone that ... ’
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Specific rules

1B NP@0 LC@1 — LC@1 NPQO | NP@0O << i>> LCQ1 << J5>> | 2.8E-4

2B | ADVP@0 VP@1 — VP@1 ADVP@Q |

| ADVPQ@O << RJE>> VPQ1 << iF HE X4 #x Bk FE>> | 7.8E-5
3B | QP@0 CP@1 NP@2 — QP@0 CP@1 NPQ2 |

| QP@0 << 1>> CPQ@1 << #Hi>> NPQ2 << [FHI>> | 1.8E-/
4B IP@0 VP@1 — IP@0 VP@1 | IP@Q0 << f@¥>> VP@1 << WEIR>> | 3.4F-4

Partially lexicalized rules

5B NP@O VP@1 — VP@1 NP@QO | NP@QO << NON >> VP@1 << Wf>> | 7.9E-2
6B ADJP@0 NP@1 — ADJPQ@0 NP@1 | ADJP@0 << NON >> NP@1 << Hiff>> | 8.1E-
7B NP@0 LC@1 — LC@1 NP@0 | NP@) << NON >> LC@1 << Hi>> | 5.8E-4

8B | NP@0 PP@1 VP@2 — VP@2 PP@1 NPQ@O |
| NP@0 << NON >> PP@1 << NON >> VP@2 << FTHIE>> | 6.5E-5

General rules

9B NP@O LC@1 — LC@1 NP@( | 8.2E-3

10B DNP@O ADJP@1 NP@Q2 — DNP@OQ ADJP@1 NP@2 | 1.1E-3

11B IP@0 LC@1 — LC@{ IP@O0 | 1.6E-3

12B QP@0 DNP@1 ADJP@2 NP@Q3 — QP@0 ADJP@2 DNP@1 NP@S3 | 8.7E-5

Table 5.8: Ezamples of Chinese-to-English reordering rules.

As can be seen from Example 5.11, the Moses baseline system omits translation of
“AFlnt/announced“ placed in the original position at the beginning of the sentence.
Another issue is a complex reordering within the clump “bEvp AlAmm AlmtHdp /mis-
sion nations united “, requiring two local permutations to get the correct word order (“AlAmm
AlmtHdp /nations united“ — “AlmtHdp AlAmm/united nations“ and “bEvp AlmtHdp Al-

¢

Amm/ mission united nations“ — “AlmtHdp AlAmm bEvp/united nation mission*). In the
course of the performance of permutations, two extra words are embedded in the clump,
distorting its meaning.

By contrast, if the source sentence is syntactically reordered in the preprocessing step
and the word “AFlnt/announced* is moved to the ninth position, the generated translation
contains the content verb “announced*, and the output is more fluent and preserves the
adequate meaning (Example 5.12).

Ar. reord.:  Ajhzp AlAEIAm | bEvp AlmtHdp AlAmm fy syrAlywn  AFElnt An ...
Gloss: press release by mission united nations in sierra leone announced that ...  (5.12)
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Eng. ref.: ' a press release by the united nations mission to sierra leone announced that ... ’

Plain+SBR+NI:’ the media and the mission of united nations in sierra leone announced that ... ’

Example 5.13 illustrates the handling of local reordering permutations done with
a word lattice algorithm. In this case, the reordering leads to better clump translation
motivated by the rule predicted word order. Although the deterministic approach translates
the underlined clump as “mission of united nations*, integration of the pre-estimated word
lattice allows the decoder to find another translation “wunited nations mission“ that is much
better in terms of BLEU score (because the latter translation is closer to the reference
translation). For clarity’s sake, it must be mentioned that this translation can be considered

a paraphrasing of the fluent translation shown in Example 5.12.

Ar. reord.: Ajhzp AlAEIAm | bEvp AlmtHdp AlAmm fy syrAlywn  AElnt An ...
Gloss: press release by mission nations united in sierra leone announced that ...  (5.13)

Eng. ref.: ’ a press release by the united nations mission to sierra leone announced that ... ’

Plain+SBR+NI+WL:’ the media and the united nations mission in sierra leone announced that ...’

5.3.4 Experiments with N-gram-based SMT

The proposed approach was also evaluated on the N-gram-based SMT system of [Mar06b],
which is an alternative to the phrase-based translation approach, and which has proved to
be competitive with the state-of-the-art systems in recent evaluation campaigns [Kha08,
LamO07b]. A detailed description of the N-gram-based approach can be found in chapter 2.

The experiments were conducted on the BTEC’07 (§A.5) and the NIST'06 (§A.4)
Chinese-English corpora. The BTEC’08 Arabic-English corpus (§A.7) was also used in

experiments applying a translation unit blending strategy.

Experimental setup

The baseline system characteristics that were used in the set of N-gram-based experiments
can be found in Table 5.9.

In N-gram-based experiments, we used the MaxJumps constraint distortion model,
as briefly described in chapter 4. Given that the bilingual n-gram is estimated over the
reordered set of tuples (unfolded tuples), two parameters are used to restrict the search

during decoding time:

e A distortion limit (m): any source word (or tuple) is allowed to be reordered only if

it does not exceed a distortion limit, measured in number of source words.
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‘ ‘ Chinese-to-English BTEC ‘ Chinese-to-English NIST ‘
Word alignment GIZA++
Symmetrization Union (intersection for SBR)
Tuples Unfolded
NULL-source tuples IBM1 model
Embedded words No
™ 4-gram, modified Kneser-Ney discounting with interpolation
LM 4-gram, modified Kneser-Ney discounting
Other features WP, LEX1, LEX2, POS LM
POS LM 4-gram, Good-Turing discounting
Decoding Non-monotonic, distance-based distortion
Pruning Histogram, tnb=10 ‘ Histogram, tnb=20
Reordering A word distance-based distortion model [Cj06¢], m=5, j=5
Optimization criteria 100BLEU+4NIST

Table 5.9: N-gram-based system parameters. SBR experiments.

e A reordering limit (7): any translation path is allowed to perform only j reordering

jumps.

The use of these constraints implies a necessary trade-off between quality and efficiency,
depending on the difficulty of the task. For more details, refer to [Cre05d, Cre06a].

For all system configurations, apart from monotone experiments, parameters of the
distance-based reordering model were set to m = 5 and j = 5 for a fair trade-off between

efficiency and accuracy.

Core experiments

The set of core experiments with N-gram-based SMT contrast systems was performed
considering the BTEC’07 and NIST’06 Chinese-English corpora.

As in the previous section, we reported the final scores obtained as a result of model
weights tuning for a development dataset done with the simplex algorithm (dev), along
with BLEU and METEOR scores for the test dataset (test). Evaluation conditions were
case-insensitive, and punctuation marks are taken into account.

We contrasted three N-gram-based system configurations comparing the SBR results

with the MaxJumps distortion model:
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e Baseline: the training data are not reordered and allow for constrained distortion

(m = 5,7 =5) during decoding;

e Baseline+SBR: SBR is applied in the preprocessing step involving “main“ rules only;
the development and test sets are monotonically decoded and constrained distortion

is considered;

e Baseline+SBR+NI: SBR is applied involving isomorphic (“main® rules) and non-
isomorphic (“secondary rules®) sub-tree transfer; the constrained distortion (m =

5,7 = 5) is allowed.

The automatic evaluation scores for BTEC corpus are reported in Table 5.10 and those

for the NIST task in Table 5.11.

‘ ‘ dev ‘ test BLEU ‘ test METEOR ‘ # tuples ‘ voc tuples ‘
BTEC ZhEn experiments

| Baseline | 4817 |  46.02 | 66.98 | 150,378 | 36,643 |
Baseline+SBR 48.55 | 46.67 67.92 157,345 | 36,936
Baseline+SBR+NI | 48.83 | 46.52 67.82 151,430 | 36,501

Table 5.10: Summary of the BTEC experimental results carried out on the TALP-UPC
N-gram-based SMT system.

‘ ‘ dev ‘ test BLEU ‘ test METEOR ‘ # tuples ‘ voc tuples ‘
NIST ZhEn experiments

| Baseline | 58.28 |  47.04 | 62.38 | 4,761,412 | 1,692,397 |
Baseline+SBR 58.80 47.31 62.54 5,374,819 | 1,801,515
Baseline+SBR+NI | 58.96 47.57 62.77 5,379,902 | 1,805,789

Table 5.11: Summary of the NIST experimental results carried out on the TALP-UPC N -
gram-based SMT system.

Note that development scores obtained from the NIST’06 corpus are not comparable to
the corresponding results from the phrase-based experiments due to a difference in opti-
mization metric (BLEU vs. 100BLEU+4NIST).

Columns 5 and 6 in both tables show the number and the vocabulary of tuples extracted

from the training corpus (unfolded algorithm).
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Discussion of results. For both sets of Chinese-English experiments, application of the
SBR technique demonstrates improvement in translation quality according to the automatic
scores.

Results for Chinese-to-English BTEC task show consistent improvement in terms of
translation quality when SBR features are incorporated (0.65 BLEU points (of 1.4 %), which
is statistically significant for the BTEC task). As in phrase-based experiments, introduction
of non-isomorphic sub-tree transfer has no positive effect on the MT scores (= 0.15 points
of BLEU degradation; the METEOR score is slightly worse for the Baseline + SBR + N1
configuration).

N-gram-based NIST systems demonstrate a very similar behavior when compared with
phrase-based translation. The Baseline+SBR+NI system is found to be the best configu-
ration, outperforming the Baseline configuration by about 0.53 BLEU points (1.15 %) and
reaching a statistical significance threshold (+0.5 BLEU points). The METEOR score also
increases with a rise in reordering system complexity, which supports the BLEU results.

Although the maximum theoretical number of tuples for a given word alignment can be
extracted with the unfolding algorithm, re-running of the alignment procedure on the pre-
reordered training data helps to locate additional correct links between far tokens. Number
and vocabulary of extracted tuples are very important indicators of an N-gram-based system
performance. The system, which has at its disposal a higher number of elementary bilingual

units, is able to construct a more complete and fluent translation of the unseen data.

Translation examples. FExamples 5.14 and 5.15 illustrate source monotonization with
the use of the SBR algorithm. Standard N-gram-based SMT cannot generate a fluent
English translation of the Chinese sentence, primarily due to the system’s inability to move
the sequence “M HZHT 54 ABJL/ from smith mr there to the end of the sentence.

The clump subject to SBR reordering is highlighted in bold.
Zh. plain: T E E% AR A O BEEE SELE L Rl RE AR K N

Gloss: I so pleased green mr 1 from smith mr there hear alot about your situation (5.14)

)

Eng. ref.: ’ the pleasure is all mine mr green i ’ve heard a lot about you from mr smith ’

Baseline: > T am very glad mr green mr smith where I heard a lot about your circumstances ’

Example 5.15 shows how the N-gram-based translation system can benefit from long-
range permutation of the Chinese clump “M 8T S5 #HF )L such that it better matches

the structure of the English counterpart.
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Zh. reord.: & E &% Bk ek | OrEl RE OB RE BN W EE e ARL

Gloss: I so pleased green mr 1 hear alot about your situation from smith mr there (5.15)

Eng. ref.: ’ the pleasure is all mine mr green i ’ve heard a lot about you from mr smith ’

Baseline: ’

Local reorderings, namely, ¥4k J54E /green mr — Y54 B/ mr green and 5225 HT 58
& Jsmith mr — e BT /mr smith, are tackled by regular tuples exploiting alignment

mr green [ am very glad I heard a lot of your circumstances there from mr smith ’

crossings.
The example shows a nice symbiosis of the SBR method and tuple-based translation. It

also shows that SBR does not bias against tuple internal reordering

5.3.5 Deriving benefit from a purely generalized SBR

This section describes an alternative way to use SBR, namely, for a blending strategy of
translation units that combines original®® and reordered bilingual tuples extracted from the
parallel corpora with unreordered and reordered source parts. The augmented set of tuples
is next passed to the N-gram-based SMT system, increasing its capability to find a better

translation of unseen data.

Method

In terms of this study, we operate exclusively with generalized (i.e., unlexicalized) reordering
rules that can cause reordering errors induced by a specific number of grammatical excep-
tions, which can be easily found in any language. As described in the previous sections,
one way to address this problem is through full or partial lexicalization of the reordering
patterns. An alternative approach, described here, accounts for a finite-state transducer
architecture of the N-gram-based SMT and is called the tuple blending model.

Once the corpus with reordered source part is aligned, two sets of tuples are extracted
based on the reordered and original alignment matrices. In the final stage of the TM
construction, the bilingual units from these sets are combined following the criterion of
maximizing the number of tuples at the sentence level. This technique entails more tuples
involvement in TM construction, which provides better bilingual generalization (shorter
translation units have higher probability of appearance in the translating corpus than longer
ones).

Figure 5.14 illustrates the process of tuple derivation from the aligned bilingual sentence

following the regular unit extraction method. Given a word alignment along with the

¢

38Here, we refer to the tuples extracted with the “regular® algorithm.
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a) sl s2 s3 s4 b) sl s3 s4 s2

tl t2 t3 t4 t5 tl t2 t3 t4 t5

Fommsms-ss=s=s=======- 1 - s-ssssssss==-= '

Vsl #tlt2 Sw . Vsl #tlt2 Skt

1 s2s3s4 #13t415 : ''s2 # t3 :

ecceeccceesssmsmma=== . ''s4 # t4 !
1 s5 # t5 ,
1 1

Figure 5.14: Tuple extraction from an unreordered and a correctly reordered bilingual sen-
tences.

bilingual sentence with original and reordered source parts, two alternative sets of tuples
can be extracted (Sps and Sg). The decision of which set will be considered during TM
generation is made based on the simple criterion of number of extracted units. In the
example provided in 5.14, Sr will be taken since it consists of four shorter tuples, in contrast
with the plain configuration, which allows for only two units.

Parse errors, redundant generalization and lack of capability to consider lexical excep-
tions are handled, as shown in Figure 5.15. Sjs set of tuples is generated from the unre-
ordered sentence (a) and provides the decoder with four unique tuples. Example (b) shows
a situation in which erroneous source-side reordering leads to a permutation s2 s3 < s4 sb
and generation of the two-element set of tuples (Sg). In this case, Sy will be taken into
account during TM construction following the criterion of maximizing the number of tuples

at the sentence level.

Experiments.

The experiments were performed on the Arabic-English BTEC'08 (§A.7) and Chinese-
English BTEC’07 corpora (§A.5). We reported final BLEU scores obtained on the de-
velopment set as the final point of the optimization procedure, with automatic translation
results measured on the test set and the total number of extracted tuples.

We considered four translation systems:
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s4 # t4
sb # t5

b) sl s4 s5 s2 s3

11 # tl

154 s5 s3 s3 # t2 t3 t4 t5

Figure 5.15: Tuple extraction from an unreordered and an erroneously reordered bilingual
sentences.

A monotonic model corresponding to the N-gram-based systems as described in Ta-

ble 5.9 but with the tuples extracted using a “regular“ scheme.

The decoding is

monotonic. In this case the parallel corpora with monotonic source part are involved

in TM construction, and no distortion model is provided.

A reordered model refers to the N-gram-based system trained and tuned on the data

with reordered source part and allowing for monotonic decoding. Only generalized

rules are taken into account (Kgener = 3) during SBR.

A blending model as previously described in this section.

The alternative MazJumps reordering, which includes the “unfold“ algorithm of tuples

extraction and constrained distance-based distortion model used in the decoding step

(as described in [CjO06¢]) with distortion and reordering limits set to 5 (m = j = 5).

Experimental results for both tasks are provided in Table 5.12.

The Arabic-to-English N-gram-based blending SMT system outperformed the distance-
based constrained search technique by about 0.4 BLEU points and 0.2 METEOR points.

However, because the MaxJumps final optimization point is &~ 0.4 BLEU above the blending

system, we assume that it can be due in part to inconsistency of development and test results

that are typical for small translation tasks. Results obtained with the blending algorithm

outperformed both monotonic and reordered systems by 4.14 BLEU points (4.1 %) and
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‘ ‘ dev ‘ test BLEU ‘ test METEOR ‘ # tuples ‘

BTEC ArEn experiments

Monotonic | 40.55 43.78 57.17 135,855
Reordered | 41.05 45.15 58.28 143,934

Blending | 43.20 47.92 59.33 170,572
MaxJumps | 43.61 47.46 59.14 163.755

BTEC ZhEn experiments

Monotonic | 45.77 43.81 64.52 103,714
Reordered | 47.90 45.54 66.25 124,955
Blending | 48.02 45.93 66.84 150,378
MaxJumps | 48.17 46.02 66.98 142,802

Table 5.12: Summary of the tuple blending experimental results.

2.77 BLEU points (5.8 %), respectively. These results show that sentence-level combining
of tuples extracted from the corpus with original and reordered source parts is useful in
terms of translation accuracy.

Chinese-to-English results show that the bilingual units blending method is competitive
with the alternative reordering algorithm. In this case, blending configuration outperforms
the monotonic system by about 2.1 BLEU points when translating an unseen dataset and
about 0.4 BLEU points in comparison with the system trained on a syntactically pre-
reordered corpus. For the Chinese-to-English translation task, the blending and MaxJumps
reordering algorithms showed comparable performance, significantly outperforming both

the monotonic and the syntactically reordered SMT systems.

5.3.6 Effect of rule pruning

The pruning strategy applied to each of the sets of reordering rules had a strong influence
in the final reordering decision taken in the deterministic step. In this section we present
the results of an empirical study dedicated to finding the optimal combination of pruning
strategies for SBR. In particular, we evaluate the quality gain that can be achieved via
accurate selection of cut-off thresholds for each group of reordering rules on the Arabic-to-
English BTEC and NIST tasks.



5.3. Experiments and results 131

Results are shown in Table 5.13. Mje,, Mpart and Myepe, refer to the size of lexicalized,
partially lexicalized, and general reordering models, respectively. BLEU and METEOR
scores are estimated on the test corpus. Evaluation conditions were case-insensitive with

punctuation marks taken into account.

| Kiex | Mico || kpart | Mpart || kgener | Myener || BLEU | METEOR | sec./sent. |

BTEC ArEn experiments

0 703 0 19,034 0 515 46.88 68.07 4.7E-2
0 703 1 7,519 1 259 46.86 68.03 1.1E-2
0 703 2 4,913 1 259 47.12 68.20 6.4E-3
0 703 3 1,306 1 259 47.52 68.39 3.1E-3
0 703 4 1,107 1 259 47.51 68.36 3.0E-3
0 703 3 1,306 2 125 47.49 68.31 3.1E-3
1 104 3 1,306 1 259 47.41 68.22 2.2E-3
2 52 3 1,306 1 259 47.13 68.18 1.9E-3
NIST ArEn experiments
0 | 68,901 0 830,026 0 11,027 - - 2.7
0 | 68,901 3 244,902 0 11,027 - - 2.1
0 | 68,901 5 172,374 0 11,027 || 48.92 59.27 1.7
0 | 68,901 7 159,416 0 11,027 || 48.58 59.02 1.4
1 9,896 5 172,374 0 11,027 || 48.99 59.35 1.2
2 3,660 5 172,374 0 11,027 || 48.81 59.29 1.1
1 9,896 5 172,374 1 5,262 49.17 59.69 1.2
1 9,896 5 172,374 3 1,692 49.20 59.71 1.1
1 9,896 5 172,374 5 1,053 49.22 59.75 1.1
1 9,896 5 172,374 7 973 49.15 59.68 1.0
1 9,896 5 172,374 9 901 49.12 59.68 1.0

Table 5.13: Effect of pruning strategy on phrase-based system translation quality, on re-
ordering model size, and on processing time.

The experiments were done on a dual-processor Pentium IV Intel Xeon Quad Core X5355
2.66 GHz machine with 24 G of RAM. All computational time results are approximated. MT
scores for minimally pruned NIST configurations are not provided due to time-consumption
of the reordering procedure.

In the case of the BTEC task, values of ki = 0, kpgre = 3, and kge, = 1 produced
a translation BLEU improvement of &~ 0.3 points with respect to unpruned configuration.

Active pruning of partially lexicalized rules is mandatory for large translation tasks due to
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an exponential growth of model size when the corpus and average sentence length increase.
For the BTEC task, this impacts positively on the automatic translation scores: changing
the kpqr¢ value from 3 to 2 leads to a translation BLEU reduction of ~ 0.4 BLEU points
and ~ 0.2 METEOR points. On the other hand, the system is not highly sensitive to the
changes of kgener value, which can be explained by the fact that many reorderings are done
with lexicalized or partially lexicalized patterns.

The optimal set of thresholds for the NIST task is ki, = 1, kpgrt = 5, and kgep, =
5. Despite the cut-off values for partially lexicalized and general rules being equal, the
motivation to set them to a relatively high value of 5 is different.

Generalized patterns can be wrong for some examples. That is why we consider an
aggressive pruning strategy of general patterns reasonable and maintain the higher value of
thresholds for general patterns. This approach limits the number of the patterns that do
not capture a certain number of grammatical exceptions, which can be easily found in any
language.

The increase in ke value leads to a very important decrease in the size of the partially
lexicalized reordering model. The latter varies within the range of 89-95 % of the total size
of the SBR model, depending on the other threshold values. On the other hand, setting the
threshold to a value higher than 5 causes a degradation in translation quality.

As in the case of the BTEC task, the reordering system is less sensitive to general rule
threshold variations, possibly due to the wide coverage of reordering instances by other

groups of rules.

5.4 Discussion and conclusions

In this chapter, we have described a new approach to word reordering in SMT, which
successfully integrates syntax-based reordering in phrase-based and N-gram-based SMT.
This approach correlates with the human intuitive notion of translation. At its best, a
successful translation should read as if it were originally written in the new language.
When translating a sentence, a human defines the target-language word order according
to an extensive set of grammatical and semantic rules, along with abundant exceptions
determined by certain lexical features, thereby neutralizing the “natural“ word order [EZ81].

The SBR model described in this chapter similarly models reordering transformations

in the pre-translation step:
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e First, the system automatically learned a set of syntactic reordering patterns that
exploit systematic differences between word order of source and target languages.
Intending to avoid the pitfall of overgeneralizing, which can result in the loss of a
relatively solid body of lexically motivated dependencies, we introduced three sets of

reordering rules characterized by different generalization levels.

e In the next step, the rules were applied to the source part of the same training corpus
changing the source sentence structure such that it more closely matches the word

order of the target language.

e Finally, we showed that the translation quality can be improved by coupling the SBR,
algorithm with a state-of-the-art word alignment-based reordering framework, which

was applied during decoding.

We provided a qualitative analysis of the extracted reordering patterns and studied the
effect that reordering rules learned under different circumstances have on translation.

We also examined the idea that the proposed syntactically motivated reordering coupled
with the bilingual units blending method applicable to the N-gram-based SMT impacts
positively on the translation accuracy and shows competitive performance in comparison
with an alternative reordering model.

The method was tested on tasks with a high need for word reorderings, namely, trans-
lating from Chinese and Arabic into English. We achieved significant improvement in
translation quality when that SBR technique was applied. We also showed that employing
a non-deterministic algorithm to extend a search graph with reordering hypotheses signifi-
cantly outperforms state-of-the-art distortion models.

We started the evaluation on smaller translation corpora with a high need for local
reordering; we then showed that the method scales to a large training set requiring long-
distance permutations caused by longer sentences. We showed that the improvement mea-

sured by automatic evaluations is maintained for larger corpora.
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Conclusions and future work

In this chapter, we summarize the main results and most significant achievements of this
Ph.D. dissertation and point out several research aspects that could be addressed in future

work.

6.1 Conclusions

Translating from one language to another is one of the most complex higher order activities
of the human brain. Despite the success of the statistical approach in the task of MT, the
problem of efficient and effective word and phrase reordering is still far from being solved.
This thesis extends the state-of-the-art in SMT, continuing the tradition of introducing
linguistic and syntactic knowledge into SMT [Elm08, dG06]. We also address the problem of
accurate and efficient target language modeling for SMT, which we consider as a secondary
direction of the research work presented in this thesis. The experimental field, which in
the majority of alternative works is limited to phrase-based translation models, is extended
with a joint-probability approach estimating an n-gram of bilingual tuples.

In particular, the scientific contributions of the thesis include the following:

e We showed that existing and optimized algorithms of LM domain adaptation can
be expanded to the wider problem of translation task adaptation, considering the
translation of the unseen dataset as a monolingual text-classification problem. We
reported on experiments that build an adaptive N-gram-based SMT system that

translates slightly edited output of the speech recogniser (verbatim transcription).
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We have shown that our proposed technique of general and specific target-side LMs
interpolation provides better generalisation for English-to-Spanish and Spanish-to-

English translation directions than a standard n-gram LM trained on a clean corpus.

e We identified an efficient LM pruning strategy that reveals a fair trade-off between
translation quality and efficiency of the translation process. We described the impact
of accurate threshold cut-off selection on the LM size, its noisiness, and final SMT

performance.

e We presented an innovative technique of SMT enhancement with a continuous-space
LM based on a neural network. This approach exploits the ability of non-linear
statistical data models to learn distributed representations to reduce the impact of the
curse of dimensionality. The main advantage of this approach to language modeling is
that a continuous-space LM estimates the posterior probabilities as an interpolation
of any possible context of length n — 1 instead of backing-off to shorter contexts.
The proposed alternative LM was introduced to the N-gram-based SMT system as
a feature function and was used in the re-ranking step to re-score the k-best list
of translation hypotheses. We reported results for an Arabic-to-English translation
task, demonstrating a significant improvement in translation quality through a better
target-side language model representation in contrast with the state-of-the-art LM

approach.

e We proposed a novel word reordering approach that alleviates the word order chal-
lenge involving morpho-syntactical and statistical information in the context of a

pre-translation reordering framework.

In the framework of this part of the thesis, we provided a basic functional build-
ing block that can be exploited by a higher-level SMT system to efficiently address
structural differences between source and target languages. Here, our interest was
the value of syntax in word reordering for SMT, and the major statement was that
morpho-syntactic information is useful in handling global reordering for the languages

with high word order disparity.

Features distinguishing the SBR approach from the alternative methods are:

1. A two-step reordering approach addresses the reordering problem through in-

tegration of the deterministic (harmonizing source and target word order) and
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non-deterministic approaches (using POS information to construct and extend
an input graph model). We showed that the former is responsible for long-range
reordering dependencies, while the latter deals better with local word permuta-

tions.

2. The use of a target-side tree as a filter in the rule extraction step limits reordering
rules to those that conform to the target-side tree. We implemented the strategy
to address discrepancies between source and target parse trees through a source-
side tree traversal and target-side multi-level subtree reconstruction, aiming to

put the source words in desirable (and, we hope, correct) word order.

3. Different from most current reordering systems that assume essentially isomor-
phic trees [Als00, YamO01], we used an idea similar to the extended domain of
locality [Jos97] and implemented an extended tree-to-string transducer spanning

multi-level subtrees on the source side of the corpus with competitive results.

4. We proposed a special technique applicable to N-gram-based SMT, consisting in
sentence-level combination of bilingual tuples extracted from the parallel corpora

with monotone and syntactically reordered source parts.

We have shown that the proposed reordering algorithm achieves better MT perfor-
mance on the basis of the phrase-based and N-gram-based translation models than
the standard distance-based reordering model. The experiments were performed
for Chinese-to-English and Arabic-to-English translation tasks. The algorithm also
demonstrated that the SBR model shows competitive performance for both small and

large training sets with requirements for long- and short-range reorderings.
We believe that the work presented in this thesis provides a flexible concept, which can
be generalized to a more complete framework of other cross-language NLP tasks.
6.2 Future work

The SBR algorithm and related framework present many opportunities for future work. In
this section, we explore some possible extensions to the work in the thesis and describe

some of the paths we wish to investigate in the future.
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e The most obvious step of the SBR system evolution is to weight the local reordering
suggestions with various probabilities based on the relative frequency of rule appear-
ance. In the next stage we would like to enhance the proposed technique by introduc-
ing a weighted non-deterministic approach to address global reordering dependencies
using the SBR, algorithm in a non-deterministic way. It will prevent the irrevocable
decisions made within the deterministic approach through complete integration of the

reordering decisions in the SMT system.

e Although the SBR algorithm provides an accurate way to extract and apply reordering
rules, we believe that a semi-supervised approach to reordering, including intermedi-
ate human-made revision of rewrite patterns, can be beneficial for the SMT. Word
order harmonization performed on the basis of a set of automatically learned rules
(see [Cj06b, Xia04]) has gained many adherents over the past few years. However, as
far as we know, no research has been presented on the semi-supervised approach to
word reordering, in which the automatically extracted reordering patterns are revised
by a human, thereby penalizing or facilitating a series of transformations proposed by

the machine.

e Moving beyond a reordering transduction scheme, we propose an alternative imple-
mentation of the SBR idea with a generative model utilizing synchronous transduction
grammar to generate pairs of reordered and monotone strings. Generally, a recent
trend in SMT has been toward the use of synchronous grammar-based formalisms in
translation [Chi05, Ven06, Vil09]. We propose to extend the standard formal grammar
mechanism to describe the admissible orderings. This approach seems to be theoreti-
cally more appealing, since it can lead to a more satisfactory model of reordering with

superior integration into the SMT system.

e A crucial parameter of the models that employ source- and target-side syntactical
information in the translation or reordering process is the quality and accurate tuning
of the syntactical models for both languages. We plan to pursue the improvement
of reordering by conducting a set of empirical experiments to tune the parsing pa-
rameters. We also speculate that adaptation of special parsing schemes can result
in significant improvement in reordering quality and provide the system with more

robust patterns.
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e Finally, a possible line of future research would be to analyzing alternative ways
of reordering rules generalization. We would like to investigate the possibility of

employing dependency trees and chunk bracketing in the reordering process.
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Appendix A

Corpora description

A.1 EuroParl Spanish-English corpus. Version 2.

Table A.1 shows the basic statistics of the second version of the Spanish-English FuroPar

(European Parliament Plenary Session transcription) corpus [Koe05a].

Set Language Sentences Words  Voc  ASL  References
FTE
Train Spanish 1.28M 36.57TM 153K  28.55 -
Train English 1.28M 34.91M 106K 27.25 -
Dev Spanish 430 15.33K  3.2K 35.66 2
Dev English 735 18.76K  3.2K 25.35 2
Test Spanish 840 22.77TK  4.0K 27.11 2
Test English 1,094 26.92K 39K 24.60 2
Verbatim
Dev Spanish 792 25.6K  3.2K 32.35 2
Dev English 1,194 30.2K 39K 25.30 2
Dev 5K Spanish 500 15.48K 2.3K  30.97 2
Dev 5K English 500 11.78K  2.2K  23.57 2
Test Spanish 897 30.10K  4.7K  33.63 2
Test English 1,155 30.48K 4.0K 26.39 2

Table A.1: EuroParl corpus. Version 2. Basic statistics.

Note: ASL refers to average sentence length

39In some tasks, this corpus is called EPPS.

l39
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This data have been prepared by the RWTH and proposed as training data to the
participants of the second evaluation campaign in the context of the European Project
TC-STAR.

A 5K development subset (Dev 5K) was used in the LM adaptation experiments (see

§3.2) and consists of the first 500K sentences of the entire development set.

A.2 EuroParl verbatim corpus.

A monolingual corpus of EuroParl Spanish and English verbatim transcriptions was pro-
vided by ELDA and transcribed by UPC. Table A.2 shows the basic statistics of this corpus.
Only training data are provided.

Set Language Sentences Words Voc ASL  References

Train  Spanish 70K 512K 20K 29.16 -
Train  English 73K 781K 17K 26.03 -

Table A.2: EuroParl verbatim corpus. Basic statistics.

A.3 TItalian-English BTEC corpus.

Italian-English Basic Travel Expression Corpus (BTEC) [Tak02] includes data from a tourist
domain and was proposed to the participants within the open data track of IWSTL 2006
evaluation campaign. BTEC corpus is characterized by extremely limited amount of training
data and models a real situation in which foreign tourist appears in an English-speaking

country and needs simple explanations and other practical information useful for travelers.

Set Language Sentences Words  Voc  ASL  References

Train Ttalian 24.5K 166.3K 10.2K 6.54 -
Train  English 24.5K 1554K 73K 6.15 -
Dev Italian 489 5.2K 1.2K  10.18 7
Test Ttalian 500 6K 73K  6.94 7

Table A.3: BTEC ItEn corpus. Basic statistics.
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A.4 Chinese-English NIST’06 corpus.

Table A.4 presents a corpus that we call “NIST’06“. The training data consists of news and

broadcast data proposed to the participants within the NIST4? 2006 evaluation campaign.

The training data used is available from the Linguistic Data Consortium®!.

Set Language Sentences Words  Voc  ASL  References

Train  Chinese 1.02M 26.23M 157K 25.80 -
Train English 1.02M 27.25M 216K 26.71 -
Dev Chinese 500 14.056K  3.7K  28.10 4
Test Chinese 3,940 85.2K 104K 6.94 4

Table A.4: NIST’06 ZhEn corpus. Basic statistics.

To tune system parameters we used a 500-line extraction from the NIST 04 test dataset

as suggested by the evaluation organizers.

A.5 Chinese-English BTEC’07 corpus.

The 2007 version of the BTEC corpus, consisting of short tourism-related sentences and

which was used in reordering experiments, is presented in Table A.5.

Set Language Sentences Words  Voc  ASL  References

Train  Chinese 44 9K 299.0K 114K 6.66 -
Train  English 44.9K 324.4K  9.0K  7.22 -
Dev Chinese 489 5.2K 1.1IK  10.66 7
Test Chinese 500 5.5K 1.3K 11.10 7

Table A.5: BTEC’07 ZhEn corpus. Basic statistics.

A.6 Arabic-English NIST’08 corpus (extraction).

Table A.6 presents basic statistics of the 1M-line extraction from the corpus that was
provided to the NIST 2008 evaluation campaign and belongs to the news domain. We did

not used the complete training set, which includes more than 3M running sentences, because

40the National Institute of Standards and Technology
“http://www.ldc.upenn.edu/
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we found this amount of data redundant for reordering experiments. Besides, experiments

with such a huge corpus are extremely costly and time-consuming.

Set Language Sentences Words Voc ASL  References

Train  Arabic 1.0M 31.62M  189.59K  31.62 -
Train  English 1.0M 31.77TM  156.31K  31.77 -
Dev Arabic 1,043 29.72K 5.9K 28.49 4
Test Arabic 2,040 61.62K 9.9K 30.21 4

Table A.6: NIST’08 ArEn corpus. Basic statistics.

A.7 Arabic-English BTEC’08 corpus.

Basic statistics for the 2008 version of the Arabic-English BTEC corpus from the tourist

domain can be found in Table A.7.

Set Language Sentences Words Voc  ASL  References

Train  Arabic 24.9K 225K 114K 9.05 -
Train  English 24 9K 210K 7.6K  8.46

Dev Arabic 489 5.9K 1.2K 12.10 6
Test Arabic 500 6.5K 14K 13.16 6

Table A.7: BTEC’08 ArEn corpus. Basic statistics.
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Project framework

B.1 TC-STAR project

The TC-STAR (Technology and Corpora for Speech to Speech Translation) project*?, fi-

43 is envisaged as a long-term

nanced by European Commission within the Sixth Program
effort to advance research in all core technologies for speech-to-speech translation (SST),
which is a combination of automatic speech recognition, spoken language translation, and
speech synthesis.

The objective of the TC-STAR project is to significantly reduce the gap between human
and machine performance for SST. The focus is on the development of new, possibly revo-
lutionary, algorithms and methods, integrating the relevant human knowledge available at
translation time into a data-driven framework. Examples of such new approaches are the in-
tegration of linguistic knowledge in the statistical approach of spoken-language translation,
the statistical modeling of pronunciation of unconstrained conversational speech in auto-
matic speech recognition, and new acoustic, and prosodic models for generating expressive
speech in synthesis.

TC-STAR began in 2005 and was completed in 2007. During this time new approaches
to SST were explored and evaluated. In addition, the infrastructure needed for accelerating
the rate of progress in the field was created. To foster significant advances in all SST
technologies, periodic competitive evaluations were conducted in 2005, 2006 (see §C.1.1),

and 2007 (see §C.1.2). A measure of success of the project was the involvement of external

http://www.tc-star.org/
“http://ec.europa.eu/research/fp6/index_en.cfm
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participants in the evaluation campaigns. Results were presented and discussed in a series
of TC-STAR evaluation workshops.

The project participants are listed below:

Istituto Trentino di Cultura IRC - IRST (Tech. coord.) Italy
RWTH Aachen - ISL Germany
CNRS - LIMSI France
Universitat Politecnica de Catalunya Spain
Universit at Karlsruhe (TH) - IPD Germany
IBM Germany
Nokia Finland
Siemens Germany
SRIT France
Sony Germany
ELDA France
RU-SPEX Netherlands

B.2 AVIVAVOZ project

AVIVAVOZ is a three-year project funded by the Spanish Government. It started in January
2007 and is devoted to advanced research in all key technologies related to speech-translation
systems (e.g., speech recognition, machine translation, and speech synthesis).

The goal of the project is to achieve actual improvements in all speech translation system
components in order to provide a speech mediating system for human communications
among the official languages of the Spanish State (Spanish, Catalan, Basque, and Galician),
and between Spanish and English.

The project considers both improving and integrating each of three involved technolo-
gies. In speech recognition, a robust system for a wide application domain (e.g., broadcast
news and parliamentary sessions) and large vocabulary will be developed. In MT, improve-
ments will be achieved for statistical translation techniques by including different sources of
linguistic knowledge (event detection, syntactic and semantic analysis). In speech synthesis,
new acoustic, and prosodic models for expressive speech generation will be developed. The
final issue to be considered in this project is related to the interaction and integration of
the three involved technologies.

Within the framework of the project, the Albayzin evaluation campaign was organized
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in 2008. This event is described in §C.5.

The project participants are listed below:

Speech Processing Group (Universitat Politecnica de Catalunya) Barcelona
Signal Processing Group (Universidade de Vigo) Vigo
Aholab - Signal Processing Laboratory (Euskal Herriko Unibertsitatea) Bilbao
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International evaluation campaigns

The purpose of evaluation campaigns is to measure the quality of MT algorithms and
systems to determine to what extent the system answers the goals of accurate automatic
translation and meets the needs of the final users of the MT tools. Another goal of evaluation
campaigns is to promote research on automatic translation and to encourage collaboration
among research teams. Furthermore, translation systems can be compared on an equal and
objective basis, and knowledge is shared among researchers from several sites.

International evaluation campaigns play an important role in promotion of the progress
for MT technologies. These evaluations support MT research and help advance the state-
of-the-art in MT technology. A precise set of evaluation criteria, which includes principally
evaluation data and evaluation metrics, enables several teams to compare their solutions to
a given NLP problem. Evaluation campaigns are typically organized by various institutions,
consortiums, conferences, or workshops and serve as the perfect instrument to assess the
translation improvements of SMT systems.

Evaluation conditions vary depending on the objectives of the particular campaign. Par-
ticipants’ submissions are usually evaluated automatically using various translation evalu-
ation measures; however, human evaluation metrics are also sometimes used to compare
systems?®. Training and testing materials are taken from various sources and are explicitly
specified. Precise datasets enable several research teams to compare their MT solutions
depending on the goals of the particular MT test and can be oriented toward speech trans-

lation, news texts translation, etc. The participating groups cannot be allowed to use any

4“Human evaluation strategy requires a certain degree of human intervention that is a quite high-cost
process. Consequently, this evaluation is usually conducted only on a limited amount of submissions
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other data for developing their systems (restricted track conditions) or be unlimited in terms
of data for training (open track conditions).

During this Ph.D. research, the MT group at the UPC-TALP research center partici-
pated in eleven MT evaluations. In this Appendix we report evaluation results, specifica-
tions of the evaluation events, and a brief description of the SMT system(s) submitted by
the UPC-TALP translation group.

C.1 TC-STAR evaluations

The European project TC-STAR* presented in §B.1 organized its first internal evaluation in
2005 (for members of the project, including TALP-UPC) and two open evaluations in 2006
and 2007. Three translation tasks were proposed to the participants: Chinese-to-English
broadcast news translation, and Spanish-to-English and English-to-Spanish European Par-
liament plenary speech translations.

To study the effect of recognition errors and spontaneous speech phenomena, particularly
for the task of European Parliament transcription (EuroParl or EPPS), three types of input

to the translation system were studied and compared within the evaluations:

e ASR: the output of automatic speech recognizers, without using punctuation marks;

the data are automatically segmented at syntactic or semantic breaks.

e Verbatim: the verbatim (i.e., correct) transcription of the spoken sentences including

phenomena of spoken language such as false starts, ungrammatical sentences, etc.

e FTE: the so-called final text editions of official transcriptions of the European Parlia-
ment, which do not include the artefacts of spoken language. These text transcriptions

differ slightly from the verbatim ones. Some sentences are rewritten.

Roughly speaking, parallel training data consisted of the European Parliament cor-
pus [KoeO5a]. In addition to the European Parliament translation tasks (EPPS track),
a complementary Spanish-to-English task was included in this evaluation for portability
assessment. This data consisted of transcriptions from Spanish Parliament, for which no

parallel training was provided (Cortes track).

http://www.tc-star.org/
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C.1.1 TC-STAR 2006 evaluation

The second TC-STAR evaluation took place in February 2006; a detailed description of the
shared task can be accessed through http://www.elda.org/en/proj/tcstar-wp4/tes-run2.htm.

TALP-UPC participated in the Spanish-to-English and English-to-Spanish translation
directions considering three different tasks: FuroParl English-to-Spanish, FuroParl Spanish-
to-English, and Cortes Spanish-to-English. For each of these tasks, three different transla-
tion conditions were considered: FTE, verbatim transcriptions, and ASR.

We presented the original version of the N-gram-based SMT system [Mar0O6b] enhances
with some novel feature functions and reordering strategies that consider POS information.
A detailed description of the TALP-UPC N-gram-based system submitted to the evaluation

can be found in the following publication:

J.B. Marino, R. Banchs, J.M. Crego, A. de Gispert, P. Lambert, J.A.R. Fonollosa, M.R.
Costa-jussa and M. Khalilov, UPC’s Bilingual N-gram Translation System. Proceedings of
the TC-Star Speech to Speech Translation Workshop, pp. 43-48, Barcelona (Spain), June

2006.

Table C.1 shows official results of the second evaluation of the TC-STAR project ranked
according to the case-sensitive BLEU scores. For brevity’s sake (1), we provide results
exclusively for the FTE condition; and (2) we report the best participants’ submission
results when multiple results were available. Hereafter, UPC scores are placed in table cells
filled with grey.

Considering all translation tasks, the UPC system achieved very competitive results

when compared to other participants.

C.1.2 TC-STAR 2007 evaluation

The third and the last TC-STAR evaluation was organized one year after the previous cam-
paign, in February 2007. UPC-TALP participated in the same shared task of Spanish-to-
FEnglish and English-to-Spanish translations and all the conditions proposed. A description
of the run can be obtained from http://www.elda.org/en/proj/tcstar-wp4/tcs-run3.htm.
The N-gram-based SMT system presented in the evaluation was built from unfold trans-
lation units, and made use of POS-tag rules to account for reorderings. A set of six addi-

tional models was used: a target LM, a word bonus, a target tagged LM, a source (reordered)


http://www.elda.org/en/proj/tcstar-wp4/tcs-run2.htm
http://www.elda.org/en/proj/tcstar-wp4/tcs-run3.htm
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Spanish-to-English English-to-Spanish
EuroParl Cortes EuroParl
System ‘ BLEU System ‘ BLEU System ‘ BLEU
IBM 54.06 IBM 42.08 IRST 49.81
RWTH 53.10 RWTH 40.92 UED 49.50
UW 53.80 UPC 40.37 (3) RWTH 49.44
IRST 52.40 IRST 39.66 UPC-TALP | 48.85 (4)
UPC-TALP | 52.30 (5) UED 39.04 UW 48.75
UED 51.87 Uw 39.04 IBM 47.71
UKA 47.05 UKA 35.17 UKA 44.04
SYSTRAN 45.72 SYSTRAN 35.02 DFKI 36.32
DFKI 43.04 DFKI 31.10 SYSTRAN 36.29

Table C.1: Case-sensitive BLEU scores for TC-STAR’06 evaluation (FTE condition,).

LM, and two lexicon models computed on the basis of word-to-word translation probabil-
ities. At the preprocessing step, we employed the same Spanish morphology reduction
strategy as shown in [CjO7b]. Unfortunately, detailed system descriptions are not publicly
disseminated and are available exclusively to TC-STAR workshop participants.

Table C.2 shows the summary of BLEU scores for Spanish-to-English and English-to-

Spanish translation directions under the FTE condition.

Spanish-to-English English-to-Spanish
EuroParl Cortes EuroParl
System ‘ BLEU System ‘ BLEU System ‘ BLEU
UKA 52.96 IBM 45.42 UKA 54.11
IBM 52.08 UKA 45.34 UPC-TALP | 53.34 (2)
RWTH 51.20 RWTH 44.18 RWTH 52.49
IRST 51.08 UPC-TALP | 43.79 (4) IRST 52.26
UPC-TALP | 50.88 (5) IRST 43.39 IBM 50.91
NICT 49.79 JHU 39.98 - -
JHU 47.88 TSL 33.89 - -
TSL 43.67 UDS 30.88 - -

Table C.2: Case-sensitive BLEU scores for TC-STAR’07 evaluation (FTE condition,).
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C.2 IWSLT evaluations

Since 2004, the C-STAR?S consortium has organized the International Workshop on Spoken
Language Translation (IWLST) on a yearly basis. This workshop includes an evaluation
campaign oriented toward speech translation with the goal of providing a framework for the
validation of existing evaluation methodologies when applied to the evaluation of spoken
language translation technologies. Thus, the consortium hopes to open new avenues for
improving existing methods.

Training material is a multi-lingual BTEC corpus [Tak02], traditionally limited to an
extremely small amount of data - no more than 60K lines. BTEC corpus models a real
situation when foreign tourists appear in an English-speaking country and need simple

explanations and other practical information useful to travelers.

C.2.1 IWSLT’06 evaluation

The third IWSLT evaluation took place in fall 2006. A detailed description of the evaluation
can be found in [Pau06]. The main goal of the IWSLT 2006 testing was to provide a
framework to validate existing evaluation methodologies as applied to the evaluation of
spoken language translation technologies, and thereby open new roads for improving current
methods. That year the organisers proposed to concentrate efforts on the translation of data
that were different in topic, style, and nature from that in the training material. Therefore,
development and test datasets proposed contained out-of-domain data.

UPC-TALP participated in Chinese-to-English, Arabic-to-English, Italian-to-English,
and Japanese-to- English tasks with a standard phrase-based system (TALPphr), enriched
with the deterministic SMR technique [Cj09]. We also applied an additional distance-based
reordering model (the so-called MaxJumps, as described in §4.1.1), for Chinese-to-English,
Arabic-to-English, and Japanese-to-English translations.

In addition, we participated in the combination of TALPphr and the N-gram-based
SMT system (TALPtup). The system combination (TALPcomb) used several n-gram
LMs, a word bonus, and the IBM Model 1 for the whole sentence. The combination appeared
to obtain clear improvements in BLEU score.

Out participation is detailed in the following publications:

“http://www.c-star.org/
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e J.M. Crego, A. de Gispert, P. Lambert, M. Khalilov, M.R. Costa-jussa, J.B.
Marino, R. Banchs and J.A.R. Fonollosa TALP Ngram-based SMT System for
IWSLT 2006. Proceedings of the 3rd International Workshop on Spoken Lan-
guage Translation, pp. 116-122, Kyoto (Japan), November 2006.

e M.R. Costa-jussa, J.M. Crego, A. de Gispert, P. Lambert, M. Khalilov, J.A.R.
Fonollosa, J.B. Marino and R. Banchs TALP Phrase-based System and TALP
System Combination for the IWSLT 2006 Proceedings of the 3rd Interna-
tional Workshop on Spoken Language Translation, pp. 116-122, Kyoto (Japan),
November 2006.

Table C.3 shows details of the UPC-TALP participation in the IWSLT’06 evaluation,

along with comparative results of other participants.

| Zh2En Ar2En It2En Ja2En
| System BLEU System BLEU System BLEU System BLEU
RWTH 21.1 IBM 22.74 NICT 29.89 RWTH 21.41
JHU 18.63 TALPtup 21.36 (2) | TALPcom | 28.37 (2) NTT 19.84
MIT/AF 18.61 NICT 21.17 TALPtup 28.18 (3) NICT 18.99
NTT 18.34 TALPcom | 21.01 (4) MIT/AF 27.98 MIT/AF 18.91
NICT 17.75 NTT 20.71 ITC 27.97 UKA/CMU 18.91
UKA/CMU 17.10 UKA/CMU 19.95 Uw 27.87 ITC 16.04
TALPcom 16.50 (8) TALPphr 19.08 (7) NTT 27.69 SLE 15.99
TALPtup 16.24 (9) ITC 17.23 TALPphr 26.84 (8) HKUST 15.23
TALPphr 15.99 (10) HKUST 14.77 DCU 25.98 KU 14.18
XMU 15.79 DCU 14.50 UKA/CMY 23.88 TALPcom | 13.90 (10)
ITC 15.60 CLIPS 4.90 HKUST 23.74 TALPtup 13.70 (11)
HKUST 15.45 - - CLIPS 13.68 NAIST 13.11
ATT 12.26 - - - - TALPphr 12.80 (13)
NLPR 10.37 - - - - CLIPS 7.55

Table C.3: Case-sensitive BLEU scores for IWSLT 06 evaluation.

It is questionable to label our results satisfactory for the Japanese-to-English and Chinese-
to-English tasks, mainly because we did not introduce the development set as training before
doing the final translation. On the other hand, our results for the Italian-to-English and

Arabic-to-English translation tasks were more competitive.
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C.2.2 IWSLT’07 evaluation

The fourth IWSLT evaluation was organized in October 2007. Evaluation details are out-
lined in [For07]. Human evaluation for some of the submissions was included in the program.
The input data consisted of the output of ASR systems for read speech and clean text. The
exception was the Chinese English task, which used only clean text.

UPC-TALP participated in Chinese-to-English and Arabic-to-English translation tasks
with an N-gram-based system using POS-tag reordering rules and implementing tuple ex-
traction in accordance with an unfold algorithm. Apart from n-gram TM, the system in-
troduced six additional feature functions: a target LM, a word bonus, two lexicon models,
a target tagged LM, and a source tagged (reordered) LM.

We used language-specific preprocessing schemes for Arabic and Chinese using the
method described in chapter 5. Our submission also included a continuous-space neural
network LM provided by LIMSI-CNRS*?, which is believed to be particularly important for
tasks with limited resources, as it is the case for IWSLT evaluations. Although all publicly
available data were allowed, we used only the provided data to train the system.

The UPC-TALP translation system is described in the following publications:

P. Lambert, M.R. Costa-jussa, J.M. Crego, M. Khalilov, J.B. Marino, R. Banchs, J.A.R.
Fonollosa and H. Schwenk The TALP Ngram-based SMT System for IWSLT 2007. Pro-

ceedings of the 4th International Workshop on Spoken Language Translation, pp. 169-174,
Trento (Italy), October 2007.

Table C.4 shows comparative results of IWSLT’07 evaluation ranked by the human
evaluation score. The human evaluation (%Best) consisted of the average number of times
that a system was judged to be better than any other system [CB07]. For each task,
300 sentences out of the 724 sentences in the evaluation set were randomly selected and
presented to at least 3 evaluators. Since the ranking metric required that each submission
be compared to the other system outputs, each sentence might be presented multiple times
but in the company of different sets of systems.

Considering the Arabic-English pair, the UPC-TALP SMT system attained outstanding

results, ranked in both cases (by human and automatic measures) as one of the best systems.

“Thttp://www.limsi.fr/
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Ar2En Zh2En
System Clean ASR Clean

%Better | BLEU %Better | BLEU System %Better | BLEU
DCU 45.1 47.09 28.1 39.42 CASIA 37.6 36.48
UPC-TALP | 42.9 (2) | 48.04 (3) | 31.8 (1) | 44.45 (1) 2R 37.0 40.77
UEKAE 36.4 49.23 19.8 36.79 ITC 34.8 37.50
UMD 36.0 48.58 25.0 39.08 RWTH 32.4 37.08
UW 35.4 41.61 26.9 40.92 FBK 30.6 34.72
MIT 35.1 45.53 31.4 44.29 CMU 30.6 34.44

CMU 33.9 44.63 25.5 3756 || UPC-TALP | 28.3 (7) | 29.91 (11)
LIG 33.9 41.35 24.2 38.04 XMU 28.1 28.88
NTT 25.3 34.03 25.5 36.26 HKUST 25.5 34.26
GREYC 21.7 32.90 - - MIT 25.0 36.31
HKUST 13.1 19.51 11.2 14.20 NTT 24.6 27.89
- - - - - ATR 24.2 31.33
- - - - - UMD 23.6 32.11
- - - - - DCU 18.6 27.37
- - - - - NUDT 16.1 19.34

Table C.4: Case-sensitive BLEU scores and human evaluation results for IWSLT 07 evalu-
ation.

Especially relevant is the performance achieved in the ASR task, where state-of-the-art
results were obtained. Notice that our system did not take multiple ASR output hypotheses
into account except for the single-best one. This gave additional relevance to the results
achieved in the ASR task when compared to other systems.

The UPC-TALP SMT system showed a reduction in performance when considering
the Chinese-to-English task. One explanation for this situation is that our system might
be less robust for noisy alignments (in particular, under scarce data availability) than for
standard phrase-based systems. The important reordering needs, the complexity of the
Chinese vocabulary, and the small amount of data available rendered the alignment process

significantly more difficult in this translation task.

C.2.3 IWSLT’08 evaluation

IWSLT 2008 evaluation took place in Hawaii in October 2008. Details about the evaluation
campaign can be found in [Pau08]. In addition to a traditional task of the translation
of spontaneous speech recorded in a real situation, the feasibility of pivot-language-based
translation approaches was studied in 2008.

Human (subjective) evaluation was carried out with respect to the fluency and adequacy
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of the translation. Moreover, a paired-comparison evaluation based on the obtained ranking
results was carried out to compare two MT systems directly. In other words, given two MT
system translations of the evaluation data set, the first system was compared with the second
system output on a sentence-by-sentence basis according to the ranking grades where both
systems were ranked together.

This year we focused on the Arabic-to-English, Chinese-to-Spanish, and pivot Chinese-
(English)-Spanish translation tasks and presented phrase-based SMT systems. The novelties
that were introduced in the 2008 systems included SMR method, linear combination of
translation and reordering models, and new technique dealing with insertion of punctuation
marks for a phrase-based SMT system.

UPC-TALP participated in collaboration with the Institute for Infocomm Research?®(12R)
in Singapore. Specifically, we collaborated with I2R in Chinese-(English)-Spanish transla-
tion. I2R provided us with a Chinese-to-English SMT system, and the UPC team was
responsible for an English-to-Spanish translation.

Comparative results of the IWSLT 2008 evaluation can be found in Tables C.5 and C.6.
We report BLEU scores and human ranking for all the participant systems. The results are

ranked by BLEU score obtained on the Clean run.

Ar2En

System Clean ASR
BLEU BLEU | Rank.
MITTL 34.25 30.50 44.15
RWTH 33.54 27.45 38.22
LIUM 31.81 25.62 37.41

UPC-TALP | 31.31 (4) | 25.63 (3) | 39.01 (3)

DCU 29.23 24.03 36.34
LIG 28.38 25.45 37.56
TTK 27.78 25.19 35.74
PT 24.93 19.35 19.77
QMUL 19.04 16.13 22.89
GREYC 15.32 13.66 14.98

Table C.5: Case-sensitive BLEU scores and human evaluation ranking for IWSLT 08 eval-
uation (Arabic-to-English results).

We found our results satisfactory, especially for the pivot and Arabic-to-English trans-

lation tasks.

“Bhttp://www.i2r.a-star.edu.sg
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Zh2Es Zh2(En)2Es
System Clean ASR System Clean ASR

BLEU BLEU | Rank. BLEU BLEU | Rank.

TCH 34.57 30.52 47.73 TCH 40.42 35.43 49.32

FBK 29.60 24.24 33.42 FBK 39.41 32.51 39.90
DCU 27.10 23.89 98.99 | UPC-TALP | 38.09 (3) | 3251 (3-4) | 39.01 (3)

TTK 26.62 24.40 28.99 NICT 37.11 32.81 30.88

NICT 26.41 23.31 29.79 DCU 32.42 28.47 31.72

PT 25.72 20.10 19.77 TTK 31.88 28.15 34.16

UPC-TALP | 25.65 (7) | 22.14 (6) | 26.42 (6) | GREYC 15.80 15.05 15.46

GREYC 19.70 18.91 15.46 QMUL 2.87 11.59 17.72

Table C.6: Case-sensitive BLEU scores and human evaluation ranking for IWSLT 08 eval-
uation (Chinese-to-Spanish and Chinese-(English)-Spanish results).

C.3 WMT evaluations

Beginning in 2005, Workshops on Statistical Machine Translation (WMT), organized at the
Annual Meetings of the Association for Computational Linguistics*® have hosted a shared
translation task. The main goals of the WMT evaluation campaigns are to promote MT
performance for European languages on large-scale (about 30 million words in the training
WMT shared tasks are

traditionally characterized by a wide variety of MT systems, including statistical, rule-

corpus) and over a range of relatively wide political domains.

based, and hybrid systems.

In contrast to many other evaluations, translation tasks proposed in the WMT evalua-
tion are normally mutual, including directions from and into English. Shared task organizers
provide a parallel corpus as training data, a baseline system, and additional linguistic re-
sources that entail a low barrier of entry to the evaluation campaign. Participants may
augment the baseline system or use their own system. Training includes the FuroParl
corpus; however, under unconstrained conditions participants may use any additional re-
sources. Automatic evaluation is normally done on both case-sensitive and case-insensitive

bases, case-insensitive considered as primary.

http://www.aclweb.org
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C.3.1 WMT’07 evaluation

In June 2007 WMT invited research groups and industrial institutions from all over the
world to participate in the international MT evaluation campaign. Evaluation details are
reported in [CBO7].

UPC-TALP participated in three translation directions, namely, Spanish-to-English,
French-to-English, and German-to-English, considering both direct and inverse translation
tasks.

The shared task participants were provided with a common set of training and test
data for all language pairs. The considered data were part of the European Parliament
dataset, and included “News Commentary*“ data as well. In addition to the FuroParl test
set, editorials from the Project Syndicate website®® were collected and employed as an
secondary test set (news domain). Human evaluation was used regarding adequacy and
fluency of system output.

UPC-TALP participated with a standard N-gram-based SMT system enhanced with
an augmented version of the SMR method following weighted non-deterministic approach
to word reordering. In addition, the presented system introduced a target LM based on
statistical classes, a feature for out-of-domain units and an improved optimization proce-
dure [Lam07a].

UPC-TALP participation is outlined in the following publications:

M.R. Costa-jussa, J.M. Crego, P. Lambert, M. Khalilov, J.A.R. Fonollosa, J.B. Marino and
R. Banchs Ngram-Based Statistical Machine Translation Enhanced with Multiple Weighted

Reordering Hypotheses. Proceedings of the Second Workshop of Statistical Machine Trans-
lation (WMT) ACL, pp. 167-170, Prague (Czech Republic), July 2007.

Table C.7 summarizes the results of the WMT’07 evaluation campaign for Spanish-to-
English and vice versa translation tasks®' ranked by the BLEU score.

Considering the Spanish-to-English results, the UPC SMT system obtained very com-
petitive results, especially for the out-of-domain task, where the human and automatic

measures rewarded the system with the best results.

SOhttp://www.project-syndicate.com/
5'For brevity’s sake we do not provide the results for other translation pairs. Details can be found
in [CBO7].
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Spanish-to-English English-to-Spanish
System | BLEU | Adequacy | Fluency System | BLEU | Adequacy | Fluency
EuroParl
UEDIN 32.4 0.593 0.610 UEDIN 31.6 0.586 0.638
CMU 32.3 0.552 0.568 UPC-TALP | 31.2 (2) 0.584 (2) 0.578 (4)
UPC-TALP | 32.2 (3) | 0.587 (2) | 0.604 (2) CMU-UKA 31.1 0.563 0.581
CMU-UKA 32.0 0.557 0.564 UPV 30.4 0.573 0.587
UPV 31.5 0.562 0.573 NRC 29.9 0.546 0.548
NRC 31.3 0.477 0.489 SYSTRAN 21.2 0.495 0.482
SYSTRAN 29.0 0.525 0.566 - - - -
SAAR 24.5 0.328 0.542 - - - -
News
UPC-TALP | 34.6 (1) | 0.566 (1) | 0.543 (1) UCB 33.1 0.449 0.414
UEDIN 32.7 0.546 0.534 UPC-TALP | 328 (2) | 0.510 (1-2) | 0.488 (3)
UPVvV 28.3 0.435 0.459 CMU-UKA 32.7 0.510 0.492
CMU-UKA 29.9 0.522 0.495 UEDIN 32.2 0.429 0.419
NRC 29.9 0.479 0.464 NRC 31.1 0.408 0.392
SYSTRAN 25.9 0.525 0.503 UPVvV 28.5 0.405 0.418
SAAR 24.4 0.446 0.460 SYSTRAN 28.1 0.501 0.507

Table C.7: Case-insensitive BLEU scores and human evaluation ranking for WMT’ 07 eval-
uation (Spanish-to-English and English-to-Spanish results).

In the case of the English-to-Spanish results, although they were also highly competitive,
the UPC system slightly lost performance in comparison with other systems. The prepro-
cessing step reducing the Spanish vocabulary seemed to help more in the Spanish-to-English

direction than in the English-to-Spanish direction.

C.3.2 WMT’08 evaluation

The shared translation task of the 2007 ACL Workshop on SMT took place in June
2008 [CBO08]. One difference between the 2008 evaluation and those of the previous years’
workshops was a refined manual evaluation strategy. Evaluators were asked to assess the
systems’ output in three ways: (1) ranking translated sentences relative to each other, (2)
ranking the translations of syntactic constituents drawn from the source sentence, and (3)
assigning absolute yes or no judgements to the translation of syntactic constituents.
UPC-TALP participated in the evaluation campaign with the N-gram-based SMT sys-

tem differing from the 2007 version in the introduction of a target LM, based on linguistic
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classes (POS), morphology reduction for an inflectional language (Spanish), and a new ver-
sion of an extended monotone reordering model based on automatically learned reordering
rules. We constructed systems for the Spanish-to-English and English-to-Spanish transla-
tions for both the traditional EuroParl and a challenging news stories tasks. In each case,
we used only the supplied data for each language pair for models training and optimization.

The 2009 system is outlined in the following publication:

M. Khalilov, C.A. Henriquez Q., M. R. Costa-jussa, J.M. Crego, A. Herndndez H., P.
Lambert, J.A.R. Fonollosa, J.B. Marino and R. Banchs, The TALP-UPC Ngram-based
statistical machine translation system for ACL-WMT 2008, Proceedings of the Associa-

tion for Computational Linguistics, Third Workshop on Statistical Machine Translation

(ACL’08-SMT), pp. 127-130 , Columbus (USA), June 2008.

Evaluation results for Spanish-to-English and English-to-Spanish tasks can be found in

Tables C.8 and C.9, respectively.

Spanish-to-English
System | BLEU | SR | CR | YN
Europarl
CMU 0.33 0.714 0.847 0.882
CUED 0.33 0.676 0.846 0.857
LIMSI 0.33 0.780 0.854 0.902
UEDIN 0.33 0.660 0.865 0.879
DCU 0.32 0.677 0.868 0.854
SAAR 0.32 0.671 0.893 0.869
UPC-TALP | 0.32 (2-4) | 0.687 (3) | 0.870 (2) | 0.857 (5-6)
UCL 0.25 0.425 0.646 0.730
RBMT 0.19 0.427 0.455 0.648
News
CUED 0.21 0.674 0.818 0.638
LIMSI 0.20 0.583 0.739 0.675
RBMT 0.20 0.577 0.699 0.594
SAAR 0.19 0.669 0.760 0.697
UCB 0.19 0.543 0.706 0.635
UPC-TALP | 0.19 (4-6) | 0.602 (3) | 0.763(2) 0.707 (1)
CMU 0.18 0.567 0.715 0.635
UEDIN 0.18 0.561 0.758 0.622

Table C.8: Case-sensitive BLEU scores and human evaluation results for WMT’ 08 evalua-
tion (Spanish-to-English results).
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Notice that only primary participants’ submission results are presented. Hereafter, the
submissions are ranked by BLEU score. Human evaluation metrics are: SR - sentence
ranking judgements, CR - constituent ranking judgements, and YN - Yes/No judgements
for constituent translations judgements. The numbers indicate the percent of time that
each system was judged to be greater than or equal to any other system. Among multiple

rule-based translation systems (RMBT) the system demonstrating the best BLEU scores is

presented.
English-to-Spanish
System | BLEU | SR | CR | YN
Europarl
CMU 0.32 0.667 0.825 0.804
LIMSI 0.31 0.737 0.855 0.872
uw 0.32 0.735 0.790 0.785
SAAR 0.31 0.717 0.849 0.806
UEDIN 0.30 0.714 0.818 0.888
UPC-TALP | 0.30 (5-6) | 0.593 (6) | 0.775 (6) | 0.903 (1)
UCL 0.25 0.500 0.592 0.714
RBMT 0.21 0.554 0.561 0.582
News
RMBT 0.21 0.724 0.570 0.599
SAAR 0.20 0.548 0.696 0.639
UCB 0.20 0.586 0.653 0.568
CMU 0.19 0.494 0.721 0.459
LIMSI 0.19 0.537 0.694 0.532
UEDIN 0.18 0.481 0.625 0.493
UPC-TALP | 0.18 (6-7) | 0.601 (2) | 0.595 (6) | 0.366(7)

Table C.9: Case-insensitive BLEU scores and human evaluation results for WMT 08 eval-
uation (English-to-Spanish results).

Our Spanish-to-English submissions are ranked better than English-to-Spanish ones.
The UPC-TALP Spanish-to-English system was one of the best, according to the human

evaluations.

C.3.3 WMT’09 evaluation

The WMT 2009 evaluation campaign took place in April 2009. The evaluation campaign
is detailed in [CB09]. Unlike the previous year’s event, only one test dataset was proposed
to the participants, namely, a challenging news stories tasks (out-of-domain), while the

traditional Europarl set was eliminated. Unconstrained submissions were admitted but
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marked with a special label indicating that additional training and tuning data were used.
Human evaluation included: (1) ranking of translated sentences relative to each other and
(2) editing the output of systems without displaying the source or a reference translation,
and then later judging whether edited translations were correct.

UPC-TALP was a permanent participant of the WMT shared translations tasks, tra-
ditionally concentrated on the Spanish-to-English and vice versa language pairs. Unlike
the previous years, in 2009 we concentrated on the investigation of the translation model
interpolation for a standard phrase-based translation system based on the Moses toolkit.

Description of our participation can be found in the following publication:

J.A.R. Fonollosa, M. Khalilov, M. R. Costa-jussa, J.B. Marifio, C.A. Henriquez Q.,
A. Herndndez H. and R. Banchs, The TALP-UPC phrase-based translation system for
EACL-WMT 2009, Proceedings of the 4th Workshop on Statistical Machine Translation

(WMT09) , pp. 85-89 , Athens (Greece), March 2009.

Comparative results for Spanish-to-English and English-to-Spanish tasks are provided

in Table C.10. Constr.? indicates constrained condition.

Spanish-to-English English-to-Spanish
System | BLEU | Constr.? | Rank. System | BLEU | Constr.? | Rank.
GOOGLE 0.29 NO .70 GOOGLE 0.28 NO .65
UEDIN 0.26 YES .56 NUS 0.25 YES .59
UPC-TALP | 0.26 (2-3) YES .59 (2) UEDIN 0.25 YES .66
NICT 0.22 YES 37 UPC-TALP | 0.25 (2-4) YES .58 (5)
RBMT 0.20 NO .55 RBMT 0.22 NO .64
SAAR 0.20 NO .51 RWTH 0.22 YES .51
- - - - SAAR 0.20 NO 48

Table C.10: Case-insensitive BLEU scores and human evaluation results (ranking trans-
lations relative to each other) for WMT’ 09 evaluation (Spanish-to-English and English-to-
Spanish results).

Our submission was a best-performing system under constrained conditions for both
tasks and was ranked fairly high, according to the human evaluation. During the post-
evaluation period, we have performed additional word-reordering experiments, comparing
the results obtained with a SMR and SBR algorithms. Furthermore, the outputs of the
systems were combined selecting the translation with the MBR technique [Kum04] that

allowed significant outperformance of the baseline configuration. Results obtained using
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two reordering methods and a combination of monotone, SBR and SMR systems’ output,

are presented in Table C.11.

System BLEU || BLEU
Es2En || En2Es

Primary 26.04 25.16
SMR 24.95 24.09

SBR 24.24 23.52

System combination 26.44 25.39

Table C.11: WMT’09 post-evaluation experiments.

Unfortunately, the promising reordering techniques and the combination of their outputs
were not applied within the evaluation deadline, which could have improved our primary
results by about 0.4 BLEU points for Spanish-to-English translation and about 0.2 BLEU

points for the opposite direction.

C.4 NIST evaluations

With extensive experience in automatic speech recognition benchmark tests, the National
Institute of Standards and Technology (NIST), an entity of the government of the United
States, has organized yearly MT tests since the early 2000s. Focused on producing a break-
through in translation quality, these tests are usually unlimited in terms of data for training.
The target language is English, and sources include Arabic and Chinese. Further informa-

tion can be accessed through http://www.nist.gov/speech/tests/mt/index.htm.

C.4.1 NIST’06 evaluation

The UPC-TALP SMT team participated in the NIST MT evaluation for the first time
in 2006. The 2006 evaluation considered Arabic and Chinese the source languages under
test, and English the target language. The text data consisted of newswire text documents,
web-based newsgroup documents, human transcription of broadcast news, and human tran-
scription of broadcast conversations. Performance was measured using the BLEU metric.
Human assessments were also taken into account on the evaluation, but only for the six
best-performing systems (in terms of BLEU).

The evaluation conditions were called “Large Data Track (limited the training data to

data in the LDC®2 public catalogue existing before February 1st, 2006) and “Unlimited Data

*http://www.ldc.upenn.edu/
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Track“ (extended the training data to any publicly available data existing before February
1, 2006).

UPC participated only on the larger condition of both tasks (Chinese-to-English and
Arabic-to-English) with an original N-gram-based performing unfold units, using heuristic
constraints to allow for reordering (MaxJumps model). Four additional models were
employed: a target LM, a word bonus and two lexicon models (direct and inverse).

Evaluation results are summarized in Table C.12. The results are sorted by the BLEU

scores and reported separately for the GALE subset and the NIST subset.

Arabic-to-English Chinese-to-English

System | NIST subset | GALE subset System | NIST subset | GALE subset
GOOGLE 42.81 18.26 ISI 33.93 14.13
IBM 39.54 16.74 GOOGLE 33.16 14.70
ISI 39.08 17.14 LW 32.78 12.99
RWTH 39.06 16.39 RWTH 30.22 11.87
APPTEK 38.74 19.18 I1ICT 29.13 11.85
LW 37.41 15.94 UEDIN 28.30 11.99
BBN 36.90 14.61 BBN 27.81 11.65
NTT 36.80 15.33 NRC 27.62 11.94
ITCIRST 34.66 14.75 ITCIRST 27.49 11.94
UKA/CMU 33.69 13.92 UMD/JHU 27.04 11.40
UMD/JHU 33.33 13.70 NTT 25.95 11.16
UEDIN 33.03 13.05 NICT 24.49 11.06
SAKHR 32.96 16.48 CMU 23.48 11.35
NICT 29.30 11.92 MSR 23.14 9.72
QMUL 28.96 13.45 QMUL 22.76 9.43
LCC 27.78 11.29 HKUST 20.80 9.84

UPC-TALP 27.41 (17) 11.49 (16) UPC-TALP 20.71 (17) 9.31 (17)

COL 24.65 9.60 UPENN 19.58 9.23
UCB 19.78 7.32 ISCAS 18.16 8.60
AUC 15.31 6.35 LCC 18.14 8.13
DCU 9.47 3.20 XMU 15.80 7.47
KCSL 5.22 1.76 LINGUA 13.41 6.63
- - - KCSL 5.12 1.99
- - - KSU 4.01 2.18

Table C.12: Case-sensitive BLEU scores for NIST 06 evaluation.

UPC-TALP results for both tasks were far from the best system’s results, due in large

part to a very poor level of data preprocessing of the huge number of corpora available.

C.4.2 NIST’08 evaluation

The 2008 NIST Open Machine Translation evaluation continued the ongoing series of eval-

uations of human language translation technology. Again, constrained and unconstrained



164

Appendix C. International evaluation campaigns

conditions were proposed to the participants.

The UPC-TALP SMT team participated in Arabic-to-English and Urdu-to-English

translation tasks.

minimum-translation-error discriminative alignment training [LamO07a]. Unconstrained re-

sults are provided for informative purposes.

Table C.13: Case-sensitive BLEU-4 and IBM BLEU scores for NIST 08 evaluation (Arabic-

to-English results).

Our system was outperformed by the groups following orthodox phrase-based and hier-

archical phrase-based translation, yet our results were state-of-the-art.

Official evaluation results for the Arabic-to-English task are reported

in Table C.13. UPC-TALP participated with an N-gram-based system enhanced with a

System | BLEU-4 | IBM BLEU |
Constrained
GOOGLE 45.57 45.26
IBM-UMD 45.25 43.00
IBM 45.07 42.76
BBN 43.40 42.90
LIUM 42.98 41.05
ISI-LW 42.48 42.27
CUED 42.38 40.18
SRI 42.49 40.31
UEDIN 40.28 38.33
UMD 39.06 37.84
UPC-TALP 37.43 (11) 35.76 (12)
COL 37.40 35.94
NTT 36.71 35.40
CMU 34.81 34.79
QMUL 33.08 31.81
SAKHR 31.33 31.33
UPC-LSI 30.32 28.76
BASISTECH 25.29 24.23
AUC 14.15 13.59
Unconstrained

GOOGLE 47.72 47.39
IBM 47.17 45.27
APPTEK 44.83 44.74
CMU 43.13 41.14
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C.5 Albayzin evaluation

The purpose of the Albayzin evaluation campaign that took place in 2008 was to promote
the research in MT between Spanish and Basque languages, and to foster collaboration
among Spanish research groups, participating in the AVIVAVOZ project (see §B.2). The
goal of this evaluation was to promote the exchange of ideas, to stimulate creativity, to favor
collaboration among research teams that focus their research on speech technologies, and
to compare different techniques employed. Apart from an automatic text translation task,
the evaluation also included language recognition and speech synthesis tasks. Evaluation
results are presented in [Sai08].

Few bilingual and monolingual resources exist related to the Basque language, so a trans-
lation task with Basque as a target language is very problematic. Two different conditions
were proposed: one using limited resources and another with no resources limitation. The
final test consisted of the translation of some texts from the same domain as the training
material.

TALP-UPC presented a phrase-based system based on Moses, which, apart from a
standard set of feature models, introduced two target LMs: one based on lemmas and
the second based on linguistic classes (POS). The details can be found in the following

publication:

C.A. Henriquez Q., M. Khalilov, J.B. Marino and N. Ezeiza N., The AVIVAVOZ phrase-
based statistical machine translation system for ALBA YZIN 2008, Proceedings of of las V

Jornadas en Tecnologi’a del Habla - the V Biennial Workshop on Speech Technology , pp.
123-125 , Bilbao (Spain), November 2008.

Results of the evaluation are presented in Table C.14.

| System | BLEU | NIST |
ALBAYZIN (UPC-TALP) | 8.12 (1) | 3.90 (2)
IXA (EHU) 8.10 3.98
PRHLT (UPV) 7.11 3.65

Table C.14: Case-sensitive BLEU and NIST scores for Albayzin evaluation (Spanish-to-
Basque results).

The UPC-TALP system was ranked the first among three participants by BLEU score
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and second by NIST score. Results showed how different translation technologies handle
a challenging translation into Basque under conditions of limited resources. As has been
stated previously, UPC-TALP presented a phrase-based SMT system; the IXA-EHU system
was a combination of two outputs (Matrex [Str06] and Seg [Agi06]); and the PRHLT-UPV
system followed the approach based on stochastic inversion transduction grammar with five

non-terminal symbols.

C.6 Acronyms

APPTEK Applications Technology Inc. USA
ATT AT&T Inc. USA
AUC The American University in Cairo Egypt
BASISTECH Basis Technology USA
BBN BBN Technologies USA
CLIPS Institut d’informatique el Mathématiques Aplliqueés de Grenoble France
CMU Carnegie Mellon USA
COL Columbia University USA
CUED University of Cambridge UK
DCU Dublin City University Ireland
DFKI German Research Center for Artificial Intelligence Germany
EHU Universidad del Pais Vasco / Euskal Herriko Unibertsitatea Spain
FBK Fondazione Bruno Kesler Ttaly
GOOGLE Google USA
GREYC University of Caen France
HKUST Hong Kong University of Science and Technology Hong Kong
I2R Institute for Infocomm Research Singapore
IBM IBM USA
ICT Institute of Computing Technology Chinese Academy of Sciences China
ISCAS Institute of Software China
IST USC-ISI USA
ITC ITC-irst Ttaly
JHU John Hopkins University USA
KCSL KCSL Inc. Canada
KSU Kansas State University USA

KU Kyoto University Japan

LCC Language Computer USA
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LIG University J. Fourier France
LIMSI Laboratoire d’Informatique pour la Mécanique et les Science de I'Ingeniéieur  France
LINGUA Lingua Technologies Inc. Canda
LIUM University du Maine (Le Mans) France
LW Language Weaver Inc. USA
MIT/AF Massachesetts Institute of Technology and Air Force USA
MITTL MIT Lincoln Laboratory USA
MSR Microsoft Research Asia China
NAIST Nara Institute of Science and Technology Japan
NICT National Institute of Information and Communications Technology Japan
NLPR National Laboratory of Pattern Recognition China
NRC National Research Council Canada
NTT NTT Communication Science Laboratories Japan
NUDT National University of Defense Technology China
PT Pohang University of Science and Technology Corea
QMUL Queen Mary University of London UK
RWTH Rheinish-Westphalian Technical University Germany
SAAR Saarland University Geemany
SAKHR Sakhr Software Co. Egypt
SLE SHARP Laboratories of Europe UK
SYSTRAN SYSTRAN Language Translation Software France
TCH Toshiba China R&D Center China
TSL Translendium SL Spain
TTK TUBITAK-UEKAE Turkey
UCB University of California Berkeley USA
UEDIN University of Edinburgh Scotland
UEKAE National Research Institute of Electronics and Cryptology Turkey
UKA Universitaet Karlsruhe Germany
UMD University of Maryland USA
UPC-LSI Universitat Politecnica de Catalunya, LSI Spain
UPC-TALP Universitat Politecnica de Catalunya, TALP Spain
UPENN University of Pennsylvania USA
UupVv Universidad Politécnica de Valencia Spain
Uw University of Washington USA
XMU Xijamen University China
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The next is a list of major publications by the author:

1. M. Khalilov, J.A.R. Fonollosa and M. Dras Coupling hierarchical word reordering and de-
coding in phrase-based statistical machine translation. Proceedings of the Third Workshop
on Syntax and Structure in Statistical Translation (SSST-3) at NAACL-HLT’09, pages - to appear,
Boulder, Colorado (USA), June 2009.

2. M. Khalilov, J.A.R. Fonollosa and M. Dras A new subtree-transfer approach to syntax-
based reordering for statistical machine translation. Proceedings of EAMT’09, pp. 197-204,
Barcelona (Spain), May 2009.

3. M. Khalilov and J.A.R. Fonollosa N-gram-based Statistical Machine Translation versus Syn-
tax Augmented Machine Translation: comparison and system combination. Proceedings
of EACL’09, pp. 424-432, Athens (Greece), April 2009.

4. M. Khalilov, J.A.R. Fonollosa, F. Zamora-Martinez, M.J. Castro-Bleda and S. Espana-Boquera
Arabic-English translation improvement by target-side neural network language mod-
eling. Proceedings of HLT&NLP within the Arabic World International Workshop at LREC’08,
Marrakech (Morocco), May 2008.

5. M. Khalilov, J.A.R. Fonollosa, F. Zamora-Martinez, M.J. Castro-Bleda and S. Espana-Boquera Neu-
ral Network Language Models for Translation with Limited Data. Proceedings of the 20th
IEEE International Conference on Tools with Artificial Intelligence, pp. 445-451, Dayton, Ohio
(USA), November 2008.

6. M. Khalilov, J.A.R. Fonollosa and M. Dras Deriving benefit from a generalized syntax-based
reordering®. Proceedings of las V Jornadas en Tecnologi’a del Habla - the V Biennial Workshop
on Speech Technology, pp. 269-272, Bilbao (Spain), November, 2008.

7. M. Khalilov and J.A.R. Fonollosa Comparacién y combinacién de los sistemas de traduccién

53Best Student Paper Award.



169

automatica basados en n-gramas y en sintaxis®. Proceedings of SEPLN’08, pp. 259-266,
Madrid (Spain), September 2008.

8. M. Khalilov Target language modeling improvement techniques for statistical machine
translation. Proceedings of the Doctoral Consortium at the 8h EUROLAN Summer School, pp.
39-45, Tasi (Romania), July-August 2007.

9. M. Khalilov and J.A.R. Fonollosa Language modeling for verbatim translation task. Proceed-
ings. of the IV Jornadas en Tecnologia del Habla - the IV Biennial Workshop on Speech Technology,
pp. 83-87, Zaragoza (Spain), November, 2006.

Other publications:

1. M. Khalilov, A.H. Hernéandez, M.R. Costa-jussa, J.M. Crego, C.A. Henriquez, P. Lambert, J.A.R.
Fonollosa, J.B. Marifio J.B. and R. Banchs The TALP-UPC Ngram-based statistical machine
translation system for ACL-WMT 2008. Proceedings of the Third Workshop on Statistical
Machine Translation at ACL’08, pp. 127-130, Columbus (USA), June 2008.

2. M. Khalilov, M.R. Costa-jussa, C.A. Henriquez, J.A.R. Fonollosa, A.H. Herndndez, J.B. Marino, R.
Banchs, C. Boxing, M. Zhang, A. Aw and H. Li The TALP&I2R SMT Systems for IWSLT
2008. Proceedings of IWSLT’08, pp. 116-123, Hawaii (USA), October 2008.

3. M.R. Costa-jussa, P. Lambert, J.M. Crego, M. Khalilov, J.A.R. Fonollosa, J.B. Marifio and R. Banchs
Ngram-based system enhanced with multiple weighted reordering hypotheses. Proceed-
ings of ACL’07, Second Workshop on Statistical Machine Translation, pp. 167-170, Prague (Czech
Republic), June 2007.

4. P. Lambert, M.R. Costa-jussa, J.M. Crego, M. Khalilov, J.B. Marino, R. Banchs, J.A.R. Fonollosa
and H. Schwenk The TALP ngram-based SMT system for IWSLT 2007. Proceedings of
IWSLT’07, pp. 169-174, Trento (Italy), October 2007.

5. M.R. Costa-jussa, J.M. Crego, A. de Gispert, P. Lambert, M. Khalilov, R. Banchs, J.B. Marifio and
J.A.R. Fonollosa TALP Phrase-based statistical translation system for European language
pairs. Proceedings of the HLT-NAACL Workshop on Statistical Machine Translatiion, New York
(USA), June 2006.

6. J.M. Crego, A. de Gispert, P. Lambert, M.R. Costa-jussa, M. Khalilov, R. Banchs, J.B. Marifio
and J.A.R. Fonollosa N-gram-based SMT System Enhanced with Reordering Patterns.
Proceedings of the HLT-NAACL Workshop on Statistical Machine Translatiion, New York (USA),
June 2006.

7. J.B. Marino, R. Banchs, J.M. Crego, A. de Gispert, P. Lambert, J.A.R. Fonollosa, M.R. Costa-jussa
and M. Khalilov, UPC’s Bilingual N-gram Translation System. Proceedings of the TC-Star
Speech to Speech Translation Workshop, Barcelona (Spain), June 2006.

8. M.R. Costa-jussa, J.M. Crego, A. de Gispert, P. Lambert, M. Khalilov, J.A.R. Fonollosa, J.B. Marino
and R. Banchs TALP Phrase-based System and TALP System Combination for the IWSLT
2006. Proceedings of IWSLT’06, Kyoto (Japan), November 2006.
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9. J.M. Crego, A. de Gispert, P. Lambert, M. Khalilov, M.R. Costa-jussa, J.B. Marino, R. Banchs
and J.A.R. Fonollosa TALP Ngram-based SMT System for IWSLT 2006. Proceedings of
IWSLT’06, Kyoto (Japan), November 2006.
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