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Abstract 
Jitter and shimmer are measures of the cycle-to-cycle variations 
of fundamental frequency and amplitude, respectively, which 
have been largely used for the description of pathological voice 
quality. Since they characterise some aspects concerning 
particular voices, it is a priori expected to find differences in the 
values of jitter and shimmer among speakers. In this paper, 
several types of jitter and shimmer measurements have been 
analysed. Experiments performed with the Switchboard-I 
conversational speech database show that jitter and shimmer 
measurements give excellent results in speaker verification as 
complementary features of spectral and prosodic parameters. 
Index Terms: speaker recognition, jitter, shimmer, prosody, 
voice spectrum, fusion 

1. Introduction 
State-of-the-art speaker recognition systems tend to use only 
short-term spectral features as voice information. Spectral 
parameters take into account some aspects of the acoustic level 
of the signal, like spectral magnitudes, formant frequencies, etc., 
and they are highly related to the physical traits of the speaker. 
However, humans tend to use several linguistic levels like 
lexicon, prosody or phonetics to recognise others with voice. 
These levels of information are more related to learned habits or 
style, and they are mainly manifested in the dialect, sociolect or 
idiolect of the speaker. 

Since these linguistic levels play an important role in the 
human recognition process, a lot of effort has been placed in 
adding this kind of information to automatic speaker recognition 
systems. [1] showed that idiolectal information provided a good 
recognition performance given a sufficient amount of data, and 
more recent works [2-4] have demonstrated that prosody helps 
to improve voice spectrum based recognition systems, supplying 
complementary information not captured in the traditional 
acoustic systems. Moreover, some of these parameters have the 
advantage of being more robust to some common problems like 
noise, transmission channel, speech level or distance between 
the speaker and the microphone than spectral features. 

There are probably many more characteristics which may 
provide complementary information and should be of a great 
value for speaker recognition. This work focuses on the use of 
jitter and shimmer for a speaker verification system. Jitter and 
shimmer are acoustic characteristics of voice signals, and they 
are quantified as the cycle-to-cycle variations of fundamental 
frequency and waveform amplitude, respectively. Both features 
have been largely used to detect voice pathologies (see, e.g. [5, 
6]). They are commonly measured for long sustained vowels, 
and values of jitter and shimmer above a certain threshold are 

considered being related to pathological voices, which are 
usually perceived by humans as breathy, rough or hoarse voices. 
In [7] it was reported that significant differences can occur in 
jitter and shimmer measurements between different speaking 
styles, especially in shimmer measurement. Nevertheless, 
prosody is also highly-dependant on the emotion of the speaker, 
and prosodic features are useful in automatic recognition 
systems even when no emotional state is distinguished. 

The aim of this work is to improve a prosodic and voice 
spectral verification system by introducing new features based 
on jitter and shimmer measurements. The experiments have 
been done over the Switchboard-I conversational speech 
database. Fusion of different features has been performed at the 
score level by using z-score normalization and matcher 
weighting fusion method. 

This paper is organised as follows. In the next section, an 
overview of the features used in this work is presented, 
including a description of jitter and shimmer measurements. The 
experimental setup and verification experiments are shown in 
section 3. Finally, conclusions of the experiments are given in 
section 4. 

2. Voice features 
Cepstral coefficients are the usual way of representing the short-
time spectral envelope of a speech frame in current speaker 
recognition systems. These parameters are the most prevalent 
representations of the speech signal and contain a high degree of 
speaker specificity. However, cepstral coefficients have some 
disadvantages that are overcome by using Frequency Filtering 
(FF) parameters. These parameters have been used in our 
experiments since they give comparable or better results than 
mel-cepstrum coefficients in most of the experiments that have 
been done [8, 9].  

Prosodic parameters are known as suprasegmental 
parameters since the segments affected (syllables, words and 
phrases) are larger than phonetic units. These features are 
mainly manifested as sound duration, tone and intensity 
variation. The prosodic recognition baseline system used in this 
work is constituted by nine prosodic features already used in [2, 
3]: three features related to word and segmental durations and 
six features related to fundamental frequency, all of them 
averaged over all words with voiced frames.  

The novel component in this paper is the analysis of jitter 
and shimmer features in order to test their usefulness in speaker 
verification. These features have been extracted by using the 
Praat voice analysis software [10]. Praat reports different kinds 
of measurements for both jitter and shimmer features, which are 
listed below.  



2.1. Jitter measurements 

• Jitter (absolute) is the cycle-to-cycle variation of 
fundamental frequency, i.e. the average absolute 
difference between consecutive periods, expressed as: 
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where Ti are the extracted F0 period lengths and N is the 
number of extracted F0 periods. 

• Jitter (relative) is the average absolute difference between 
consecutive periods, divided by the average period. It is 
expressed as a percentage: 
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• Jitter (rap) is defined as the Relative Average 
Perturbation, the average absolute difference between a 
period and the average of it and its two neighbours, 
divided by the average period. 

• Jitter (ppq5) is the five-point Period Perturbation 
Quotient, computed as the average absolute difference 
between a period and the average of it and its four closest 
neighbours, divided by the average period. 

2.2. Shimmer measurements 

• Shimmer (dB) is expressed as the variability of the peak-
to-peak amplitude in decibels, i.e. the average absolute 
base-10 logarithm of the difference between the 
amplitudes of consecutive periods, multiplied by 20: 
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where Ai are the extracted peak-to-peak amplitude data 
and N is the number of extracted fundamental frequency 
periods. 

• Shimmer (relative) is defined as the average absolute 
difference between the amplitudes of consecutive periods, 
divided by the average amplitude, expressed as a 
percentage: 
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• Shimmer (apq3) is the three-point Amplitude Perturbation 
Quotient, the average absolute difference between the 
amplitude of a period and the average of the amplitudes of 
its neighbours, divided by the average amplitude. 

• Shimmer (apq5) is defined as the five-point Amplitude 
Perturbation Quotient, the average absolute difference 
between the amplitude of a period and the average of the 
amplitudes of it and its four closest neighbours, divided 
by the average amplitude. 

• Shimmer (apq11) is expressed as the 11-point Amplitude 
Perturbation Quotient, the average absolute difference 
between the amplitude of a period and the average of the 
amplitudes of it and its ten closest neighbours, divided by 
the average amplitude. 

 

3. Recognition experiments 

3.1. Experimental setup 

All the recognition experiments described in this paper have 
been performed with the Switchboard-I database [11], a 
collection of 2430 two-sided telephone conversations among 
543 speakers from all areas of the United States. 

In the prosody based recognition system, a nine-feature 
vector (already used in [2]) was obtained for each conversation 
side: three features related to word and segmental durations - 
number of frames per word and length of word-internal voiced 
and unvoiced segments - and six features related to fundamental 
frequency - mean, maximum, minimum, range, pseudo-slope 
and slope -. Another feature vector was extracted for the 
acoustic system based on the nine jitter and shimmer 
measurements described in section 2. 

Features were extracted using the Praat software for acoustic 
analysis [10], performing an acoustic periodicity detection based 
on a cross-correlation method, with a window length of 40/3 ms 
and a shift of 10/3 ms. The mean and standard deviation over all 
words were computed for each individual feature. The system 
was tested using the k-Nearest Neighbour classifier (with k=3), 
comparing the distance of the test feature vector to the k closest 
vectors of the claimed speaker vs. the distance of the test vector 
to the k closest vectors of the cohort speakers. The symmetrised 
Kullback-Leibler divergence expressed as: 
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where µ is the mean and σ the standard deviation, was used as a 
distance measure. 

The spectrum based recognition system was a 32-component 
GMM-UBM system using short-term feature vectors consisting 
of 20 Frequency Filtering parameters [8] with a frame size of 30 
ms and a shift of 10 ms. 20 corresponding delta and acceleration 
coefficients were included, and the UBM was trained with 116 
conversation sides. 

All the systems used 8 conversation sides to train the 
speaker models. Training was performed using splits 1-3 of 
Switchboard-I database. The three held out splits provided the 
cohort speakers in prosodic and jitter-shimmer based systems. 
The systems were tested with one conversation-side according 
to the NIST’s 2001 Extended Data task [12]. Fusion of 
individual features was performed at the score level for splits 1-
3, using the matcher weighting method [13] with a previous z-
score normalization. Weights were trained from the splits 4-6 
using splits 1-3 as cohort speakers. 



3.2. Verification results 

First of all, the prosodic system used as baseline is presented. 
Table 1 shows the EER obtained for each individual prosodic 
feature and the resulting fusion of the prosodic set. 

 

Table 1. EER for prosodic features (isolated and fused). 

Feature EER (%) 
log (#frames/word) 31.5 
length of word-internal voiced segments 30.0 
length of word-internal unvoiced segments 30.0 
log (mean F0) 20.3 
log (max F0) 20.9 
log (min F0) 22.3 
log (range F0) 26.6 
pseudo-slope: (last F0 - first F0)/(#frames) 38.3 
F0 slope 29.9 
Fusion 15.8 

 
 
The same experiments were performed for the jitter and 

shimmer measurements described in section 2. Tables 2 and 3 
show the EER results for jitter and shimmer features 
respectively. Both tables give the EER for the individual 
measurements and the combination of the measurements set.  

 

Table 2. EER for jitter measurements. 

Jitter measurement EER (%) 
 Jitter (absolute) 26.9 
 Jitter (relative) 33.7 
 Jitter (rap) 34.2 
 Jitter (ppq5) 33.8 
 Fusion 29.2 

 

Table 3. EER for shimmer measurements. 

Shimmer measurement EER (%) 
 Shimmer (dB) 26.9 
 Shimmer (relative) 28.9 
 Shimmer (apq3) 28.1 
 Shimmer (apq5) 32.9 
 Shimmer (apq11) 33.8 
 Fusion 25.5 

 
 
The results show that at least both absolute measurements of 

jitter and shimmer are potentially useful in speaker recognition. 
In the case of jitter, its relative measurements do not seem to 
supply helpful information, since the fusion of all jitter 
measurements does not outperform the result obtained with the 
isolated absolute measurement. In order to ensure this 
assumption, the absolute measurement of jitter was fused with 
the best-performing relative measurement: the Jitter (relative). 
The combination of both measurements provided an EER of 
29.3%, so that fusion of both measurements does not improve 
the absolute jitter measurement result either. 

In the case of shimmer measurements, their final fusion 
improves slightly the best isolated result (Shimmer (dB)). Since 
all relative measurements of the same feature are highly 
correlated, we will only use the relative measurement of 
shimmer giving the best EER: the Shimmer (apq3). To ensure 
that this measurement provides some complementary 
information to Shimmer (absolute), both measurements were 
combined. The EER obtained in the fusion equalled 26.3%, 
improving slightly the isolated absolute measurement of 
shimmer. 

From now on, only three cycle-to-cycle variability 
measurements will be used as new features: Jitter (absolute), 
Shimmer (dB) and Shimmer (apq3), and we will refer to this set 
of three measurements as the JitShim system. The EER of the 
combination of these measurements equals 22.5%. 

In order to see how jitter and shimmer are able to improve 
the prosodic and the voice spectral based recognition systems, 
the new features are added to both systems separately. First of 
all, the nine prosodic features used in our baseline system are 
combined with the three features of our novel JitShim system, 
resulting in a new twelve-featured system. Secondly, the JitShim 
system is added to our voice spectral baseline system. This 
allows comparing how complementary jitter and shimmer are to 
prosodic and spectral features, respectively. Finally, the JitShim 
system is combined with both baselines, in order to see how the 
new features improve our speaker verification system. The 
results of these experiments are shown in Table 4. The EER 
before the introduction of the JitShim system are given in the 
middle column of the table, and results after adding jitter and 
shimmer features are shown in the right column. 

 

Table 4. EER (%) for prosodic and spectral systems 
before and after adding jitter and shimmer features. 

Baseline system without JitShim  with JitShim 
Prosodic 15.8 13.1 
Spectral 10.1 8.6 
Fusion 7.7 6.8 

 
 
The results and the DET curves plotted in Fig.1 show that 

both prosodic and spectral baselines are clearly improved when 
jitter and shimmer features are added to the systems. The best 
relative improvement is achieved by adding the JitShim to the 
prosody based system (17%). By fusing JitShim with the 
spectral system, the improvement is less considerable (15%). 
That suggests that the information provided by jitter and 
shimmer to prosodic parameters is more complementary than 
the information supplied to the spectral system. 

Our preliminary speaker verification system based on 
prosodic and spectral parameters is also improved by adding the 
JitShim system, as in can be seen in the DET curves plotted in 
Fig. 2, achieving the lowest EER equalling 6.8%. So, jitter and 
shimmer features seem to be useful in speaker recognition and 
should be taken into account in future experiments. 
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Figure 1. DET curves for prosodic and spectral systems 
before and after adding jitter and shimmer features. 
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Figure 2. DET plot showing the improvement of the 
baseline system after adding jitter and shimmer. 

4. Conclusions 
In this work, a preliminary speaker verification system based on 
prosodic and spectral parameters is improved by adding jitter 
and shimmer features, which analyse the perturbation of 
fundamental frequency and waveform amplitude, respectively. 
In these experiments, the absolute measurements of both 
features seem to be more discriminant than their relative 
measurements. Furthermore, the results show that jitter and 
shimmer can provide complementary information to both 
spectral and prosodic systems, especially to the prosodic one. 
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