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Abstract

Type logical grammar presents a paradigm of linguistic description based on what we may refer to as
a Lambek-van Benthem correspondence: (logical) formulas as (linguistic) categories. Lexical signs
are classified by category formulas, and the language model projected by a lexicon is determined by
the consequence relation induced on category formulas by their interpretation.

In this logical model of language, (logical) proofs correspond to (linguistic) derivations, but such
syntax serves just to calculate what is generated, not to define it. Although syntax plays no def-
initional role linguistically, from a computational linguistic point of view we are interested in the
process of grammatical reasoning, and we propose to reinstate syntactic structure as the trace of
such processing. Addressing the question ‘What is the essential structure of the relevant kinds of
proofs?’ yields a new answer to the question ‘What is syntactic structure?’ under the slogan proof
nets as syntactic structures. This provides a particularly vivid realisation of the notion of categorial
syntactic connection of Ajdukiewicz (1935) as a harmonic mutual connectivity of the valencies of the
words making up a sentence. We offer a general methodology for the development of proof nets for
partially commutative categorial logics.
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1 Introduction

Whereas phrase structure grammar models language as a formal system, i.e. a set of
strings, categorial grammar models language as a communicative system, i.e. a set of
signs (form-meaning associations). Parse trees for CFG are concrete structures defin-
ing the equivalence classes of string rewriting derivations. Corresponding structures
for categorial grammar must be deeper, since they incorporate also semantics. Here
we investigate the idea that those structures are proof nets, that proof nets are for
categorial grammar what parse trees are for CFG, hence our paradigmatic slogan:
proof nets as syntactic structures.

The syntactic calculus L of Lambek (1958) provides a logical model of language
which presents formulas as categories and proofs as derivations. The calculus, now
recognizable as a multiplicative fragment of non-commutative intuitionistic linear logic
(Girard 1987), has a sequent calculus free of structural rules, and a proof net syntax
which is more geometrical than that of linear logic, for the proof nets are planar
(Roorda 1991; Abrusci 1995).

Computationally, the proof nets provide the essential structure of derivations. They
proffer no “spurious ambiguity” and support, for example, a prenormalisation allowing
parsing to normal form semantic output without on-line A-conversion (Morrill 1997:
25-30), and memoisation (Morrill 1996), something prohibitive under the shifting
premises of hypothetical reasoning in other forms of categorial proof syntax.
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1.1 Associative Lambek calculus

Let us recall the (associative) Lambek calculus L. The category formulas F are
constructed from atomic category formulas A (atoms) by a product operator e and
two directional divisors, \ (“under”), and / (“over”), as follows:

Fu=A| FeF | F\F | F|F (1.1)

Lambek (1958, 1988) gives an algebraic interpretation in a semigroup (L, +), a set
L closed under an associative binary operation + (we may think of the set of strings
over some vocabulary, and the operation of concatenation). Formulas are interpreted
as subsets of L. Given an interpretation [P] for each atom P, each category formula
A receives an interpretation [A] thus:

[A\B] = {s| Vs’ €[A],s'+s € [B]} (1.2)
[B/A] = {s| Vs €[A] s+s" € [B]}
[[AOB]] = {81-|—82| 81 € [[A]] & s9 € [[B]]}

Van Benthem (1991) gives a relational interpretation in a set V (we may think of
the starting and ending moments of utterances). Formulas are interpreted as binary
relations, i.e. as subsets of V' x V. Given an interpretation [P] for each atom P, each
category formula A receives an interpretation [A] thus:

[A\B] = {(v2,vs)| Vur,(v1,v2) € [A] = (v1,v3) € [B]} (1.3)
[B/A] = {{v1,v2)| Vus,(v2,vs) € [A] = (v1,v3) € [B]}
[AeB] = {{v1,vs)| Jvz, (v1,v2) € [A] & (v2,v3) € [B]}

A sequent I' = A comprises a succedent category formula A and an antecedent
configuration I' which is a non-empty finite sequence of category formulas. A sequent
Aq,..., A, = A asserts that for all algebraic interpretations, for all sq,...,s, € L, if
s; € [A;], 1<i<n then s;+-- - +s, € [A], and that for all relational interpretations, for
all vo, ..., v, € V, if {v;_1,v;) € [4;], 1<i<n then {vg,vy) € [A]. The valid sequents
are those generated by the following sequent calculus (T'(A) indicates a configuration
I' with a distinguished subconfiguration A):

a. A=A id =4 A(A)=>B (1.4)
Cut
A(l)= B
b. I'=A4 A(B):C\L A,F:BR
AT, A\B) = C I' = A\B

c. I'=A4 AB)=C I'A=B
/L /R
A(B/AT) = C I' = B/A
d. F(A,B):CL r=4 A=8H
T(AeB) = O I,A = AeB
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Each connective has a rule of use in which it appears in the antecedent of the con-
clusion sequent, and a rule of proof in which it appears in the succedent of the
conclusion sequent; in every instance of these logical rule schemata there is exactly
one more connective occurrence in the conclusion than in the premises so that back-
ward chaining proof steps involving these rules are complexity-reducing: trying to
prove conclusions by proving the premises generates strictly simpler subgoals. The
tdentity rule schemata id and Cut reflect respectively the reflexivity and transitivity
of set containment. The id rule schema has zero premises, i.e. it is an axiom schema;
the instances where A is a compound formula are derivable by the other rules from
atomic instances, hence id can be restricted to apply to atoms without altering the
set of theorems generated. In the Cut rule schema the Cut formula A is duplicated
in the premises and the rule fails to be complexity-reducing in the sense of the log-
ical rules. However, the calculus enjoys Cut-elimination: for every proof there is an
equivalent Cut-free proof. This means that naive Cut-free backward chaining proof
search constitutes a decision procedure for theoremhood. The Cut-elimination result
has as a corollary the subformula property that every theorem has a proof containing
only its subformulas — namely any Cut-free proof.

The calculus of Lambek (1988) adds to that of Lambek (1958) the empty string, ¢,
the empty configuration, A, and the product unit, I. The definition (1.1) of category
formulas becomes (1.5).

Fu=A|FeF | F\F | F|F|I (1.5)

The product unit is interpreted algebraically as the set comprising the empty string,
[7] = {¢}, and relationally as the identity relation, [I] = {{v1,v2)| v1 = v2}. The
sequent rules for I are thus:

I, I,Ts = A

Lambek calculus provides a classificatory framework for subcategorization which
synchronizes naturally with Fregean semantics of incompleteness and compositional-
ity. It provides for some proper treatment of quantification, and for some action-at-a-
distance. Still, from a linguistic point of view the possibilities of the Lambek calculus
are extremely limited since it is a logic of only concatenation. Various applications
have been targeted by formulating corresponding logic of discontinuity, including me-
dial extraction, subject-oriented reflexivisation, object-oriented reflexivisation, quan-
tification, wrapping, gapping, pied piping, comparative subdeletion, plurals and VP
ellipsis (Moortgat 1988 pt. 3.3, 1990, 1991/96, 1996; Solias 1992; Morrill and So-
lias 1993; Morrill 1994 chs. 4-5, 1995; Moortgat and Oehrle 1994; Calcagno 1995;
Hendriks 1995; Morrill and Merenciano 1996; Carpenter 1998; Jager 1997).

1.2 Discontinuity

By way of examples of discontinuity beyond the reach of L we consider extraction,
and in situ binding. In (1.7) the relative pronoun binds a position which is medial in
the relative clause.

(the dog) that; John gave t; to Mary (1.7)
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Defining the relative pronoun as R/(N\S) or R/(S/N) (where R is CN\CN) allows
it to bind only left or right peripheral positions: (1.7) is not generated. To deal with
such cases, Moortgat (1988: 110) defines as follows a binary operator which we write

Te:
[B1.A] = {s1+52|Ys € [A], s1+s+s2 € [B]} (1.8)

Assigning the relative pronoun to category R/(ST.N) allows both medial and (as-
suming ) peripheral extraction, via the rule of proof (1.9).

FlaAa FZ = B (19)
—— 1R
ry,I'y = B A

Morrill (1992: 13-14) notes that such a treatment potentially accommodates oblig-
atory extraction valencies:

a. (the man) that; John assured Mary ¢; to be reliable (1.10)
b. *John assured Mary Bill to be reliable.

If the extraction valency of “assured” is marked by 1., a sequent corresponding to
(1.10a) is valid while that for (1.10b) is invalid, as required. But a satisfactory rule
of use cannot be formulated, as observed by Moortgat (121-2), and, as pointed out
by I. Sag (p.c.), in the absence of a rule of use it is impossible to actually derive all
cases like (1.10a) since when the obligatory extraction valency verb is subordinate to
some functor, one needs to make use of the operator in the course of the derivation.

Regarding in situ binding, in (1.11) the quantifier phrase and reflexive are in situ
binders, taking scope respectively at the sentence and the verb phrase levels.

a. John bought someone Fido. (1.11)
b. John bought himself Fido.

Moortgat (1991/96) introduces a ternary operator ¢ for which Morrill (1992: 15)
offers the interpretation:

[Q(B, A, C)] = {s|Vs1, s3,[Vs2 € [A], s1+52+53 € [B]] = s1+s+s3 € [C]} (1.12)

Moortgat categorises quantifier phrases and reflexives as sentence and verb phrase in
situ binders: Q(S, N, S) and Q(N\S, N, N\S) respectively. Cases such as (1.11) are
generated by means of the rule of use (1.13).

I(4) =B AC)=D . (1.13)
AT(Q(B,A,C))= D

However, this time no satisfactory rule of proof can be given. Therefore, as pointed
out by H. Hendriks (p.c.), a valid sequent such as (1.14), showing that a sentence in
situ binder is also a verb phrase in situ binder, cannot actually be derived.

Q(S, N, S) = Q(N\S, N, N\S) (1.14)

We make the following contributions. In section 2 we give proof nets for L+{t,, @}.
In section 3 we define a pure sequent calculus (free of structural rules) for sorted
discontinuity calculus in which 1, and @ are defined operators. In section 4 we give
proof nets for this discontinuity calculus in general.
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2 Proof nets

In the following two subsections we describe classical linear logic, and proof nets for
classical linear logic. Subsections 2.3 and 2.4 review proof nets for the Lambek-van
Benthem categorial calculus, and for the Lambek calculus. Subsection 2.5 considers
proof nets for the product unit; subsection 2.6 introduces proof nets for the medial
divisor; and subsection 2.7 introduces proof nets for the in situ bindor.

2.1 Classical linear logic
Consider formulas defined as follows.
Fu=A|FQF | FOF | F—oF | F* (2.1)

In the sequent calculus (2.2), sequents are of the form I' = A where configurations
I' and A are finite sequences of formulas.

a. = ALA ATy = A, (2.2)
id Cut
A:>A F17F22A17A2
b TLABL S A T=ALABA,
L R
Fl,B,A,ngA F:>A1,B,A,A2

c. I'A,B= A ' = AA T's= B,A,
—®L
F,A@BiA Fl,F2:>A®B,A1,A2

d ATi=A B/TI;= A, I'= AAB
PL PR
AWB,Fl,FQ = Al,AQ I'= A,AWB

e. T''=AAy B, IT;= A, I'A= B,A
—oL —oR

Fl,A—OB,FQ = Al,AQ I'= A—OB,A

f. = A4A A=A
J_L 1
At = A I = A+ A

We recognize for @ (“times”), £ (“par”), —o (“linear implication”), and + (“perp”)
classical sequent rules for conjunction, disjunction, implication and negation respec-
tively. Indeed, the only difference with respect to classical logic is that the structural
rules of contraction and weakening are not included. This calculus, multiplicative
classical linear logic, enjoys Cut-elimination.

Those properties of classical logic which do not depend on contraction and weak-
ening are inherited by classical linear logic. For example, the negation is involutive,
Att o A

a. A=A b. A=A (2.3)
J_L J_R
A AL = = AL A
1R —

1
_ L
A= AL AL = 4
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And there are the following proofs of the two sides of the de Morgan law (A ® B)* &
Atppt:

a. A=A B=B b. A=A B=B (2.4)
IR AL AL LT
= A, At = B, Bt At A= B B=
@R oL
= A® B, A+, Bt AleBL A B =
PR @ L
= A® B, AtpBL . ALtpBr AoB= |
(A@B)+ = AtpBt Alppt = (4@ B)*

The other de Morgan law, (A9 B)L < A+ ® B, is obtained similarly, and also the
equivalence A—oB < ALY©B. Consequently, all formulas have a negation normal
form for which they may be regarded as metalinguistic abbreviations; that is the way
classical linear logic is usually presented but, for expository reasons, we do otherwise
here.!

2.2 Proof nets for classical linear logic

In sequent calculus each formula is situated with respect to an opposition, antecedent-
succedent. In proof nets, each formula A will be correspondingly situated by signing
it as of either input polarity, A*, or as of output polarity, A°. In order to define proof
nets we first define a class of proof structures of which they are a subset. A proof
structure is a connected graph with nodes labelled by signed formulas, assembled out
of the proof links given in figure 1; in the identity links, X and X are A* and A° (in
either order). Each formula in a proof link (and a proof structure) is also labelled
implicitly as either a premise or a conclusion, or else as internal. We draw edges in such
a way that premises always look upwards and conclusions always look downwards; the
logical links each have two premises and one conclusion; the id axiom link has two
conclusions and no premises, the Cut link two premises and no conclusions.?

We define a signed formula tree to be a finite tree with leaves labelled by signed
atoms, each local tree of which is a logical link. A proof frame is a finite sequence® of
signed formula trees. A proof structure is obtained from a proof frame by connecting
complementary leaves with axiom links, and complementary roots with Cut links,
in such a way that each leaf is connected to exactly one other, and each root to at
most one other. Alternatively viewed, proof structures are assembled by identifying
premises and conclusions of proof links which are of the same signed formula; see
figure 2.

A proof structure with input conclusions A:*,..., A,* and output conclusions
B1°,...,By° is read as asserting that Ay,..., A, = By,..., By, is valid. Thus, the
proof structure of figure 2 asserts N = (N—oS)—oS, which is in fact true, but not all
proof structures are correct; indeed ® and § are not distinguished!

1Furthermore, since eg. I')A = A if and only if ' = AJ‘,A one may convert every sequent to an equivalent
one-sided sequent, and work with a one-sided calculus but, for expository reasons, we retain the (more cumbersome)
two-sided view.

2We consider the premises of our proof links to be ordered, left and right, in the way they are drawn, even though
this is only needed in relation to planarity, considered later; to maintain a purely graph-theoretic view we should
say that there is an implicit directed edge between the premises of logical links.

3Again, regarding this ordering see the previous note.
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A® B* A°

-

AQ B* A5 Be
A® B* A° B°
\ /
ApB® apBe
A° B* A B
\ /
A—oB*® A—oB°
A° 'y
Ate alo

Logical links

Identity links

Fia. 1. Proof links of classical linear logic
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N:o S..

|
M
\ /
N* N—oS® 5°
| |
N—:S‘ SVO/
\ /
(N—08)—0S°
N° s®
\ /
N—oS* s°
\ /
N* (N—0S) —0S°

FiG. 2. Assembly of a proof structure

We shall define correctness of proof structures in terms of what we call ezpanded
proof links/frames/structures. The criterion is easily applied to proof structures them-
selves in virtue of their (unique) expansion, but reference to the expanded level allows
for a more elegant statement. The links which alter on expansion are given in fig-
ure 3. In the ®- and -output links the central node is the principal connective of
the conclusion. In the ®- and #-input links the central node is the de Morgan dual
of the principal connective of the conclusion; this is because we regard input polarity
as negating.* In the —o-output link we see the disjunction and polarity propagation
of the equivalence A—oB < A+ B, and in the —o-input link we see the conjunction
and polarity propagation of the equivalence (A—oB)! < A® BL.

The original correctness criterion of Girard (1987), the long trip condition, is as
follows. Each ®- and #-fork in an expanded proof structure is considered a switch
which determines travel instructions according to which of two states it is in: open
to the left (and closed to the right) or open to the right (and closed to the left).

4That is, we adopt the point of view of one-sided sequents in which the antecedent is empty, which is the usual
perspective of linear logic; but one could equally adopt the point of view of one-sided sequents in which the succedent
is empty, which is the usual point of view of refutation, in which case we would regard output polarity as negating.
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A® B*® A° B°
[ ®
A®B® A®B°
A B A4° B°
® [
APB® ApB°
A° B*® A® B°
® [
A—oB*® A—oB°

F1c. 3. Expanded logical links of classical linear logic

Entering an open premise, we always exit through the conclusion, but the other two
cases depend on the connective. Entering the closed premise of ® we exit through
the other (open) premise, but entering the closed premise of £ we bounce, returning
immediately out of the same (closed) premise back the way we came. Entering the
conclusion of ® we go out through the closed premise, but entering the conclusion of
£ we go out through the open premise. Finally, when we arrive at a conclusion, we
also bounce, returning immediately in the direction from which we just came.

A trip is a path through a proof structure according to a switching; note that once
begun a trip extends deterministically. A trip is long if and only if it returns to its
starting point having traversed each edge exactly once in each direction. A switching
defines a long trip if and only if there is some long trip for the switching; in view of
determinism and periodicity, a switching defines some long trip if and only if starting
anywhere results in a long trip. A proof structure is correct, that is it is a proof net,
if and only if every switching defines a long trip. A sequent I' = A is a theorem
of the sequent calculus iff there is a proof net with input conclusions I' and output
conclusions A.

The proof nets, like the sequent calculus, enjoy Cut-elimination: for every proof
net there is an equivalent Cut-free proof net. This means that there is the following
decision procedure for determining theoremhood via proof nets. Given a sequent
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S.. S:°

FiG. 4. Minimal circularity

Ay,..., A, = Bq,..., By, construct the proof frame with conclusions 4;°,..., 4,°*,
B1°, ..., By,° comprising the sequence of signed formula trees given by the following
recursive unfolding:

A*  B* A° pBe A*  B* A°  B° (2.5)
A® B A®B° APDB* APB®

A° B A* Be A° A*

A—oB® A—oB° ALe  qto

Then test whether the long trip condition is satisfied for some Cut-free proof structure
(there are a finite number) that can be built by putting axiom links on the proof frame.

Testing the long trip condition as it stands is not attractive computationally since
in a proof structure with 7 £-links and j @ -links there are 2°7 switchings to be tried.
The situation is improved with the correctness criterion as formulated by Danos and
Regnier (1989), which considers only switchings of #-links. For any given switching,
a certain graph results by removing from an expanded proof net the edges between
each ©-conclusion and its closed premise. The result of Danos and Regnier is that a
proof structure is a proof net if and only if for every switching of #-links, the result of
removing these edges is acyclic and connected. A direct application of this simplified
criterion requires only 2! switchings to be tried.

The acyclicity part of the condition corresponds to the requirement of the binary
rules Cut, and ® R, #L and —oL (i.e. those with ® as the central node of expanded
links) that their premises be in different subproofs, forbidding circularity such as that
of figure 4. The connectedness condition corresponds to the requirement of the unary
rules @ L, PR and —oR (i.e. those with § as the central node of expanded links) that
their premises be in the same subproofs.” The Mix rule (2.6) allows that different
classical proofs can always be combined into one.

li=A1 Ty= A (2.6)
Mix
',y = A, Ay

Mix has characteristic axiom A® B = A®B. If we admit Mix, we drop the con-
nectedness requirement from the correctness criterion, and require just acyclicity for
every §-switching.

5These intuitions regarding acyclicity and binary rules and connectedness and unary rules are attributed by P. de
Groote (p.c.) to J. Gallier.
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That every £-switching is acyclic can be expressed in the following simple manner
(adapted from Lecomte and Retoré 1995). Let us say that a vicious circle is a cyclic
path which never crosses in immediate succession the two premises of a #-link; then
every f-switching of a proof structure is acyclic iff the proof structure contains no
vicious circle, i.e. if Mix is admitted:

A proof structure is a proof net iff it contains no vicious circle. (2.7)

Testing whether a proof structure contains a vicious circle is of polynomial time
complexity. Furthermore, the criterion can be employed incrementally: it is sufficient
to check with the addition of each successive axiom link just that no vicious circle is
created through this new link. However, although checking is polynomial, the search
through alternative axiom linkings has no efficient solution for classical linear logic,
for which the problem of validation is NP-complete (Lincoln, Mitchell, Scedrov and
Shankar 1992).

2.8 Lambek-van Benthem calculus

Consider formulas defined as follows.
Fu=A|FoOF | F—oF (2.8)

In the calculus (2.9) sequents are of the form I' = A where the antecedent config-
uration is a sequence of formulas as before, but the succedent comprises exactly one
formula.

a. Ih=>A ATl,=B (2.9)
id Cut

1
A=A Iy, I'y =28

b. T1,A,BTy=C
P
T1,B, ATy = C

c. I''A,B=C I'in=A4 I;=28B
L

—® @R
I'AoB = C Iy,I's => A0 B
d I'i=A4 BI;=/C I''A=10B
—oL —oR
I',A—-B, Iy = C I' = A—oB

We recognize positive intuitionistic sequent rules for conjunction and implication;
indeed, the only difference with respect to positive intuitionistic logic is that the
structural rules of contraction and weakening are not included. This is the Lambek-
van Benthem categorial calculus LP: a multiplicative fragment of intuitionistic linear
logic; it enjoys Cut-elimination. Compared to classical linear logic, we see that there
is now only one (left-sided) permutation rule, since there are never two formulas in the
succedent to which a right permutation rule could apply. All the rules are instances of
rules of the classical calculus, so every intuitionistic linear theorem is also a classical
linear theorem; in fact, an intuitionistic sequent is an intuitionistic theorem if and only
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A B* A B*
A®B® &
AR B*
A° B° A° B°
AQB° ®
A® B°
A° B* A° B*
A—oB*® ®
A—oB*®
A® B° A® B°
A—oB° &
A—o0B°

Fia. 5. Logical proof links of LP and their expansions

if it is a classical theorem (Johnson 1996). This means we can define intuitionistic
proof nets as a special case of classical proof nets. We give the proof links in figure 5.
An LP signed formula tree is a finite tree with atomic (signed) leaves each local tree
of which is an LP logical link. An LP proof frame is a finite sequence of LP signed
formula trees. An LP proof structure is obtained by connecting complementary leaves
with axiom links and complementary roots with Cut links in such a way that each
leaf is connected to exactly one other and each root is connected to at most one other,
and which has exactly one conclusion of output polarity. A proof structure with input
conclusions I and output conclusion A is read as asserting that [' = A is valid.

As a correctness criterion, it is sufficient just to check that there is no vicious circle,
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for the following reasons. In the classical system, axioms contain exactly one succedent
formula, and if premise succedents contain at least one formula, then i) the conclusion
succedent of Mix contains more than one formula, and ii) the left rules of permutation,
times and linear implication each have the property that if some premise succedent
contains more than one formula, then the conclusion succedent contains more than
one formula. Consequently, every theorem of intuitionistic formulas proved using
Mix contains more than one succedent formula, i.e. an intuitionistic sequent is an
intuitionistic theorem if and only if it is a theorem of the classical system plus Mix.
But this means we can forget about the connectedness requirement in the correctness
condition. An LP proof structure is a proof net if and only if its expansion contains
no vicious circle, and an LP sequent I' = A is a theorem of the sequent calculus iff
there is a proof net with input conclusions I' and output conclusion A.

The LP proof nets enjoy Cut-elimination, thus there is the following decision pro-
cedure for determining LP theoremhood by searching for Cut-free proof nets. Given a
sequent Aq,..., A, = A construct the proof frame with conclusions 4,*,..., A,*, A°
comprising the sequence of signed formula trees given by the following recursive un-

folding;:

A* B* A B° A B* A B° (2.10)
A®B* A® B° A—oB* A—oB°

Then test whether there is some proof structure that can be built by putting axiom
links on the proof frame without creating any vicious circle.

Since LP is a restriction of intuitionistic logic, each proof can be read as an intu-
itionistic proof. The intuitionistic natural deduction proof, encoded as a linear term
of A-calculus with function and pair types, is extracted from a proof net as follows.
First, one associates distinct variables with each output implication link and distinct
constants with each input conclusion. Then, one starts travelling upwards at the
unique output conclusion: going up into an output division (i.e. implication) link,
A-abstract over the associated variable the result of going up into the output premise;
going up into an output product (i.e. conjunction) link, pair the result of going up
into the premise for the first subformula with the result of going up into the premise
for the second subformula; going up into one premise of an id link, go down into the
other premise; going down into one conclusion of a Cut link, go up into the other
conclusion; going down into an input division link, functionally apply the result of
going down into its conclusion to the result of going up into the other premise; going
down into the premise for the first subformula of an input product link, take the first
projection of the result of going down into its conclusion; going down into the premise
for the second subformula of an input product link, take the second projection of the
result of going down into its conclusion; going down into an output division link,
return the associated variable; and going down into an input conclusion, return the
associated constant. This extraction procedure is the same for all categorial products
and divisions, and we shall see examples in the context of linguistic application.
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2.4  Lambek calculus

The (associative) Lambek calculus L, a multiplicative fragment of intuitionistic non-
commutative linear logic, has the formulas and sequent calculus of (1.1) and (1.4).
When we read e as ® and both A\B and B/A as A—B, each rule is seen to be an
instance of an LP rule, so every theorem of L is also a theorem of LP when read in
this way, and for a proof structure to be a proof net it is necessary that there be no
vicious circle in the sense before. But this is no longer sufficient since in the absence
of permutation, order must be taken into account.

Roorda (1991) addresses the ordering component in terms of a directional balance
by specifying that in output logical links the subformulas of the conclusion appear
with their left/right ordering switched in the premises. Then proof structures are
required to be planar, and a (planar) proof structure is a proof net iff it satisfies
the long trip condition in the usual manner. Here, however, we will be concerned
with partial commutativity; it is not obvious how to systematically generalise the
notion of planarity to combine commutative and non-commutative systems, and we
consider instead an alternative correctness criterion based on unifiability (Morrill
1996). We will maintain the order switching of output unfolding, but do not require
proof structures to be planar. Rather, our aim is for both planarity (for the non-
commutative connectives), and satisfaction of the long trip condition, to be entailed
by satisfaction of a resolution criterion.

In order to construe L in a manner uniform with subsequent extensions, consider the
interpretation of L formulas that results from combining the algebraic and relational
models. Tnterpretation takes place with respect to a semigroup (L, +) and a set V.
Formulas are interpreted as subsets of L x V x V. Given an interpretation [P] for
each atom P, each category formula A receives an interpretation [A] thus:

[A\B] = {{s,vg,v3}| Vs',v1,{s', 01,02} € [A] = {s'+s,v1,v3) € [B]} (2.11)
[B/A] = {{s,v1,v3}| V', v3,{s',va,v3) € [A] = {s+5',v1,v3) € [B]}
[[AOB]] = {<81-|—82, VU1, Ug>| E'Ug, <81, V1, Ug> c [[A]] & <82, V3, Ug> c [[B]]}

The expansion of proof links will reflect the binary relational quantificational struc-
ture. Each node labelled by a formula will have two incident dashed edges referred
to as its start and its end parameter edges. For an input formula the start comes on
the left and the end comes on the right; for an output formula this is reversed:

start A®* end end A° start (2.12)

These parameter edges are connected to quantifiers in the expanded proof structures
which bind the parameters of formulas regarded as binary predicates. The proof links
of L are given in figures 6 and 7. Just as before, an L signed formula tree is a finite
tree with atomic (signed) leaves each local tree of which is an L logical link. An L
proof frame is a finite sequence of L signed formula trees and an L proof structure is
the result of connecting complementary leaves with axiom links and complementary
roots with Cut links in such a way that each leaf is connected to exactly one other,
each root is connected to at most one other, and there is exactly one unconnected
root of output polarity. An exzpanded proof structure has the annotation of figure 8 on
its conclusions A4:°*,..., 4,*, A® in the proof frame. This corresponds to the meaning
of a sequent A,,..., A, = A with respect to binary relational interpretation: for all
V0., 0n €V, if {wi_1,v;) € [A;], 1<i<n then {vo, v,) € [A].
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Fra. 9. Clash check and occurrence check violations

The complementary atoms linked by axioms in proof nets can be seen as the coun-
terparts of the complementary pairs in a (non-clausal) resolution proof. This gives
rise to the following correctness criterion on parameter paths in proof structures.
First, to each existential quantifier we associate a new free variable, and to each uni-
versal quantifier we associate a Skolem term; note that polarities are the opposite of
what is usual since resolution proofs are refutations, i.e. negate succedent formulas,
whereas proof nets negate antecedent formulas. A Skolem term is a new constant in
the case that the universal quantifier is not dominated by any existential; otherwise
it comprises a new n-place function symbol with arguments the n variables of the n
dominating existentials. Each axiom link requires the start and end parameters of
its two atoms to be unified, and for a proof structure to be correct as a whole, the
unification problem defined by its axiom linkings must be solvable.

We can show that the quantificational structure of a proof net is correct by exhibit-
ing a unifier, but we do not need to insist on such a constructive proof of unifiability:
the criterion only requires than such a unifier exists. Unification fails in two cases,
clash: if we attempt to match a constant to a different constant, or to match a struc-
tured term to a structured term with a different function symbol, or to a constant,
or occurrence: if we attempt to match a variable to a structured term containing this
variable. Let us define a V3-cycle as a cyclic path alternating between universals and
dominating existentials as shown in figure 9 (the directionality, shown explicitly, is
from premise to conclusion); thus we can test correctness of expanded proof structures
by the following purely graph-theoretic resolution criterion:

No two distinct universals are connected by parameter edges (clash check) (2.13)
and there is no ¥3-cycle (occurrence check).

The idea is that the clash check and occurrence check together take the place of
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planarity and acyclicity requirements (in particular the notion of ¥3-cycle is highly
similar to that of AF-cycle in Lecomte and Retoré 1995, though the rational is entirely
different) so that we can show that a proof structure is incorrect by identifying either
a clash check violation or an occurrence check violation.

That the resolution criterion is necessary is immediate if for a proof structure to
be correct, it must be correct as a non-clausal resolution proof of classical logic. The
question arises as to whether the resolution criterion is also sufficient. If it is not
one must do more to show correctness than just assure solvability of the unification
problem defined by a proof structure, but we continue on the assumption that a proof
structure is a proof net iff it satisfies the resolution criterion.

Given Cut-elimination for L proof nets, there is the following algorithm for decid-
ing the validity of an L sequent A,..., A, = A. Construct the proof frame with
conclusions A;°,..., A,*, A° comprising the sequence of signed formula trees given
by the following recursive unfolding:

A°  B* B° A B* A° A*  B° (2.14)
A\B* A\B® B/A* B/A°
A*  B* B°  A°
AeB* AeB°

Then test whether some proof structure can be built be adding axiom links which
complies with the resolution criterion.

In figure 10 we give an expanded proof net for the valid sequent N = S/(N\S),
a lifting theorem. It defines the unification problem {0 = i,1 = 1,7 = 0,2 = 2}
which has solution {0/i}. In figure 11 we give an expanded proof structure for the
invalid lowering sequent S/(N\S) = Nj; there is a clash check violation on the outer
parameter edges. Figure 12 shows a partial proof structure for the invalid sequent
= (S\(N\N))eS, in which the only parameter edge explicitly marked participates in
a VY3-cycle completed by the two directed edges.

A categorial derivation defines a semantic construction, expressed by the typed A-
term extracted as for LP proofs, giving the semantics of the expression derived in
terms of the semantics of its lexical signs. In the lifting example of figure 10, the
semantic traversal yields the term Az(z a) where a is the semantics associated with
the N* conclusion.

A categorial derivation also defines a prosodic construction giving the word order of
the composite expression in terms of its lexical expressions. This is recovered from the
parameter edges reflecting relational interpretation thus: begin travelling up at the
start parameter of the unique output conclusion; this arrives at the start parameter
of the first lexical expression making up the composite; continue travelling up at the
end parameter of this input conclusion; this arrives at the start parameter of the
second lexical expression making up the composite; continue travelling up at the end
parameter of this input conclusion, and so on; the process ends by returning to the
end parameter of the unique output conclusion. In the lifting example of figure 10, the
prosodic traversal begins at the start parameter of the output conclusion and follows
the right outermost parameter edge round to the existential and the left outermost
parameter edge round to the start parameter of N*; travelling up at the end parameter
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Fic. 10. Proof net for lifting

of N* we return down to the end parameter of the output conclusion. In fact we
write proof nets on the page in such a way that in general this traversal visits the
input conclusions in left-to-right order in the case of continuity; but in the case of
discontinuity input conclusions will be revisited.

2.5  Product unit

In the combined models the product unit is interpreted thus:

[T = {{c,v1,02)] v1 = v} (2.15)

In proof structures I nodes, as nullary connectives, are left untouched, not connected
by axiom links; in the expanded proof links for I in figure 13 the start and end pa-
rameters are connected (identified). In general this means that there may be more
than one quantifier on parameter edges in proof frames. When this happens, it is
the outermost quantifier which is relevant to axiom linking regulation; inner quantifi-
cations are inert because their restriction is identity with the outer one. Thus term
labels for unification are supplied to outermost quantifiers on the parameter paths of
a proof frame. Semantically the product unit is interpreted by a singleton {1}.
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2.6 Medial divisor

In the combined models the medial divisor 1. is interpreted:

[Bt.A]l = {{s1+s2,v1,v2)| FoVs, {s,v,0) € [A] = {s14+5+52,v1,v2) € [B]} (2.16)

Proof links for the medial divisor are shown in figure 14. Observe that the expan-
sion of the output link is a systematic reflection of the propositional and relational
quantificational structure of the interpretation, and that in the input link we find the
de Morgan dual. For reasons of uniformity we continue the convention of switching
the order of subformulas in output links, but the medial divisor will have non-planar
proof nets.

In figure 15 we give the expanded proof net (abbreviating N\S to VP) for the medial
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extraction (1.7)

that
John
gave

to+Mary

14. Proof links for the medial divisor and their expansions

on the basis of the following assignments:

—  intersect

. R/(STN)

- ]

: N

- give
((N\8)/PP)/N

PP

(2.17)

The unification problem defined (omitting repetitions) is {0 = 0,i =4,j = 3,j =

kii=1,1=m,2=21=4 k= 3} which has solution {4/i,3/7,3/k,4/l,1/m}.

The edges of successive prosodic traversal are labelled 0, 1, 2, 3, 4: beginning travel-
ling up at the start of the unique output conclusion, five 0-lines lead to the start of the
type for ‘that’, which is the first word; going up at the end of this type, twelve 1-lines
lead to the start of the type for ‘John’, and so on, yielding in order the words ‘gave’
and ‘to Mary’; hence the prosodic form of the sign is that+John+gave+to+Mary.

Arrows mark the directions of semantic traversal; starting with the axiom link
going from the outermost right to the outermost left, successive stages of semantic
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form extraction are as follows:

() (2.15)
(intersect )

(intersect Ax;-)

(intersect Az;(- +))

(intersect Az;(- - 7))

(intersect Az;(- - m j))

(intersect Ax;(give z; m j))

e e

Hence the semantic form of the sign is (intersect Ax;(give x; m j)).
In figure 16 we give the expanded proof net (abbreviating (N\S)/VP to XVP) for
the obligatory extraction (1.10a), assuming (additional) type assignments:

assures - assure (2.19)
- U(N\S)/VPIEN)/N

Mary - m
: N

to+be+reliable -  reliable
: VP

The unification problem defined (omitting repetitions and equations of identi-
cal terms) is {¢ = 5,5 = 6(k),i = {,1 = m,l = 5,k = 4} which has solution
{5/4,5/1,4/k,6(4)/j,1/m}. The sign generated has prosodic form that+Johni-
assurest+Mary+to+be+treliable and the semantic form extracted is (intersect -
Az;(assure m x; reliable j).

A partial proof structure for the ungrammatical (1.10b) is given in figure 17; the
only parameter edge explicitly marked mediates a clash between two universals.

2.7 In situ bindor

In the combined models, the in situ bindor @) is interpreted:

[Q(A, B,CY] = {{s,v2,v3)| Vs1, 83,01, v4, (2.20)
[VSQ, <82, V3, Ug> c [[A]] — <81-|—82-|—83, V1, U4> c [[B]]] —
(s1+s+83,v1,v4) € [C]}

The proof links for the in situ bindor are shown in figure 18. Again, the expansions
are a systematic reflection of the interpretation, and for uniformity orderings of polar
opposites are mirror images.

In figure 19 we give the (expanded) proof net (abbreviating (N\S)/N to TV) for
the in situ binding (1.11a) assuming type assignments (2.21).

bought - buy (2.21)
: ((N\S)/N)/N

someone —  Az3y[(person y) A (z y)]
: Q(Sa Na S)

Fido - f

N
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Fia. 17: Partial proof structure for ‘John assured Mary Bill to be reliable’ via the
medial divisor, with clash check violation

The unification problem defined by the linking is {0 = k,k =m,j = 1,j = 4,i =
3,m = 0,1 = 4} which has solution {0/k,0/m,4/l,4/4,3/i}. The result of semantic
traversal is (someone Ax(buy x 7)) which on substitution of lexical semantics simplifies
to Jy[(person y) A (buy y f )]

The reader may check the proof net constructions showing that the assignment

(2.22) yields the semantics (buy j fj) for (1.11b), and showing (1.14).

himself - Azdy(x yy) (2.22)
Q(N\S, N, N\S)

3 Sorted discontinuity calculus

Based on considerations in Morrill and Solias (1993), Morrill (1994, chs. 4-5; 1995)
presents an (unsorted) discontinuity calculus and Morrill (1995, app.) and Morrill
and Merenciano (1996) a sorted discontinuity calculus. The former has a pure sequent
calculus, but does not fully solve the problems alluded to in our introduction. The
latter has a labelled sequent calculus, and can solve these problems, treating 1. and
() as defined operators. In a labelled sequent calculus a wider class of sequents is
generated by rules for formulas which is then filtered by conditions on labels. However,
it would be even more satisfactory to have a one-stage characterisation in the spirit
of pure sequent calculus.
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Fia. 18. Proof links for the in situ bindor and their expansions

In this section we provide such a pure sequent calculus for sorted discontinuity and
show how the issues raised in our introduction are resolved. We show in the next
section how to give proof nets for the full sorted discontinuity calculus.

In the sorted discontinuity calculus, category formulas fall into two sorts: those
F of sort string, interpreted algebraically as subsets of L (and relationally as binary
relations) , and those F? of sort split string, interpreted algebraically as subsets of L?
(and relationally as quaternary relations). Our definition (1.5) of category formulas
becomes (3.1).

F o ouz= A|FeF | F\F|FIF|I| FoF | FA\F (3.1)
Fr o= FIF

The discontinuous product operator @ and the divisors | (“infix”) and 1 (“extract”)
are interpreted by “residuation” with respect to an interpolation adjunction W of
functionality L2, L — L, defined by (s1,s23)Ws = sj+s+sa, in exactly the same
way that the continuity operators are interpreted by residuation with respect to a
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concatenation adjunction + of functionality L, L — L. In the combined models we
have the following:

[[A‘I/B]] = {<87 02703>| V51,527U17U4,<51,52,U1,U2,U3,U4> € [[A]] — (32)
(s1+s+s2,v1,v4) € [B]}

[[BTA]] — {<517527017027037U4>| <57 02703> € [[A]] —
(s1+s+52,v1,v4) € [B]}

[[AQB]] — {<81—|—8+82,1}1,U4>| 3”27”37<517527017027037U4> € [[A]] &

<57 V2, US> € [[B]]}

We have, then, Bt, A = (BtA)®I°® and Q(B, A, C) = (B1A)|C.

We have already noted that giving sequent rules for categories of the variety BtA
is problematic: a category occurrence BTA in an antecedent would fail to indicate
where one is meant to interpolate. Our analysis is that in the sequent calculus of
L a category occurrence signals two things: a resource, and the location of that
resource with respect to others. This double service can be maintained in view of the
continuity of concatenation, but discontinuity requires a distinction between signaling
a resource, and its locations of action, which may be multiple. In particular, B1A has
two discontinuous components. Our solution is for a split string category formula to
appear twice in a sequent, at its two loci of action. To mark that the two components
are to be taken together as a resource, the occurrences are punctuated as roots, V.

Sequents come in two kinds, those ¥ with sort string succedents, which have string
antecedent configurations (), and those X2 with sort split string succedents, which
have split string antecedent configurations (O2:

Y u= 0= F (3.3)
¥2 0% =VF?

@ A F,O| VF2LO,VF?

0? u= OVF2L,0|0,VF2L,0%*JF2,0

Observe that configurations have balanced occurrences of parenthesising punctuation
v/ and ¥ . These mark the two components of split antecedent categories. In a
sequent with a split succedent category there is a V' in the antecedent marking the
split point, and around which the parenthesising is balanced. The sequent rules are
thus:

a. T(WA)=VA AB)=C . VAT, VA= B " (3.4)
A(T(ALB)) = C t I'= AlB t
b. I'=A4 A(B) = C I'4) =B

L R
A(VBTA,T, ¥BTA) = CT I'(VBTA) = «/—BTAT

c. T(VAB,VA)=C . rVA)=+vA A=25B
I'AeB) = C N I'(A) = AeB

©oR

SThe semantic types are not quite identical, but there is a 1—1 correspondence between elements of D and
elements of Dx{1} (and {1}—D).
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By way of example, we assume the wrapping functor assignment (3.5) for the dis-
continuous idiom ‘gave ... the cold shoulder’.

(gave, the+cold+shoulder)

shun (3.5)
(N\S)TN
Then ‘John gave Mary the cold shoulder’ is derived as follows:
N=N s=s (3.6)
N =N N, N\S = S '
1L

N, YMN\S)TN, N, J[M\S)TN = 8

The medial relativisation (1.7) is treated as follows:

N=N S§=58 (3.7)
—
PP = PP N, N\S=§

N = N N, (N\S)/PP, PP = S

N, ((N\S)/PP)/N, N, PP = §

TR
N, ((N\S)/PP)/N, \/STN, PP = TN Ny

OR
N, ((N\S)/PP)/N, PP = (StN)OI R =R

R
R/((STN)©I), N, ((N\S)/PP)/N, PP = R /

The obligatory extraction (1.10a) receives the sequent derivation (3.8)

N =N N, (N\S)/VP, VP = §

B (3.8)
N, Y((N\S)/VP)TN, N, ¥((N\S)/VP)1N, VP = S ™
VN\S)/VP) TN, VSTN,

TRVSI/VPITN, VP = V57~ |

I=1
N, Y{MN\S)/VP)TN, I, ¥((N\5)/VP)TN, VP = (StN)OI oR
N =N N, (((N\S)/VP)tN)@I, VP = (STN)OI or
N, ((((N\S)/VP)tN)OI)/N, N, VP = (STN)OT n R=R
R/((STN)©I), N, ((((N\S)/VP)tN)©I)/N, N, VP = R &

The ungrammaticality of (1.10b) corresponds to the invalidity of the following:

3.9
I=>N (3:9)
N, Y(N\S)/VP)TN, I, ¥((N\5)/VP)TN, N, VP = § Ih
N =N N, (((N\S)/VP)1N)QI, N, VP = § o
L
N, ((((N\8)/VP)tN)@I)/N, N, N, VP = § /

In situ binding such as the quantification in (1.11a) is derived thus:

(3.10)

N, ((N\S)/N)/N, N, N = §

TR
N, (N\S)/N)/N, VSTV, N = 6N § = 5

L
N, ((N\S)/N)/N, (STN)4S, N = S

Similarly, for the reflexivisation (1.11b):



Syntactic Connectivity 31

(3.11)
((N\S)/N)/N, N, N = N\$ .
(N\S)/N)/N, VTSN, N = JISTN N, N\S = S
N, ((NAS)/N)/N, ((N\S)tN)}(N\S), N = 8
Finally, (1.14) is derived thus:
N =N N, N\S = S (3.12)

1L

N, YMN\$TN, N, [N\STN = S
N, VTN, J5TN, YN = ST S s
N, YN\STN, (S1N)Is, ¥ N\S)TN = s\R
YIS, ($tN)Js, ¥N\S)TN = N\Sm
(STN)IS = ((N\S)tN)L(N\S)

1L

This sequent methodology can be extended straightforwardly to include generalisa-
tions of discontinuity such as those in Morrill and Merenciano (1996).

4 Proof nets for sorted discontinuity calculus

The two incident parameter edges of the binary relational predication of formulas of
sort string are notated in expanded proof nets according to (2.12); the four incident
parameter edges of the quaternary relational predication of formulas of sort split
string are notated in expanded proof nets according to (4.1):

start; endy A* starty end; end; starty A° end, starty (4.1)

The subscripts refer to the first (left) and second (right) string components of a split

string; note that, again, the input and output orderings are mirror-images, which
promotes visual symmetry. The expanded proof links for the discontinuity connectives
are given in figure 20.

Prosodic traversal visits split string conclusions fwice. On the first occasion the
parameter start; of the first component of a split string input conclusion is visited,
and travel continues up at the parameter endy; on the second occasion the parameter
starty of the second component is visited, and travel continues up at ends; the material
visited meanwhile is interpolated between the two components. Thus the result of
prosodic extraction for figure 21 is John+gave+Mary+the+cold+shoulder. The
result of semantic extraction is (shun m j).

Again, the proof net methodology we have illustrated proffers prospects for exten-
sion to partially commutative categorial logics in general.

References

[Abrusci 1995] Abrusci, Michele: 1995, ‘Noncommutative proof nets’, in J.-Y. Girard, Y. Lafont
and L. Regnier (eds.), Advances in Linear Logic, London Mathematical Society Lecture Note
Series 222, Cambridge University Press, Cambridge, 271-296.

[Ajdukiewicz 1935] Ajdukiewicz, Kazimierz: 1935, ‘Die syntaktische Konnexitat’, Studia Philosoph-
ica 1, 1-27. Translated in S. McCall: 1967 (ed.), Polish Logic: 1920-1939, Oxford University
Press, Oxford, 207-231.



32 Syntactic Connectivity

||||||||| \
o « T - - - - - - = AN
Q < //
\ N \
N \ \
\ N
\ N\ N NI
// N\ N NN\
// — N\ NN
. — = = N
= = T ——» bS 9
= « - = 3
e il <
7 7
/
7 V4
/
y 7/
7 %
. J 7/
< 7
% )
N NN
N \
N \
\
N \)
\
AN _ N\
== \un /||||||| _ \.B
= « ———m m =
T =R ) Zainin v
7
\\ /, 4 /
7
y / v
7 7
/ 7 7y
7 7 ,
. o /
q «“_ _ _/
||||||||| -/

- - - - ___— N
. N\
<t
N
N\ .
AN
\ \
N\ N\
N
——— = w
A S —— &
7,
s
s
7
o
E/
N
N
N
N
N /n
s —=—> S
\\\l A
/ /
7
/) /
I
7
L]
. —/
||||||||| _/

Fia. 20. Expanded proof links for the discontinuity connectives



Syntactic Connectivity 33

r- - r—— - - - - === 7
e I I ml
(| | [ |
o . . o
b kN\k\ /)/S) [
(I O\ e |
s
I AN i I
e
Lo Woﬂ/( o
I I D
. 15 re T I
b P [ e B I
o . Ly o Pl
L N L L ol
L EN noy I .
[ NN = L Pl
[ \\ ~ ~ // Lo Pl
(. N \7(/ y - |
L e I |
b (A A o P
: | I \ o | :
lNo\_ — -V - — - — - — — _ (N\S)TN“\— — — Vo — — JNO\_ — — V3 — — _Isol
| |
| |
Lo o ___ Voo — o ________ J
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