
Memoisation of categorial proof nets:parallelism in categorial processing1Glyn MorrillDept. de Llenguatges i Sistemes Inform�aticsUniversitat Polit�ecnica de CatalunyaPau Gargallo, 508028 Barcelonamorrill@lsi.upc.es, http://www-lsi.upc.es/~glyn/21st March 1996
1Thanks to Ph. de Groote, J-M. Merenciano and C. Retor�e for discussion relating to this work.

AbstractWe introduce a method of memoisation of categorial proof nets. Exploiting the planarity ofnon-commutative proof nets, and uni�ability as a correctness criterion, parallelism is simu-lated through construction of a proof net matrix of most general uni�ers for modules, in amanner analogous to the Cocke-Younger-Kasami algorithm for context free grammar.

1Memoisation of categorial proof nets:parallelism in categorial processing1 IntroductionIf the evolutionary tendency of grammatical formalisms could be summed up in one word,that word could well be lexicalism. The lexicon was once considered the locus of all and onlyidiosyncratic information; it may be hard now to �nd any proponents at all of such a view.Rather, one hears of the balance or tradeo� between lexicon and syntax: the tenet that thelexicon should comprise only what is idiosyncratic is, simply, no longer held.The notion that there is a compromise to be struck between lexicon and syntax is in turnrejected in the radical lexicalism of (type logical) categorial grammar (van Benthem 1991,Morrill 1994, Moortgat 1996). According to this view a grammar comprises only a lexicon.The di�erence between syntactic and lexical encoding of grammatical information is typ-i�ed by the contrast between (pure) context free grammar and Lambek categorial grammar.It is highlighted in particular by the proof that the class of string sets generated by contextfree grammars and that of those generated by the associative Lambek calculus are equal(Pentus 1993; the non-associative Lambek calculus also generates exactly the same class, seeBuszkowski 1986).The computational attraction of lexicalised information has the following intuitive ren-dering. Suppose we need to analyse some twenty word sentence; then we do so by accessingthe (fully) lexicalised properties of those twenty words, and compute according to just thatinformation. It makes no di�erence whether the grammar covers constructions ranging overa vocabulary of 200, 2,000, or 20,000 words: all that is relevant is lexically localised to thosetwenty words occurring and if, say, there are no wh-elements, coordinators, or quanti�ers,then the complexities of those constructions are not su�ered in the analysis.In a context free grammar, by contrast, an order of magnitude increase in grammarcoverage is accompanied by an order of magnitude increase in number of rules. And inanalysing a sentence, all rules potentially apply: there is a globalisation of information. (Ofcourse one could devise tests to restrict attention to rules relevant to the words occuring {but that would be precisely to set o� down the path of lexicalisation.)One may see categorial grammar as normalised at the expense of size of lexical categories(rule set size is constant) while one may see context free grammar as normalised at the expenseof rule set size (category size { atomic { is constant). But despite the intuitive allusion above,while polynomial time recognition algorithms exist for context free grammar, no such resulthas been shown for associative Lambek calculus (for the non-associative case see Aarts andTrautwein 1995).The polynomial methods for context free grammar are based on use of charts, tabulari-sation, or memoisation. The purpose of the present article is to establish such methods alsofor categorial grammar.Earlier e�orts in this direction are made in K�onig (1994) and Hepple (1992). These takeas their point of departure Cut-free sequent proof search. It is not necessary to enter intodetails in order to see why this approach encounters a profound problem. A chart, or table, asused for context free grammar is a global data structure on which the progression of all tracksof derivation over a �xed list of premises (words or categories) are recorded in parallel insuch a way that converging routes of analysis do not lead to duplication of computation. But

2categorial sequent calculus does not operate over �xed premises: it is essentially dynamic, withpremises both growing and shrinking in the course of inference. From a sequent perspectivea single global chart of the kind used for context free grammar cannot su�ce. Hence we �nd,for example, recursive emission of \minicharts" in K�onig (1994).In chart methods we seek (simulation of) parallelism. When one identi�es the notion ofparallelism in categorial grammar it is found not in sequent proof but in proof nets. Roorda(1991) develops the notion of proof net for Lambek calculus in a manner corresponding toits original introduction in Girard (1987) for linear logic. If proof nets represent parallelismin categorial grammar it is perhaps in relation to these that one should develop tabularmethods. In fact, Roorda already established that while linear logic proof nets are unordered,categorial proof nets are ordered as a list (or actually, a loop), and that they have a planar(non-crossing) structure. At �rst appearances then categorial proof nets exhibit preciselythe characteristics | order and planarity | on which context free grammar memoisationdepends. The complication that arises concerns correctness of proof nets, but this paper aimsto show that in their generality these appearances are not deceptive and that memoisation ofcategorial proof nets yields a simulation of parallelism in categorial processing.The organisation of the paper is as follows. In section 2 we present the notion of categorialproof net as an analogue of context free parse tree. In section 3 we present in a generic formthe categorial proof net memoisation algorithm. In section 4 we exemplify the non-associativeLambek calculus, and in section 5 the associative Lambek calculus.2 Categorial proof netsConsider the following context free grammar:1 S ! N VP2 N ! DET CN3 VP ! ADV VP4 VP ! VP ADV(1)The following two serial rewriting derivations, although distinct, de�ne the same constructionS out of DET CN VP ADV.a. S ! N VP ! DET CN VP ! DET CN TV Nb. S ! N VP ! N TV N ! DET CN TV N(2)On the other hand, the two serial derivations in (3) provide distinct constructions from ADVVP ADV into VP.a. VP ! ADV VP ! ADV VP ADVb. VP ! VP ADV ! ADV VP ADV(3)These distinctions arise because when we see each rule as an operation mapping from itsdaughter categories to its mother category, the composition of such operations arranged bydistinct serial derivations may or may not be equal. For both the derivations in (2) theconstruction, or mode of composition, is that represented by the following tree (the usualparse tree, inverted).

3(4) DET CN TV N2N 3VP1SFor (3) on the other hand we have the following di�erent constructions.(5) a. ADV VP ADV3VP 4VP b. ADV VP ADV4VP3VPWe see that the parse trees represent what underlies the serial rewriting derivations: a partialordering of the rule applications. In the case of (2), 2 and 3 follow 1, but are not ordered withrespect to each other: those steps may be performed simultaneously. The serial rewritingderivations must choose a total ordering, but the parse trees abstract away from irrelevantstructure and are graphs representing just the partial ordering of steps which correspond toequivalence classes of serial derivations.Consider now categorial grammar. Sequent calculi for the implicational fragments ofthe non-associative Lambek calculus NL (antecedents binary bracketed) and the associativeLambek calculus L (antecedents unbracketed) are as follows.(6) a. A) A id �) A �(A)) BCut�(�)) Bb. �) A �(B)) CnL�([�; AnB])) C [A;�]) BnR�) AnBc. �) A �(B)) C/L�([B=A;�])) C [�; A]) B/R�) B=A(7) a. A) A id �) A �(A)) BCut�(�)) Bb. �) A �(B)) CnL�(�; AnB)) C A;�) BnR�) AnBc. �) A �(B)) C/L�(B=A;�)) C �; A) B/R�) B=ACut-elimination | that every proof has a Cut-free normal form | yields a decision procedurebecause each logical inference rule has one less connective occurrence in its premisses than inits conclusion. However, distinct Cut-free sequent proofs of the same sequent may or may notde�ne the same mode of composition. Consider the following two proofs of S/S, S, SnS) Sin L.

4(8) a. S) S S) S S) S/LS/S, S) S nLS/S, S, SnS) S b. S) S S) S S) SnLS, SnS) S/LS/S, S, SnS) SUnder the usual Curry-Howard interpretation these assign distinct constructions, x: S/S, y: S,z: SnS) (z (x y)): S and (x (z y)): S respectively. But consider now the following (this timein NL):(9) a. CN) CN N) N S) S/L[N/CN, CN]) N nL[[N/CN, CN], NnS]) S b. CN) CN N) N S) SnL[N, NnS]) S/L[[N/CN, CN], NnS]) SBoth of these derivations generate the construction (10).[[x: N/CN, y: CN], z: NnS]) (z (x y)): S(10)And given the sequent [N/CN, CN]) S/(NnS) one may start with a right inference, or a leftinference:(11)a. [[N/CN, CN], NnS]) S/R[N/CN, CN]) S/(NnS) b. CN) CN N) S/(NnS)/L[N/CN, CN]) S/(NnS)Route (11a) reduces to (9) and (11b) is also successful: a total of three derivations yielding(12). [x: N/CN, y: CN]) �z(z (x y)): S/(NnS)(12)Since NL is a restriction of L (regulated according to the brackets), L itself is also subject toall these equivalences. The problem is that some, but not all, inference steps are permutable.To prove (12) we need /L, nL, and /R, but nL must follow /R, hence the three possibilities.Proof nets are to this problem what parse trees are to the corresponding problem in contextfree grammar. They are graph structures representing equivalence classes of sequent proofs:not just normal forms subject to a particular ordering of steps, but structures embodying thepartial ordering on inference steps in equivalence classes of sequential proofs.We consider the presentation of proof nets for Lambek calculus of Roorda (1991). Proofnets are built not over formulas but over the construction trees of formulas: trees with atomsat their leaves, and in which each mother node indicates the combination of its daughtersubformulas by some connective. Thus the parts of a formula are laid out (\unfolded") forpotential simultaneous access, not restricted according to the recursive nesting of connectives.Furthermore, whether items appear in antecedent or succedent positions is not indicated bylocation in a sequent, but by a marking of polarity. Our formulas are signed positive forantecedent occurrences and negative for succedent occurrences, and recursively unfolded asfollows (our polarities are reversed with respect to Roorda: we see proof from the perspectiveof refutation).(13) B+ A�B=A+ A� B+AnB+ A+ B�B=A� B� A+AnB�

5The transmission of polarities can be understood when we see an implication as a disjunctionof its consequent with the negation of its antecedent. The steps given are compilations ofdecomposition accordingly, with unfolding, involution of negation, and De Morgan laws forconjunction or disjunction. The result of unfolding in this way the formulas in a sequent iscalled a proof frame. A proof net is made by connecting pairs of leaves with the same atomsand complementary polarities. The ordering given, which swaps the components of negative(i.e. succedent) occurrences of implications allows restriction to planar (that is, non-crossing)connections.The following, for example, are proof nets for lifting A) B/(AnB) and compositionAnB, BnC) AnC in L.(14) jjjjjA+ jA� jB+AnB+ jjjB�B/(AnB)�A) B/(AnB)(15) jj j j j j jjA� B+ B� C+ C� A+AnB+ BnC+ AnC�AnB, BnC) AnCA linking of all literals is called a proof structure, but not all proof structures correspond toproofs, i.e. they are not all proof nets. Just by considerations of symmetry with respect tolifting we can see that there will be a proof structure for the invalid \lowering": B/(AnB)) A.A long trip condition (Girard 1987) can express the required correctness condition in geometricterms. Here we use methods in which the required constraint is reduced to solvability of auni�cation problem.Roorda (1991) and Moortgat (1992) present unfolding with prosodic labelling as follows.(16) a. +a: B+ a: A�: B=A+ a: A� a+: B+ a new variable: AnB+b. k: A+ +k: B�: B=A� k+: B� k: A+ k new constant: AnB�The succedent (negative) unfoldings introduce (Skolem-like) constants; the antecedent (pos-itive) unfoldings introduce variables. Linking identi�es the labels of linked atoms and thecorrectness condition is that a proof structure is a proof net if and only if the set of termpairs induced by linking are uni�able.

6Consider lifting, for which there is the proof net (17).(17) jjjjj1: A+ ja: A� ja+2: B+2: AnB+ jjj1+2: B�1: B/(AnB)�1: A) 1: B/(AnB)A) B/(AnB)The linking yields the uni�cation problem f1 = a; a+2 = 1+2g which is clearly solved bythe uni�er fa = 1g. For composition we obtain (18).(18) jj j j j j jja: A� a+1: B+ b: B� b+2: C+ 3+(1+2): C� 3: A+1: AnB+ 2: BnC+ 1+2: AnC�1: AnB, 2: BnC) 1+2: AnCAnB, BnC) AnCThis yields the uni�cation problem fa = 3 ; a+1 = b; b+2 = 3+(1+2)g which has the uni�erfa = 3 ; b = 3+1g in the associative case, but not in the non-associative one. For the invalidlowering however we have:(19) jjjjj1: A� j2: A+ j2+c: B+c: AnB� jjj1+c: B+1: B/(AnB)+1: B/(AnB)) 1: AB/(AnB)) AThe uni�cation problem f1 = 2 ; 1+c = 2+cg clearly has no solution because 1 and 2 aredistinct constants. Note incidently that in (19), antecedent and succedent are cycled at themoment of introducing polarities. Such cycles preserve the possibilities of constructing planarproof nets, i.e. the lists of polar formulas should be seen as forming a loop. We shall favoursuccedent-to-the-left to allow early top-down inuence in left-to-right incrementation.The method is attractive because it can be adapted to di�erent calculi by unifying prosodicterms according to the laws, associativity and so forth, of the di�erent algebras of interpre-tation. A partial linking of leaves de�nes a uni�cation problem. If there is no uni�er, noextension of this partial linking will be uni�able either and so the partial linking cannot formpart of a proof net. If there is a uni�er we have a partially constructed proof net, or what iscalled a module: a proof frame with some links made without violating the proof net correct-ness conditions. Our proposal is to tabularise modules connecting a continuous subsegment of

7leaves. For each, most general uni�ers de�ne the constraints on its further extension. Finally,the only elements of the uni�er which are relevant to possible extensions are its assignmentsto variables reappearing outside the continuous subsegment covered; when we are just askingwhether there exists some proof net validating a sequent, the value constraints on variablesall the occurrences of which are within the subsegment do not matter regarding possibleextensions.The tabularisation process will resemble that of Cocke-Younger-Kasami (see Aho andUllman 1972) for context free grammar in Chomsky normal form. Each subsegment is rep-resented by a cell in a triangular matrix. In the CYK algorithm each cell entry is the setof nonterminal categories to which the subsegment belongs. Here, it is the set of uni�ersconstraining possible further extensions of alternative internal linkings.We use the following grammar of planar linking:a. M ! A Ab. M ! A M Ac. M !M M(20)We have only one non-terminal category, M , for continuous linkings; A and A indicate com-plementary terminal literals: ones with the same atom, but opposing polarity.The proof net matrices computed by our algorithm are �lled as shown in (21). The maindiagonal is occupied by the ordered leaf literal assignments �1: L1; : : : ; �n: Ln resulting fromunfolding of the sequent to be analysed. A cell entry T (i; j) (i<j) is the set of constraints (uni-�ers) that di�erent linkings of the subsegment �i: Li; : : : ; �j : Lj can impose. Since linkingsare binary there are only entries for even length subsegments.1 2 3 4 . . . n1 �1: L12 1st �2: L23 X 2nd �3: L34 4th X 3rd �4: L4...6 last X penult. X . . . �n: Ln(21)The algorithm is given in (22). It assumes the relation MGU(�; �0) in which � and �0 are setsof term-term pairs (�0 will actually be a substitution, that is a set of variable-term pairs),and which states that �0 is a most general uni�er solving the uni�cation problem �. Sincewe will deal with term uni�cation, there is a unique most general uni�er when one exists soMGU is a partial function from its �rst parameter to its second. The notation �"i;k indicatesthe restriction of the substitution � according to those variables having occurrences outside�i; : : : ; �k, that is the restriction of � to those variables which have occurrences outside thesubsegment � covers. The comments following \%" indicate the three rules applied at theirrelevant points. The main loop is for �lling in successive rows. Starting at the right of a newrow, (20a) is used to try to construct a module connecting two adjacent literals. The nextloop completes the row from right to left; (20b) may build a module by connecting two literalsseparated by a module; (20c) may do so by combining any two adjacent modules covering a

8subsegment { hence the third loop.for k := 2 to n dobeginT (k�1; k) := f�"k�1;kj�: Lk�1 & �0: Lk are complementary,and MGU(f� = �0g; �)g; % M ! A Afor i := k�3 downto 1 in steps of 2 dobeginT (i; k) := f�"i;kj�: Li & �0: Lk are complementary, �0 2 T (j+1; k�1),and MGU(�0 [f� = �0g; �)g; % M ! A M Afor j := i+1 to k�1 in steps of 2 doT (i; k) := T (i; k) [f�"i;kj �0 2 T (i; j); �00 2 T (j+1; k),and MGU(�0 [�00; �)g; % M !M Mendend.
(22)
In the following two sections we show how this scheme can be applied in the case of thenon-associative and associative calculi.3 Non-associative Lambek calculusOur �rst example is the sequent S, SnS) (S/S)n((N/S)nN). In the unfolding in (23) thesuccedent formula appears on the left. This is possible because of the cyclic invariance ofproof nets. It allows a top-down inuence to be brought to bear early in an incremental(left-to-right) analysis. Note that in the case of a sequent with more than two premisses inwhich a bracketing structure is not assumed, the succedent label would be left as a variable.d+(c+(a+b)): N� d+e: N+ e: S� c+f : S+ f : S� a: S+ g: S� g+b: S+d: N/S+c+(a+b): (N/S)nN� c: S/S+a+b: (S/S)n((N/S)nN)� b: SnS+S, SnS) (S/S)n((N/S)nN)(23)The completed matrix is as follows.1 2 3 4 5 6 7 81 d+(c+(a+b)): N�2 f[e = c+(a+b)]g d+e: N+3 X fg e: S�4 f[f = a+b]g X f[e = c+f]g c+f : S+5 X fg X fg f : S�6 fg X f[e = c+a]g X f[f = a]g a: S+7 X fg X f[g = c+a]g X f[g = a]g g: S�8 f[]g X f[e = (c+a)+b;e = c+(a+b)]g X ff = a+bg X fg g+b: S+(24)
We will not comment explicitly on every step in the construction of proof net matrices, butwe will mention some which illustrate signi�cant aspects of the algorithm.

9In �lling T (3; 6) the substitutions of T (3; 4) and T (5; 6) are combined. The uni�cationproblem presented is fe = c+f; f = ag and this is solved with MGU [e = c+a; f = a]. Thisuni�er is then restricted to just e, because f has no occurrence outside the literal sequence�3: L3; : : : ; �6: L6.Likewise, T (1; 4) is obtained by solving the uni�cation problem fe = c+(a+b); e = c+fg.The MGU [e = c+(a+b); f = a+b] is restricted to f because e does not appear beyond�1; : : : ; �4.Similarly, when T (4; 7) is �lled the uni�er [g = c+f] of �4 and �7 is combined with thesubstitution [f = a] of T (5; 6). The MGU [g = c+a; f = a] is then restricted to g.T (5; 8) is �lled by combining the uni�er [f = g+b] of �5 and �8 with [g = a] in T (6; 7)and restricting to f .The cell T (3; 8) can be occupied in one way by combining the uni�er [e = g+b] of �3and �8 with [g = c+a] in T (4; 7). The result of this, restricted to e, is f[e = (c+a)+b]g.However the cell is also occupied by the result of combining T (3; 4) and T (5; 8). This yieldsthe distinct uni�er f[e = c+(a+b)]g, corresponding to that fact that it is possible to constructtwo distinct modules connecting L3; : : : ; L8, both of which are legitimate proof nets underconstruction. Were they to be completed, these proof nets would represent distinct modes ofcomposition.In �lling T (1; 8) one may combine the uni�er in T (1; 2) with the second of those in T (3; 8):they are the same and, of course, after restriction yield the empty substitution. But onemay also combine the identical contents of T (1; 4) and T (5; 8), yielding again the emptysubstitution after restriction. We see then that only one of the modules for T (3; 8) actuallygave rise to a proof net, and only one mode of composition of the sequent exists in NL. Thatthe empty substitution was found twice in T (1; 8) originates in the fact that the grammar ofplanar linking is not unambiguous: MMM may be equivalently analysed to the left or to theright by (20c) because of the associativity of uni�cation.Consider the sequent (25) in relation to NL.R/(S/N), N) R/((NnS)/N)(25)The partial unfolding is as follows.(26) c: (NnS)/N+ (a+b)+c: R� a+f : R+ f : S/N� b: N+a+b: R/((NnS)/N)� a: R/(S/N)+R/(S/N), N) R/((NnS)/N)It can already be seen that the connection of the two complementary R literals will fail,because their terms cannot be uni�ed (in the absence of associativity). Thus (25) is shownnot to be a theorem of NL.4 Associative Lambek calculusIn the case of L the uni�cation test for proof nets is for uni�cation under associativity.This presents a problem for our method because terms do not have unique most generaluni�ers under associativity; for example, a+b = c+d+e has MGUs [a = c+d; b = e] and[a = c; b = d+e]. Rather than try to work with labelling which lacks most general uni�ers,we conjecture here a form of associativity-free uni�cation check for L.

10Labels for L will comprise two terms, representing the starting and ending positions ofthe sequence covered. We write i { j: A; thus:(27) 0 { n: A� 0 { 1: A1+ : : : n�1 { n: An+A1; : : : ; An) AIn the unfolding, variables and Skolem-like terms are introduced according to polarity; listsof zero or more variables (represented v) are transmitted in the course of unfolding and usedto construct dependent names.(28) a. i { k: B+;v;k j { k: A�;v;ki { j: B=A+;v i { j: A�;v;i i { k: B+;v;ij { k: AnB+;vb. j { k(v): A+;v i { k(v): B�;vi { j: B=A�;v i(v) { k: B�;v i(v) { j: A+;vj { k: AnB�;vIn (28a) the parameter (k or i) introduced reading up the page is a new variable; in (28b) itis a Skolem term with a new function letter.First, we consider again the sequent S, SnS) (S/S)n((N/S)nN). Its unfolding in L is thefollowing.4 { 2: N�;i 4 { i: N+ ;i 3 { i: S� ;i 3 { j: S+ ;j 0 { j: S�;i 0 { 1: S+ k { 1: S�;k k { 2: S+ ;k4 { 3: N/S+3 { 2: (N/S)nN� 3 { 0: S/S+0 { 2: (S/S)n((N/S)nN)� 1 { 2: SnS+S, SnS) (S/S)n((N/S)nN)(29)The proof net matrix is (30).1 2 3 4 5 6 7 81 4 { 2: N�2 f[i = 2]g 4 { i: N+3 X fg 3 { i: S�4 f[j = 2]g X f[i = j]g 3 { j: S+5 X fg X fg 0 { j: S�6 fg X f[i = 1]g X f[j = 1]g 0 { 1: S+7 X fg X f[k = 3]g X f[k = 0]g k { 1: S�8 f[]g X f[i = 2]g X f[j = 2]g X fg k { 2: S+(30)
When T (1; 4) is �lled on the basis of T (1; 2) and T (3; 4), the uni�er [i = 2; j = 2] isrestricted to just j. Similarly, when T (3; 6) is �lled on the basis of T (3; 4) and T (5; 6), theuni�er [i = 1; j = 1] is restricted to just i. T (4; 7) is �lled on the basis of L4 and L7,and T (5; 6), and the j-constraint forgotten. Likewise, when T (5; 8) is �lled on the basisof L5 and L8, and T (6; 7), the k-constraint is forgotten. One member of T (3; 8) is theuni�er [k = 3; i = 2], restricted to i, obtained from L3 and L8, and T (4; 7). When wecombine T (3; 4) and T (5; 8) we get the uni�er [i = 2; j = 2] which, restricted to i, is also[i = 2]. These sources correspond to di�erent modules linking L3; : : : ; L8 (correspondingto di�erent modes of semantic composition), which nevertheless impose exactly the same

11constraints on the remaining possible linkings of their context. On the other hand, whenT (1; 8) is �lled, through T (1; 2) and T (3; 8), or through T (1; 4) and T (5; 8), the alternativesarise through the non-semantically signi�cant ambiguity of the grammar's analysis of MMM(over L1�L2; L3�L4; L5�L8. Just as in the CYK recognition algorithm for CFG, alternativeswhich may or may not be semantically relevant are compacted through the unioning intocell entries of the external constraints imposed, not the full internal histories. Also just asfor CYK, these internal histories can be recorded in a recoverable fashion by marking eachcategory (in out case, uni�er) with a set of pointers to its immediate generators.Second, we consider again the sequent R/(S/N), N) R/((NnS)/N). The unfolding in Lis (31).j { 2: N�;i;j j { i: S+ ;i;j 3 { i: N�;i 0 { 3: R� 0 { k: R+;k k { 4(k): N+;k 1 { 4(k): S�;k 1 { 2: N+2 { i: NnS+ ;i2 { 3: (NnS)/N+0 { 2: R/((NnS)/N)� 1 { k: S/N�;k0 { 1: R/(S/N)+R/(S/N), N) R/((NnS)/N)(31)In the matrix (32), T (2; 7) is �lled from L2 and L7, and T (3; 6); the uni�er [k = 3; i =4(3); j = 1] is restricted to j.1 2 3 4 5 6 7 81 j { 2: N�2 fg j { i: S+3 X fg 3 { i: N�4 fg X fg 0 { 3: R�5 X fg X f[k = 3]g 0 { k: R+6 fg X fk = 3;i = 4(3)g X fg k { 4(k): N+7 X f[j = 1]g X fg X fg 1 { 4(k): S�8 f[]g X fg X fg X fg 1 { 2: N+(32)
Thus the sequent is shown to be valid in L.5 ConclusionIndependently of the details of labelled unfolding, the content of the present proposal shouldbe clear enough. It is to use uni�ability tests to check the correctness of categorial proof nets,and to memoise categorial deductions by tabularising the MGUs for modules constitutingpartial proof nets. We conclude with consideration of some matters and possibilities thisraises.One question is whether the current algorithm for L could be shown to determine L-validity in polynomial time. Of course L may simply not be polynomially decidable. Ourconcern here has been with the introduction of categorial proof net tabularisation as a method,rather than a means to answer a speci�c open problem; nevertheless, if L-validity can bedecided in polynomial time, it presumably must be through a tabularisation of modules suchas that here.We have considered the Lambek calculi, but these pure systems su�er the same order ofinadequacy as CFG itself regarding natural language grammar. Typically, natural grammar

12exercises crossed dependencies whereas these formalisms allow just nested dependencies. Acentral question then is how the approach might be extended to accommodate generalisationsof Lambek calculi, particularly those allowing partial commutativity: can some approximationto planarity be preserved? A list of n literals has only n22 continuous sublists, but a bag of nliterals has 2n subbags, so tabularisation within a space assuming free commutativity seemsimpracticable.The algorithm given works on sequents, but in grammar one works with potentially am-biguous vocabulary. If one factors out sequent validation from lexical insertion, a string ofn words each, say, ambiguous between two lexical categories demands solution of 2n sequentvalidation subproblems. Lexical insertion and lexical ambiguity therefore must be accommo-dated in the tabularisation process. One also requires integration of semantic composition insuch a way that readings are extractable from proof net matrices.Finally, we suggest tentatively that proof net matrices may generate some wider prospectsfor categorial grammar. In the area of robust parsing one is interested in obtaining partialinformation from analyses even if a grammar is inadequate, or an expression ill-formed. Aproof net matrix, though it may fail to include a proof net, includes all the modules, i.e.partial analyses, that the grammar is able to construct and is, in this initial sense, robust.And in the area of underspeci�cation one is interested in reasoning without resolution of allambiguity. Again, a proof net matrix represents di�erent readings without enumerating them,and may thus provide a level of representation suited to reasoning with uncertainty.ReferencesAarts, E. and K. Trautwein: 1995, `Non-associative Lambek categorial grammar in poly-nomial time', Mathematical Logic Quarterly 41, 476{484.Aho, A. and J. Ullman: 1972, The Theory of Parsing, Translation, and Compiling, Vol-ume 1 Parsing, Prentice-Hall New Jersey.van Benthem, J.: 1991, Language in Action: Categories, Lambdas and Dynamic Logic,Studies in Logic and the Foundations of Mathematics Volume 130, North-Holland,Amsterdam.Buszkowski, W.: 1986, `Generative capacity of non-associative Lambek Calculus', Bull.Acad. Pol. Sci. (Math.), 507{516.Girard, J-Y.: 1987, `Linear Logic', Theoretical Computer Science 50, 1{102.Hepple, M.: 1992, `Chart parsing Lambek grammars: modal extensions and incremental-ity', Proceedings of COLING-92.K�onig, E.: 1994, `A hypothetical reasoning algorithm for linguistic analysis', Journal ofLogic and Computation 4, 1{19.Moortgat, M.: 1992, `Labelled Deductive Systems for categorial theorem proving', OTSWorking Paper OTS{WP{CL{92{003, Rijksuniversiteit Utrecht, also in Proceedingsof the Eighth Amsterdam Colloquium, Institute for Language, Logic and Information,Universiteit van Amsterdam.Moortgat, M.: 1996, `Categorial type logics', in J. van Benthem and A. ter Meulen (eds.)Handbook of Logic and Language, Elsevier, to appear.Morrill, G.: 1994, Type Logical Grammar: Categorial Logic of Signs, Kluwer AcademicPublishers, Dordrecht.Pentus, M.: 1993, `Lambek grammars are context free', Proceedings of the Eighth AnnualIEEE Symposium on Logic in Computer Science, Montreal.

13Roorda, Dirk: 1991, Resource Logics: proof-theoretical investigations, Ph.D. dissertation,Universiteit van Amsterdam.

