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Abstract

The search for a full treatment of wrapping in type logical gram-
mar (TLG) has been a task of long-standing. In this paper we present
the (nondeterministic generalized) discontinuous Lambek calculus DL,
which we believe constitutes a general and natural extension of the
Lambek calculus. Like the Lambek calculus it is a sequence logic with-
out structural rules. Although there is only space to illustrate some of
them here, there are linguistic applications to medial extraction, dis-
continuous idioms, parentheticals, gapping, complement alternation,
particle shift, VP ellipsis, reflexivization, quantification, pied-piping,
appositive relativisation, comparative subdeletion and cross-serial de-
pendencies.

‘Wrapping’ was introduced in Yngve (1960, p.448)[18]. Here we develop
the wrapping approach to discontinuity, ‘syntax-semantics mismatch’, in
TLG. As basic TLG we define L, by which we mean one of the slightly
differing varieties of the systems of Lambek (1958, 1988)[4][3].

(1) Definition (basic prosodic algebra). A basic prosodic algebra is an
algebra (L,+,0) of arity (2,0) which is a free monoid. Le. L is a set,
0 € L, and + is a binary operation on L such that for all sq, s9, 83,5 €
L

)
$1 -|-(52 -|-53) = (51 +32)+S3 associativity
04+s= s =s40 identity

Furthermore, up to associativity every element of L has a unique fac-

torization into primes (freeness).!

*Work partially funded by the DGICYT project TIN2005-08832-C03-03
(MOISES-BAR). Thanks to the audience at King’s College, London, September
2006. Email {morrill, fadda}@Isi.upc.edu (Universitat Politécnica de Catalunya),
Oriol. Valentin@upf.edu (Universitat Pompeu Fabra), http: //www-Isi.upc.edu/ morrill/.

!Factors of an element s are elements s; ,...,8n such that s = s14+ -+ +s,; a prime is
an element which has no factors other than itself and 0.



(2) Definition (types of L). The set F of types of L is defined on the
basis of a set P of primitive basic types as follows:

Fu=P | FeF | F\F| F/F

(3) Definition (prosodic interpretation of L). A prosodic interpretation
of L is a function [ -] mapping each type A € F into a subset of L

such that:
[A\C] = {s2| Vs1 € [A],s1+s2 € [C]}
[C/B] = {si1|Vsz €[B],s1+s2 € [C]}
H:A.B]] = {81+82| 81 € H:A]] & S2 € H:B]]}

Observe that (\, e, /; C) constitutes a residuated triple, i.e.
BCA\CifAeBCCif ACC/B

(4) Definition (configurations and sequents of L). The set O of configura-
tions of L is defined as follows, where A is the (metalinguistic) empty

string:
Ou=A|F,O0O

The set ¥ of sequents of L is defined as follows:
Yu=0=F

(5) Definition (prosodic interpretation of configurations and validity of
sequents in L). We extend the interpretation of types to include con-
figurations as follows:

[A]
[A,1]

{0}
{s1+s2| s1 € [A] & s2 € [I'T}

A sequent I' = A is valid iff [I'] C [A] in every interpretation.
The sequent calculus for L is defined in figure 1.

(6) Definition (semantic types). The set T of semantic types is defined
on the basis of a set ¢ of primitive semantic types by:

Tu=08|T&T|T—>T

(7) Definition (semantic frame). A semantic frame is a T-indexed family
of sets {D;},¢7 such that:

Drwr, = Ds xD,,
D,
Dyisry, = DET

T2



r=s A A(A) =B

1d Cut
A=A Al = B
r=A AC)=D AT=C '=B AC)=D I''B=C
\L  —\R L
A(T,A\C)=> D = A\C A(C/B,T)= D s C/B
A(A,B)=D r=s A4 A=1B
ol oR
A(AeB) = D I''A = AeB

Figure 1: The sequent calculus for L, where A(T') indicates a configuration
A with a distinguished subconfiguration T'.

(8) Definition (semantic terms). The sets @, of semantic terms of type
7 for each type 7 are defined on the basis of a set C of constants of
type 7 and an enumerably infinite set V; of variables of type 7 for each
type 7 as follows:?

¢, = Cr | Ve | (Prs, @) | mPrgrt | m2Prigr
G n= AV, D
B0 = (B, P)

(9) Definition (semantic type map for L). The semantic type map for L
is the following homomorphism T from syntactic types F to semantic

types T
T(AeB) = T(A)&T(B)
T(A\C) = T(A)—>T1(0)
T(C/B) = 1T(B)—1T(C)

Categorial semantics, Curry-Howard type-logical semantics, works because
under such a type map categorial derivations are homomorphically sent to in-
tuitionistic proofs, i.e. pure terms of the typed lambda calculus. These com-
pose lexical semantics expressed as terms of higher-order logic into meanings
in higher-order logic of projected expressions.

The first type-logical formulation of discontinuity, i.e. with an interpre-
tation of types and with a sequent calculus, appeared in Moortgat (1988)[5].
Moortgat defined discontinuous types as follows (we modify Moortgat’s no-
tations):

(10) [AlvC] = {s]Vsi+s: € [A], s1ts+s2 € [C]}
[C13B] = {s|3s1,82,8=s1+52,Vs € [B],s1+s+s2 € [C]}

*We allow ourselves to abbreviate ((¢ ¥) x) as (¢ ¥ x).
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The following sequent rules were given:
I'=A AC)=D I''B,A=C

v L ERL
A(T(AlvC))=D A= C13B

Thus e.g. medial extraction, not otherwise derivable in the Lambek calculus,
is obtained from a relative pronoun type R/(Sf3N). And S(neg)|yS(pos)
would be the type of a freely floating negation particle, if there really were
such an element. However, the other sequent rules cannot be formulated, so
the logic is incomplete.

Moortgat (1991)[6]® defined a three-place in-situ binder type-constructor
@ for e.g. quantifier phrases, Q(S, N, S), and subject-oriented reflexives,
Q(N\S, N, N\S). The left sequent rule is:

I'(A)=B A(C)=D

(12) A(I'(Q(B,A,C))) =D

However the best that came be managed on the right is:
= A
QR
I'= Q(B,A,B)
This is insufficient to derive e.g. Q(S, N, S) = Q(N\S, N, N\S) (that a

quantifier phrase can occur in a verb phrase conjunct, H. Hendriks, p.c.)
so the logic is incomplete again. Moortgat indicated that something like
Q(B, A,C) might be decomposed (B1A)]C, but he did not have a calculus
ensuring that the two points of discontinuity would be the same.
Versmissen (1991)[17] observed that we want in some way to mark points
of discontinuity. Solias (1992)[16] and Morrill and Solias (1993)[13] had tu-
pling to do so and had wrapping as a derived operation: sWt =4 m1s+t+mas.
But then projection/wrapping is undefined on prosodic objects built by con-
catenation (and on primes) and there is no control for when this arises. Thus
Morrill (1994, ch. 4; 1995)[14][7] took wrapping to be primitive (and ever-
where defined), and so did not require such ‘tupling’ to be projective, but
only to satisfy the ‘split-wrap’ law of interaction: (sy, s3)Wsy = s1+s2+S53.

(13)

*Moortgat (1991) also proposed a substring product:

(1) H:A ® B]] = {51-|-52-|-33| s1+s3 € |[A]] & so € [B]]}

T, To= A A=B
(ii) OR
I',A T, = AGOB

But again a left rule cannot be given.




In both cases however, the represention of discontinuous expressions as tu-
ples or something like them in an (unsorted) algebra introduces (infinitely
many) prosodic objects in which points of discontinuity, because embedded
under concatenation, can never wrap, e.g. s1+(sz, S3), so we are positing
much useless junk.

This is remedied by the sorting of Morrill and Merenciano (1996)[12]
which restricts points of discontinuity to be only ever nonembedded (i.e.
principle): external to concatenation, and so always potentially useful to
undergo wrap. But in the generalized case (i.e. with no upper bound on the
number of points of discontinuity), the infinite number of arities of tupling
would require both pairing and the empty tuple for list-construction. Here
we reduce the machinary to a single operator of arity zero (i.e. a constant)
and still get the generalized case. The key to our treatment of discontinuity
is the notion of a “separator” (Morrill 2002)[10]:

(14) Definition (graded prosodic algebra). A graded prosodic algebra is a
free algebra (L,+,0, 1) of arity (2,0, 0) such that (L, +,0) is a monoid
and 1 is a prime.

The constant 1 is called the separator.

(15) Definition (sorts and sort domains). The sorts of a graded prosodic
algebra (L, +,0,1) are the naturals 0,1,.... The sort of an element s
is defined by the morphism of monoides ¢ to the additive monoid of
naturals thus:

1

0 for a prime a # 1
o(s1) + o(s2)

(1)
a'(a)
o(s1+s2)

The sort domains L; of sort 7 are defined as follows:

L; = {slo(s)=1},i>0

L.e. the sort of a prosodic element is simply the number of separators it
contains; we require the separator 1 to be a prime in order that the induction
be well-defined. The fact that there is a homomorphism from a graded
prosodic algebra to the additive monoid of naturals means that a graded
prosodic algebra is an instance of what is known as a graded monoid.
Morrill (1997)[8] introduced sequent calculus for (sorted) discontinuity
in which a discontinuous type has multiple occurrences at the loci of its
segments, punctuated by surds. This is called hypersequent calculus in the
appendix of Morrill (2003)[11], though in a usage of the term distinct from



that of A. Avron. The spirit is to maintain everything in ‘evaluated/spelt-
out’ linearized form. The surd notation is meant to be suggestive of the
(commutative) arithmetic law VA -+v/A = A (for us, non-commutatively,

VAe{1}ev/A = A).

(16) Definition (discontinuous prosodic structure). The discontinuous pro-
sodic structure defined by a graded prosodic algebra (L,+,0,1) is the
w-sorted structure (Lo, Ly, Ly, ...,+,0,1; x) of arity (2,0,0;2) such

that:

+ : Lix Lj— Litj as in the graded prosodic algebra
X :+ Liy1 x Lj x Liy; is the smallest relation such that
Vs1+14ss € Lig1,s2 € Lj, x(s1+14ss, s2, s1+s2+53)

Le. the third argument of X is the result of replacing by the second argument
any separator in the first argument. The system DL of (nondeterministic
generalized) discontinuous Lambek calculus is as follows.

(17) Definition (sorted types of DL). The sets F; of types of sort i of DL
for each sort 7 are defined by mutual recursion as follows on the basis
of sets P; of primitive types of sort 7 for each sort 7.4

Fi = P
Fiyj = FioF;
Fi u= F\Fitj
Fi = FiyjlF;
Fi = "Fin
Fip1 = YF
Fivj n= FipnOF;
Fi u= FipdFigj
Fipr = Fitij1F;

(18) Definition (prosodic interpretation of DL types). A prosodic inter-
pretation of DL types is a function [ -] mapping each type A; € F,;

*Consequently there is the following prosodic sort map S sending DL types to their

sorts:

S(AeB) = S(A)+S(B)
S(A\C) = S(C)-S(A)
S(c/B) = S(C)-S(B)
S("A) = S(4)-1
S(YB) = S(B)+1
S(A®B) = S(A)+8(B)—1
S(ALO) = 14 5(C)—5(4)
S(CtB) = 1+45(C) - S(B)



into a subset of L; such that:

[A\C] = {s2|Vs1 € [A],s1+s2 € [C]}
[C/B] = {si|Vs2 €[B],s1+s2 € [C]}
[[A.B]] = {81+32| s1 € H:A]] & So € [[B]]}

[VB] = {s|Vs' x(s50,5)= s"E [B]}

["A] = {s'| 3s € [A], x(s,0,s)}
[ALC] = {s2] Vs1 € [4], x(s1,s2,5) = s € [C]}
[CtB] = {s1|Vs2 € [B], x(s1,s2,5) = s € [[C]]}
[A®B] = {s| 3s1 €[A], s2 € [B], x(s1,52,9)}

Observe that modulo sorting, (},®,1;C), like(\,e,/;C), is a residuated
triple:
B C AlICif AeBC Cif AC CtB
And (V,%;C) is a residuated pair:
ACVBif"ACRB
(19) Definition (figures, configurations and sequents of DL). In DL, the
figures Q; of sort ¢ for each sort ¢ are defined as follows:
Q A for S(A) =0
Qs VA, -, WA for S(A) >0

By the vectorial notation A we mean the figure of sorted type A, i.e.
Aif S(A)=0and VA, [, VA, ..., “"OVA ], “VAif S(A) > 0.
The configurations O; of sort ¢ for each sort ¢ are defined unambigu-
ously by mutual recursion as follows:

O = A
O; = A0; for S(A) =0
0i+1 = [], Oi
Ogsia;, 5= VA, Ojoy o Ojsiayrs " NVA O,y for S(A) >0

The sequents ¥; of sort 7 for each sort 7 are defined as follows:
¥, == 0= Q;

Observe that the segments of discontinuous types are well-nested in config-
urations, i.e. there are no crossing discontinuities.

(20) Definition (prosodic interpretation of configurations and validity of
sequents in DL). We extend the interpretation of types to include
configurations, as follows:

[Al = {0}
[[A,]“]] = {31-|-32| 81 € H:A]] & S2 € [[T]]}
(0,17 = {1+sls €]}

[VATo,....Tsiaymr, “WATs] = {sottot - +tsiay—1+ssa)+tsial
so+14- - +l+sga) € [A]
& t; € [15],0< 5 < S(A)}



A sequent I' = X is walid iff in every interpretation, [I'] C [X].
The (hyper)sequent calculus for DL is defined in figure 2.

(21) Definition (semantic type map for DL). The semantic type map T
for DL is as follows:

T(AeB) = T(A)&T(B)
T(A\C) = T(A)— T(C)
17(C/B) = T(B)—1(C)
T(MA) = T(A)

T(YB) = T(B)

T(A®B) = T(A)&T(B)
T(ALO) = T(A) = T(C)
T(C1B) = T(B)— T(C)

The semantic type map sends derivations into intuitionistic proofs so the
usual Curry-Howard categorial type-logical semantics comes for free for DL.

We can present type-logical calculi in a labelled deductive system (LDS)
of natural deduction in which prosodic terms o and semantic terms ¢ label
types A: a—¢:A. The natural deduction LDS for DL is given in figure 3;
the vectorial notation @ means ag+1+ - - - +1+a, where n is the sort of a.

We turn now to linguistic applications. Parentheticals are adsentential
modifiers such as fortunately which, to a very rough first approximation,
can appear anywhere in the sentence they modify:

(22) a. Fortunately, John has perseverence.
b. John, fortunately, has perseverence.
c. John has, fortunately, perseverence.

d. John has perseverence, fortunately.

Such a distribution is captured by the following type assignment, cf. Morrill
and Merenciano (1996)[12].

(23) fortunately — fortunately
= VSIS

For example, (22c) is derived in figure 4.5
Particle shift is the alternation in the order of a particle verb’s object
and its particle:®

30f course, parentheticals cannot really occur anywhere, e.g. *The, fortunately, man
left. In the end there will have to be some kinds of prosodic domains which they cannot
penetrate.

6We have no explanation of why the pronoun must be stressed in John called up HER.



oy r=14 A(2)$§C
A=2 A(T) = B "

r=7 A(C’)ﬁﬁL Z),F=>C)R =B A(@):ﬁL F,§’=>C}'R
ATAC) =D ! F#m\ AC/B,T) =D / Fﬁm/

A(X,?i)éﬁ =4 I, = B

—— oL oR
A(m)#ﬁ ) 1“1,1“2:>m

A(B)=TD v AA =B AspA= B
A(BIiA) = D A= T R
AAWN =T o AA|swmA) => D A=A
AL ——— "R
ACCA) = D AliA = 4
r=4 AT =D Ar=>7C ... Algal=>7T
L R
A(T|;AIC) = D ¢ I = A0 '
r=83 AC) =7 MB=>7T - JIlsgoB=>7T
L R
A(CFB|T) = D f I = 7B f
A(?ﬂlﬁ) =T A(X|S(A)?) =D o= A I, =8
A(m) = ﬁ ok T |iF2 = m o

Figure 2: The hypersequent calculus for DL, where A(T') means that in some
distinguished positions in A, the segments of I' appear in the given order,
and A|;I" is the result of replacing the i-th separator in A by T'.



a—a: Al . . b—y:Bi

a—¢:A y—x:A\C p aty—x:C _ v—x:C/B p—y¢:B p yta—y:C

g . -
0/+7_(X d))c —Y_)\_Z-X;A\C \ 7+ﬁ—(X ﬂ)c Y—AyX:C/B
a—z: A b—y: B’

X ARB Bath) (e gy 00 AUl

L q Ie
B ayp—(p,0):AeB

8(7)—w(mx, max):D

pov'B o BhO-wB - Blsw0viB
8]:0—:B B—:VB
a—z Al a—z Al .
L o ) _ apiA
y=x:"A §(a)i0)—w(z):D dalsa)0)—w(z):D . 1%
i B oz|i0—¢:AA
8(v)—w(x):D
@z A @A
_$A y—xA : :
2mA TX iCE @ly—x:C @lsyr—x:C
aliy=(x ¢):C Y Azy:ALC
b—y:Bi b—y:Bi
—x:CtB B—¢:B : '
Y=x:C1B  B—y¢ - 71b=x:C 7|5(0)5_X;01Ti
7|iﬁ—(X ﬁ)c ,Y_)‘_Z,X:CTB
@A b—y:Bi T —a:A b—y:Bi
7—X:A®B §(@1b)—w(z,y):D 5(?|5(c)b)—w(.1:,y):DE )
@E

3(y)—w(mx, m2x):D

Figure 3: Natural deduction LDS for DL, where «/;5 is the result of replac-
ing the i-th separator in « by .
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has perseverence

John has—have:(N\S)/N perseverence—perseverence:N
John—jN has-tperseverence—(have perseverence):N\S B
John+has+perseverence —(have perseverence j):S v A fortunately
John-+thas+1+perseverence —(have perseverence j):¥S fortunately —fortunatelyV S|S

El
John+has+fortunately +perseverence—(fortunately (have perseverence j)):S

Figure 4: Derivation of parentesisization.

called up Mary

called+14up+1—phone:¥(N\S)tN Mary—m:N

Er
called+1+4+up+Mary—(phone m):¥(N\S)
EV

called+up+Mary—(phone m):N\S

called up Mary
called+1+4+up+1—phone:¥(N\S)tN Mary—m:N
Er
called+Mary+up+1—(phone m):Y(N\S)
EV

called+Mary+up—(phone m):N\S

Figure 5: Derivations of particle shift.

(24) a. John called up Mary.
b. John called Mary up.

The alternation is generated by the following single lexical assignment, cf.

Morrill (2002)[10]:

(25) called+14up+1 — phone
= Y(N\S)TN

The derivations of (24a, b) are given in figure 5.

Chomsky (1957)[1] argued informally that even if natural languages were
context-free, context-free grammar could not give a scientifically satisfactory
characterisation of English. Huybregts (1985)[2] and Shieber (1985)[15]
formally proved that at least one natural language, Swiss-German, is not
context-free. The relevant feature is cross-serial dependency accompanied by
morphological matching between verbs and their dependants. Dutch subor-

11



boeken lezen

boeken—books:N 1+lezen—read:N\(N\Sinf) kunnen
R\
boeken+1+lezen—(read books):N\Sinf 1+kunnen—be-able:(N\Sinf) [(N\Sinf) wil
El
boeken+1+kunnen+lezen—(be-able (read books)):N\Sinf wil—want:(N\Sinf) [ (N\S)

boeken+wilt+kunnen+lezen—(want (be-able (read books))):N\Sinf

Figure 6: Derivation of verb raising.

dinate clauses exhibit the same semantic cross-serial dependencies; consider
for example the verb raising:

(26) ... dat Jan boeken wil  kunnen lezen
that Jan books wants be-able read
that Jan wants to be able to read books

The idea of our analysis (Morrill 2000)[9] is to mark the left edge of the infini-
tival subordinate clause verb cluster with a separator, and to have successive
verb raising triggers infixing at this point and inserting another separator
to their own left (if they are infinitive) or closing off the discontinuity (if
they are finite). Let there be verb type assigments as follows, where Sinf is
of sort 1:

(27) kan —  be-able
= (N\Sinf)}(N\S)
l4+kunnen — be-able
= (N\Sinf)}(N\Sinf)
las — read
- N\M9)
1+lezen — read
= N\(N\Sinf)
wil —  want
= (N\Sinf)](N\S)

Then (26) has the derivation in figure 6.
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