SRR

Categorial Deductions and Structural

Operations

Glyn Morrill, Neil Leslie, Mark Hepple and Guy Barry

Categorial grammar is an approach to language description in which expressions are clas-
sified according to recursively defined categories. The combination of expressions is governed
not by specific linguistic rules but by general logical inference mechanisms, so that all the
information about the combining potential of a word resides in its lexical categorization.
Various systems of inference for categorial grammar lave been proposed, in particular the
‘syntactic calculus’ of Lambek (1958). However, use of the Lambek calculus for linguistic
work has generally been rather limited. There appear to be two main reasons for this: the
notations most commonly used can sometimes obscure the structure of proofs and fail to
clearly convey linguistic structure, and the calculus as it stands is apparently not powerful
enough to describe many phenomena encountered in natural langhage.

In this paper we suggest ways of dealing with both these deficiencies. Firstly, we refor-
mulate the Lambek calculus using proof figures based on the ‘natural deduction’ notation
commonly used for derivations in logic. Natural deduction is generally regarded as the most
economical and comprehensible system for working on proofs by hand, and we suggest that
the same advantages hold for a similar presentation of categorial derivations. Secondly, we
introduce devices for the characterization of word order variation, iteration and optionality,
features of natural language which the Lambek calculus does not capture with the desired
sensitivity and generality. This is achieved by means of operators called structural modalities,
derived from the usual structural rules found in logic.

1 Fregean Analysis

The point of departure for categorial grammar can be seen as Frege’s position that there
are certain ‘complete expressions’ which are the primary bearers of meaning, and that the
meanings of ‘incomplete expressions’ (including words) are derivative, being their contribution
to the meanings of the expressions in which they occur. Frege took proper names and sentences
to be the complete expressions. Consider a language containing some proper names {*John™,
“Mary”, ...} and some sentences {“John walks”, “Mary walks”, ..., “John likes John”, ... };
such sets of linguistic objects will be called categories, and will be indexed by types, in this
case NP and § respectively.! Now, the significance of “walks” is that it occurs with an NP
to form an S, and it is attributed with a meaning which is a function from NP meanings into
the meanings of the S’s it forms with those NP’s; the category of such ob Jects can be indexed

We would like to thank Martin Pickering and Pete Whitelock for comments and discussion relating to
this work. The authors were respectively supported by SERC Postdactoral Fellowship B/ITF/206; ESPRIT
Project 393 and Cognitive Science/HCI Research Initiative 89/CS01 and 89/CS25; ESRC Research Studentship
€00428722003; SERC Research Studentship 88306971.

'Thus a type is a symbol denoting a category. There are alternative terminologies, e.g. use of category to
mean category symbol, or type to mean a domain, rather than a symbol indexing a domain.

2 Glyn Morrill, Neil Leslie, Mark Hepple and Guy Barry

by the type NP — S, and we say that (following the Fregean procedure) type NP — S is
assigned to “walks”. Similarly, “likes John”, “likes Mary”, ...are assigned type NP — S, and
consequently “likes” is assigned type NP — (NP — §), etc.

Note that on this view compositionality is methodological rather than empirical: the
meanings of parts are defined in terms of the meanings of wholes. Note also that the semantic
functions we build up in this way fall within a simple type hierarchy; Russell’s theory of types,
prompted by the paradoxes, was a major influence on Lesniewski’s ‘semantic categories’, the
immediate precursor of Ajdukiewicz and categorial grammar.

The above system for semantic type-assignment can be extended to one which is simulta-
neously a syntactic type-assignment, i.e. one in which the types by which incomplete expres-
sions are classified encode the manner in which they constitute subparts of other expressions.
This can be achieved by the use of a directional system, in which the undirected implication
Y — X is replaced by two directed implications X/Y (‘X over Y’) and Y\X (‘Y under X",
representing respectively incomplete expressions that combine with a following or preceding
expression of type Y to form an expression of type X .2 Thus for example “walks” forms an 5
when preceded by an NP, so is assigned type NP\S, and “likes” forms an NP\S when followed
by an NP, so is assigned type (NP\S)/NP.

Linguistic categories are not limited to finite inhabitation, e.g. in general languages contain
an infinite number of sentences. However, the set of words from which the objects in those
categories are constructed is usually presumed to be a finite set, known as the vocabulary.
The task of a grammar is to finitely describe the membership of {possibly) infinite categories,
and the above type-theoretic perspective suggests a procedure for doing this. By establishing
an initial type assignment relation between the vocabulary and types (a lericon), a full type
assignment between expressions and types may be determined, according to a general system
of type inference. In the next section we shall present such a system of inference for the
directed types described above, the calculus L of Lambek (1958), and discuss properties and
linguistic applications of that system.

2 The Lambek Calculus L

2.1 Preliminaries

Given a set of primitive types, the set of bidirectional typesis defined as shown in (1).

(1} a. If X is a primitive type
then X is a type.

b. If X and Y are types
then X/Y and Y\ X are types.

Let us assume as basic categories prepositional phrases, noun phrases, sentences, and common
nouns, indexed by primitive types PP, NP, 5, and N respectively. By the principles outlined
above, we may assign types to words as follows:

2In the alternative notation used by, for example, Steedman, these types would be written X/Y, X\Y
respectively.

Barry

» S is
,, and

the
antic

ypes,
', the

ulta-
Jres-

ions. -

tion
X’) H
ding
an S
wed

tain
1058
ary.
ies,
ing
ype
em
the
ind

R AR

Categorial Deductions and Structural Operations 3

(2) for . :=PP/NP
John, Mary - <= NP
“likes - = {NP\S)/NP
man = N
the = NP/N
thinks = (NP\S)/s
votes = (NP\S)/PP
who = (N\N)/(S/NP)

We assume that words have (at least) two components, form (represented by italics) and
meaning (represented by boldface). For example, the word “for” will be taken to have form
denoted by for and meaning denoted by for.

2.2 Proof Figures

We shall present the rules of L by means of proof figures, based on Prawitz’ (1965) systems
of ‘natural deduction’. Natural deduction was developed by Gentzen (1936) to reflect the
natural process of mathematical reasoning in which one uses a number of inference rules
to justify a single conelusion on the basis of a number of propositions, called assumptions.
During a proof one may temporurily make a new assumption if one of the rules licenses the
subsequent withdrawal of this assumption. The rule is said to discharge the assumption. The
conclusion is said to depend on the undischarged assumptions, which are called the hypotheses
of the proof. :

A proof is usually represented as a tree with the assumptions as leaves and the conclusion
at the root. Finding a proof is then seen as the task of filling this tree in, and the inference
rules as operations on the partially completed tree. One can write the inference rules out as
such operations, but as these are rather unwieldy it is more usual to present the rules in a
more compact form as operations from a set of subproofs (the premises) to a conclusion, as
follows:

) _) A
Xi o Xm Xep o Xmgw
Rule
.2
This states that a proof of Z can be obtained from proofs of X1, ooy Xngn by discharging
appropriate occurrences of assumptions Yy, ..., Y,.. The use of square brackets around an

assumption indicates its discharge. The index i is used to disambiguate proofs, where there
may be an uncertainty as to which rule has discharged which assumption.

As propositions are represented by formulas in logic, so linguistic categories are represented
by type formulas in the Lambek calculus. The left-to-right order of types indicates the order
in which the forms of subexpressions are to be concatenated to give a composite expression
derived by the proof. Thus we must take note of the order and place of occurrence of the
premises of the rules in the proof figures for L. There is also a problem with the presentation
of the rules in the compact notation as some of the rules will be written as if they had a
number of conclusions, as follows:

4 Glyn Morrill, Neil Leslie, Mark Hepple and Guy Barry

NGRS
Xl-' ™

Rule
v, - Y

This rule should be seen as a shorthand for:
(5_) .
. Xt o Xm

i Rule
i . Ya

Z

If the rules are viewed in this way it will be seen that they do not violate the single conclusion
nature of the figures.?

As with standard natural deduction, for each connective there is an introduction rule
which states how a type containing that connective may be derived, and an elimination rule
which states how a type containing that connective may be consumed. We shall follow the
historical development of the calculus by giving the elimination rules before the introduction
rules.

The elimination rule for / states that a proof of type X/Y followed by a proof of type Y’
yields a proof of type X. Similarly the elimination rule for \ states that a proof of type Y\ X
preceded by a proof of type Y yields a proof of type X. Using the notation above, we may
write these rules as follows: :

(6) : : b, :
XYy Y Y Y\X
) ———\E

X X

The meaning of the composite expression is given by the functional application of the meaning
of the functor expression (i.e. the one of type X/Y or Y\ X) to the meaning of the argument
expression (i.e. the one of type Y). We represent function application by juxtaposition, so
that likes John means likes applied to John.

The subsystem of L using only the rules /E and \E corresponds to the categorial calculus
of Ajdukiewiez (1935) and Bar-Hillel (1953}, and is sometimes known as the AB calculus.
Within this calculus, we may derive “Mary likes John” as a sentence as follows:

(7) Mary likes John
(NP\S)/NP NP
NP NP\S
S \E

The meaning of the sentence is read off the proof by interpreting the /E and \E inferences as
function application, giving the following:

(8) (likes John) Mary

Similarly, the sentence “Mary thinks John votes for the man” may be derived thus:

*Notice that these rules mean that the proof figures are not trees, but directed acyclic graphs.

Barry

lusion

n rule
n rule
w the
iction

ype ¥
YAX
B may

aning
ument
on, so

leulus
culus.

£es as

e e e

R R e s

2

SR

Categorial Deductions and Structural Operations 5
(9) Mary thinks John votes for the man
*' ' o NP/N N
/E
PP/NP NP/E
(NP\S)/PP PP/E
NP NP\S\E
(NP\S)/S s/E
NP- NP\S
\\E
8

From this we can read off the meaning representation:
(10) (thinks ((votes (for (the man))) John)) Mary

The introduction rule for / states that where the rightmost assumption in a proof of the
type X is of type Y, that assumption may be discharged to give a proof of the type X/Y.
Similarly, the introduction rule for \ states that where the leftmost assumption in a proof of
the type X is of type Y, that assumption may be discharged to give a proof of the type Y\ X.
Using the notation above, we may write these rules as follows:

(1) a o b "
X - X
X/Y Y\X\

Note however that this notation does not embody the conditions that have been stated,
namely that in /I Y is the rightmost undischarged assumption in the proof of X, and in
\I 'Y is the leftmost undischarged assumption in the proof of X. In addition, the Lambek
calculus carries the condition that in both /I and \I the sole assumption in a proof cannot be
withdrawn, so that no types are assigned to the empty string.*

In the introduction rules, the meaning of the result is given by functional abstraction
over the meaning of the discharged assumption, which can be represented by a variable of
the appropriate type. For example, the functional abstraction of {(likes z) Mary] over the
variable z, written Az[(likes z) Mary], is the function that gives (likes John) Mary when
applied to John, (likes (the man)) Mary when applied to the man, and so on. This
general relation between abstraction, application and substitution is expressed by the law of
B-equality:

(12) (Ayla])8 = ofB/y]

This is read: ‘(Ay[a])B is equal to o with 8 substituted for 3. The rules in (11) are analogous

to the usual natural deduction rule of conditionalization, except that the latter allows with-

drawal of any number of assumptions, in any position. The semantic algebra defined by the
above set of inference rules corresponds to the subset of the typed lambda-calculus in which
each binder binds exactly one variable (van Benthem 1983). We shall refer to this as the
‘single-bind’ lambda-calculus. This correspondence between proofs in L and meaning repre-
sentations in the single-bind lambda-calculus can be seen as a version of the Curry-Howard cor-

*However, this condition is not an essential feature of the logic (cf. subsection 3.1).

6 Glyn Morrill, Neil Leslie, Mark Hepple and Guy Barry

respondence between intuitionistic implicational deduction and full lambda-calculus (Curry
and Feys 1958; Howard 1969).

The /I and \I rules are commonly used in constructions that are standardly assumed to
involve ‘empty categories’. For example, the non-canonical constituent “Mary likes” can be
derived as of type S/NP, and hence assignment of type (N\N)/(S§/NP) to an object relative
pronoun allows analysis of relativization as follows (cf. Ades and Steedman 1982):

(13) the | .man who Mary likes
(NP\S)}/NP [NP] 1E
NP NP\S
\E
S
. __._/Il
(N\N)/(S/NP) S/NP/E
N NN
NP/N N)
/E
NP

Again, the meaning of the string can be read off the above proof by interpreting /I and \[as
functional abstraction, giving the following:

(14) the (who (Az[(likes) Mary]) man}

Note that this mechanism is only powerful enough to allow constructions where the extraction
site is clause-peripheral; for non-peripheral extraction, and multiple extraction such as with
parasitic gaps, we appear to need an extended logic. Meeting such requirements is part of
the concern of section 4 below.

The use of the /I and \I rules in conjunction with the /E and \E rules means that it is
possible to give more than one proof for a single reading of a string. For example, compare
the derivation of “Mary likes John” in (7), and the corresponding lambda-term in (8), with
the derivation in {(15) and the lambda-term in (16):

(15) Mary likes John
(NP\S)/NP NP} .
NP NP\S
\E
e /T —_—
S/NP NP
5 /E

(16) (Aiz[(likes z) Mary]) John

By the definition in (12), the terms in (8) and (16) are 3-equal, and thus have the same mean-
ing; the proofs in (7) and (15) are thus equivalent. This property of derivational equivalence
(also termed ‘spurious ambiguity’) is common to many versions of categorial grammar, and
can cause problems for the design of efficient parsing algorithms, where the usual aim is to
find each reading of a string once and only once. Such problems can however be overcome
by defining a notion of normal form for proofs (and their corresponding terms) in such a way

.

s

Cat

tha
198!
doir

In ¢
defi
par
(the
of a
pos

for

(17)

(18

Fro
ter;

ints

eqt

of

(te

con

Barry .

Curry

ned to
zan he
elative

I\l as

action
s with
rart of

it it is
mpare
; with

4

Categorial Deductions and Structurel Operations 7

that each equivalence class of proofs contains a unique normal form (e.g. Hepple and Morrill

*+1989). "One_:a.dvant‘é;g:e of the present formulation is that it offers a particularly simple way of

doing this.

2.3 Normal Forms

In order to define normal forms for both I, and the single-bind lambda-calculus, we will first
define the notions of contraction and reduction. A contraction schema R > C consists of a
particular pattern R within proofs or terms (the redez) and an equal and simpler pattern C
(the contractum). A reduction consists of a series of contractions, each replacing an occurrence
of a redex by its contractum. A normal form is a proof or term on which no contractions are
possible.

We define the following contraction schemas: weak contraction for proofs, and 3-contraction
for the corresponding lambda-terms.

(17) a [¥® b. ¥
Xy Y ; Y X :
—JE X —\E X
X X

(18) (My[a])8 > ofB/y)

From (12) we see that -reduction preserves meaning according to the standard functional in-
terpretation of typed lambda-calcuius. Therefore the corresponding weak reduction preserves
the semantic functional interpretation of the proof; in addition it preserves the syntactic string
interpretation since the redex and contractum contain the same leaves in the same order.

For example, the proof in (15) weakly contracts to the proof in (7), and correspondingly
the term in (16) B-contracts to the term in (8). The results of these contractions cannot be
further contracted and so are the respective results of reduction to weak normal form and
B-normal form.

Weak contraction and S3-contraction strictly decrease the sizes of proofs and terms, e.g. the
number of symbols in a contractum is always less than that in a redex.®* Thus there is strong
normalization with respect to these reductions: every proof (term) reduces to a weak normal
form (G-normal form) in a finite number of steps. This has as a corollary (nermalization)
that every proof (term) has a normal form, so that normal forms are fully representative:
every proof (term) is equal to one in normal form. Since reductions preserve interpretations,
an interpretation of a normal form will always be the same as that of the original proof
(term). Thus restricting the search to just such proofs addresses the problem of derivational
equivalence, while preserving generality in that all interpretations are found.

The single-bind proofs (lambda-terms) appear to straightforwardly inherit the property
of intuitionistic proofs (full lambda-terms) that if a proof (term) M reduces to two proofs
(terms) Ny, Ns, then there is a proof (term) N3 to which both Ny and N3 reduce. It follows

5This follows immediately from the single-bind character of the languages; if there were multiple binding,
contraction could involve duplication of subparts substituted and so could increase size.

8 Glyn Morrill, Neil Leslie, Mark Hepple and Guy Barry

‘that a proof (term) cannot reduce to more than one normal form, and so every proof (term)
has a unique normal form. This is known as the Church- Rosser property.

If all normal forms were non-equal, restriction of search to normal forms would be optimal
in that each equivalence class has a single representative within the narrowed search space.
However, the standard extensional functional interpretation of {yped lambda-calculus also
satisfies the following law of n-equality:

(19) Mfa(y)] =
(y not free in)

Accordingly there is a second form of contraction for each of L and the single-bind lambda-
calculus, which we shall term strong contraction and 7-contraction respectively. These are as
follows:

(20) a. : . b, : .
—-—---———X/Y [Y]/E L X}Y -—[Y} Y\X\E [Y\:X
X X
/In __\In
X/Y X

(21) Ayla(y)] b«

A proof (term) is said to be in strong normal form (8n-normal form) if there are no weak
or strong contractions (8- or 7- contractions) possible on it. Since strong reductions (37-
reductions) also preserve interpretations, it is sufficient to find all and only the strong normal
proofs for a given siring and a given result type in order to find all possible readings in that
.type.

A notion of contraction creates a partitioning into normal and non-normal proofs. For
the purposes of proof search a structural characterization of just the normal proofs can be
exploited (see e.g. Konig 1989; Hepple 1990). Weak normal proofs can be specified as follows.
Suppose we define a branch of a proof in L as starting with any hypothesis and tracing down
until it hits either the conclusion type (a main branch) or the argument type of an elimination
inference (a side branch). Then in a weak normal proof no branch can contain an introduction
inference followed by an elimination inference. It follows that each branch must consist of a
sequence of (zero or more) eliminations followed by a sequence of {zero or more) introductions.
However, a similar structural characterization of strong normal proofs is harder to formulate.

2.4 Sequent Calculus

The above notation for proofs is convenient for their presentation on the page, but for the
development of proof-search algorithms it is more convenient to use Gentzen’s (1936) sequent

calculus notation, where the objects reasoned about are sequents corresponding to enfire

natural deduction proofs. A sequent calculus consists of axioms and inference rules; axioms
state that certain primitive sequents are valid, and inference rules allow new valid sequents
to be derived from old ones. A sequent calculus proof may thus be seen as the instructions
for the construction of a natural deduction proof. Lambek (1958), in his original presentation
of the calculus, used a sequent calculus notation in order to establish its decidability.

e B

{ Barry

(term) -

yptimal
space,
us also

unbda-
' are as

3> weak .

15 (Bn-
normal
in that

5. For
can be
ollows.
1 down
ination
luction

st of a -

Ctions.
nulate,

Categorial Deductions and Structural Operations 9

We shall use I‘ 4,9 ... to stand for sequences of types, and X,Y, Z ... to stand for single

-occurrences of a type A (smgle conclusioned) sequent is a statement I‘ = X, it asserts that
there is a deductlon of X depending on the hypotheses I'. In Lambek calculus both the order

of the types in I' and the number of occurrences of each type are relevant, and there is a
restriction that I' must be non-empty.

We shall present the sequent rules in refinement notation to emphasize their application
to proof search. A rule such as (22) states that Z follows from T if X follows from A and Y
follows from ®. It does not matter which order we solve the sub-problems in, so long as we
solve them all.

(22) T=2Z [Rule]
A=z X
b= Y

In standard sequent systems there is a single schematic axiom saying that every type
yields itself, and for each connective there are two inference rules; a leff rule, which allows us
to derive a sequent where the connective newly appears on the left-hand side of the arrow,
and a right rule, which allows us to derive a sequent where the connective newly appears on
the right-hand side of the arrow. The Gentzen-style formulation of L follows this pattern:

(23) X=X [Ax]

rX/y Aé=27 [/L]* rAY\X ¢&=2 [\L]
A=Y A=Y
'rXe=72 rxXeée= 2z
' X/Y [/R] I'=> ¥Y\X [\R]

''y=X YI'=X

There is a close analogy between the use of left rules in sequent calculus and elimination rules
in natural deduction, and similarly between right rules in sequent calculus and introduction
rules in natural deduction. For example, compare the following sequent proof with the proof
in (13):

(24) NP/N N (N\N)/(S/NP) NP (NP\S)/NP = NP [/L]
N (N\N)/(S/NP) NP (NP\S)/NP = N [/L]

NP (NP\S)/NP = S/NP [/R]
NP (NP\S)/NP NP = S [/L]
NP = NP [Ax]

NP NP\S=S [\I]
NP = NP [Ax]

5= [Ax]

NN\N=N _ [\L}

N = N [Ax]

N=N [Ax]

NP = NP (Ax]

L may be formulated with one additional rule, the Cut rule, which combines two proofs
by identifying the conclusion of one with one of the premises of the other:

10 Glyn Morrill, Neil Leslie, Mark Hepple and Guy Barry

(25) AT & =Y [Cut]
AR T=X
AX®=>Y

Lambek shows that the sequent formulation of L has the property of Cut-elimination, i.e.
every L proof can be transformed into an L proof with the same end-sequent, in which no
Cuts occur. Cut-elimination in sequent calculus corresponds (approximately) to normalization
in natural deduction (cf. the corresponding result for intuitionistic logic; see also Moortgat
1990a). The Cut-free formulation provides a decision procedure. A step in the search for
a proof of a sequent can only be an axiom matching, or one of a finite number of possible
rule applications, these creating strictly simpler subgoals since each rule application removes
a connective.

Moortgat (1988) shows how the types in sequents in L may be annotated with lambda-
terms to indicate their semantic content; the resulting terms can be shown to be the same as
those obtained in the natural dedunction style formulation.

3 A Structural Hierarchy of Logics

The rest of this paper will be concerned with the development of mechanisms extending L to
a calculus with greater linguistic applicability, in particular addressing the problems of word
order variation, iteration and optionality. In this section we describe how L can be extended
to yield a structural hierarchy of logics, and in the next section we refine these extensions in
a manner suited to linguistic description. _

From a logical perspective, L can be thought of as the weakest member of a hierarchy of
implicational type-inference logics, differing in the amount of freedom allowed in the use of
assumptions; L takes into account the order of assumptions and the number of occurrences of
each, but we may choose to ignore these factors to a greater or lesser extent. This ‘categorial
hierarchy’ is discussed in e.g. van Benthem {1987}, Moortgat (1988}, Ono (1988) and Wansing
(1989). It consists of L followed by what are essentially the implicational fragments of linear,
relevance and intuitionistic logic.

Sequent calculus differentiates between levels in the hierarchy by means of structural rules
explicitly manipula.tiﬁg lists of assumptions. In natural deduction style formulations, on the
other hand, structural operations are implicit in the treatment of occurrences of assumptions
and the conditions on their discharge. In the presentations below we shall break with com-
mon practice by including explicit structural rules in proof figures; this will enable a closer
comparison with the structural operators to be discussed in the next section.

3.1 L and Sequential Logic

L as it stands forms a ‘sequential logic’, which is a subset of non-commautative linear logic
(see Girard 1989). The single-conclusioned, implicational fragment of non-commutative linear
logic corresponds exactly to L, except that proofs from no premises are permissible in the
former.

B A e e

R

B R S

Categorial Deductions and Structural Operations 11

3.2 LP and Linear Logic

R “The .“La.mbe]g:'vé.,r-f‘ﬁenthem’ calculus LP (van Benthem 1983, 1986) is like L except that

the order of premises is irrelevant. We may implement this by adding a structural rule of
permutation to the natural deduction proof figures:

(26)
X Y

Yy X

P

This is the first appearance of a rule that is not single-conclusioned. As noted earlier, such
a rule may not form the last inference in a proof, since complete proofs must have a single
conclusion type.

Addition of the permutation rule means that the directional implicational types X/Y,
Y\ X are equivalent, since they are mutually derivable:

(27) w1 X/ Y\X [Y}’P
X/Y Y Y Y\X
—/E ———e———\E

ill{._11
Y\X\ X/Y/

For the rest of this section, therefore, we need use only a single implicational type; we choose
Y\ X, and notate it in the more conventional fashion as ¥ —X. We repeat the elimination

and introduction rules here:

(28) : : [v]®
Y Y-oX :
X —_n
Y—X

Without loss of generality, rule applications can be kept subject to the previous ordering
conditions for \. For example, we may derive the transition X +(Y—-Z) = Y—>(X—>Z) in
LP as follows:

(29) [x]" Y,
Y X Xy=2)

Y2
—E

Z

R,

However, since the order of premises is irrelevant, the logic is unaffected by allowing the
argument type Y in the —E rule to occur either to the left or the right of the functor type
Y- X, and Y to be any undischarged assumption above X in the —I rule. This removes the
need for an explicit permutation rule. In a sequent calculus presentation of LP, the structural
rule of permutation runs as follows:

(30) TXY A= Z [P]
'y Xa=1~2

12 Glyn Morril, Neil Leslie, Mark Hepple and Guy Barry

~ LP corresponds to the single-bind lambda-calculus, and is a subsystem of Girard’s (1987)
“linear logic, in which permutation of assumptions preserves derivability; the implication in
LP is like Girard’s linear implication.

3.3 LPC and Relevance Logic

LPC is an extension of LP which allows assumptions to be used more than once. This may
be achieved by adding a structural rule of confraction to the natural deduction formulation:

(31)
X

—C
X X

The —E and —I rules are as before in this formulation. By way of example of derivation in
LPC, the transition X —=(X—Y) = XY is proved as follows:

(32) {xy
X X X—(X-Y)

X—Y -
—E

RN

X—=Y

LPC could be alternatively formulated in a natural deduction style by relaxing the direction-
ality conditions on L and allowing withdrawal of one or more occurrences of a conditionalized
assumption. This removes the need for explicit rules of permutation and contraction. The
sequent calculus formulation of the contraction rule is as follows:

(33) TXA=2Z [C]
ITXXA=7Z

LPC corresponds to the mulitiple-bind lambda-calculus without vacuous abstraction, and it
shares with relevance logic (Anderson and Belnap 1975} the preservation of derivability under
the structural operations of permutation and contraction.

3.4 LPCW and Intuitionistic Logic

Finally we may extend LPC to LPCW, where it is permissible for assumptions not to be
used at all. This may be achieved by adding a structural rule of weakening to the natural
deduction formulation:

(34)

X
—W

In fact, in order that a weakened assumption may be understood as a subpart of a proof,
applications of weakening in a derivation will be represented as follows:

y Barry

(1987)
ition in

iis may
ifation:

tion in

ection-
1alized
i. The

and it

under

to be
atural

proof,

Categorial Deductions and Structural Operations 13

(38) a. i b

Xy s Y X
il
Y. Y

W,

For example, the transition ¥ = X —=Y is valid in LPCW:

(36) &I v
Y

—...__,,I1

X-Y
This derivation satisfies the ordering conditions on conditionalization since X is indeed the
leftmost assumption dominating Y. LPCW could be alternatively formulated in a natural
deduction style by relaxing the directionality conditions on L and allowing withdrawal of
zero or more occurrences of a conditionalized assumption. This removes the need for explicit
rules of permutation, contraction and weakening. The sequent calculus formulation of the
weakening rule is as follows:

(37) TXA=2Z [W
TA=Z

LPCW corresponds to the full lambda-calculus allowing vacuous abstraction, and it shares
with intuitionistic logic the preservation of derivability under the structural operations of
permutation, contraction and weakening.

4 Structural Modalities

Freely applying structural rules are clearly not appropriate in categorial grammars for linguis-
tic description. Permutation would imply that word order was irrelevant; contraction would
imply that any word in a sentence could fulfil any number of roles; and weakening would
imply that sentences could contain arbitrary words not contributing to their meaning. Never-
theless, commutable, iterable, and optional elements do arise in natural language: a relative
pronoun may license a gap® anywhere f_bedy of the relative clause, it may license multiple
gaps (as in parasitic gap constructions), and a gap may be optionally required {perhaps as in
resumptive pronoun éonstructions); similarly a head may allow some freedom in the location
of a complement, it may allow multiple complements (as in iterated coordination}, and it
may optionally take a complement. This suggests that we should be able to indicate that
structural operations are permissible on specific types, while still forbidding them as general
inference rules.

There is a precedent for the above in (commutative) linear logic, which contains the so-
called ezponentials ! (‘of course’} and ? (‘why not’), which bring back the structural rules of
contraction and weakening in a controlled way. The behaviour of ! and ? bears a resemblance
to that of the operators 3 (universal modality) and & (existential modality) in some modal
logics. For our linguistic calculus, which has rather different applications, we shall suggest
a system of operators called structural modalities. Corresponding to commutation, iteration
and optionality, we define both universal and existential structural modalities; there are two
directional versions for each of the commutation modalities.

®We use the term ‘gap’ purely descriptively.

14 Glyn Morrill, Neil Leslie, Mark Hepple and Guy Barry

.| Universal Existential
Commutation |~ D> ><

. : 40
(38) ™ Lteration ! + é (40
Optionality l ! g
Broadly speaking the universal modalities may be said to represent ‘any’ (any location, any § The
number of occurrences greater than zero, any number of occurrences less than two), and % (41)

the existential modalities to represent ‘some’ (some location, some number of occurrences -
greater than zero, some number of occurrences less than two). For each modality there is an %
‘operational rule’ which governs its behaviour; the operational rules for universal modalities -
are analogous to the corresponding structural rules, and those for existential modalities are
analogous to inverted versions of the corresponding structural rules. We shall examine these
rules in detail for each operator below. fNOt'
Universal modalities have the common property that any item of a universally modal orn:
type also has the corresponding non-modal type, and the existential modalities have the
property that any item of a non-modal type also has the corresponding existentially modal whe
type. This means there are straightforward elimination rules for the universal modalities and :Xtr
introduction rules for the existential modalities, but the complementary rules in each case are 1i)<’: E:
less straightforward. Since we are not fixing here a particular semantics with respect to which sam
we expect the logic to be complete, we shall be ignoring introduction rules for the universal
modalities and elimination rules for the existential modalities. é (42)
In grammar, the universals and existentials will effect the structural operations with re-
spect to gaps and realized elements respectively. When we look at lexical type-assignments
involving these modalities, we will find that existential modalities are appropriate for describ-
ing the behaviour of lexical items that subcategorize for commutable, iterable or optional
arguments; such items typically receive types of the form Y — X, where O represents one of
the existential modalities and — one of the implications.” Conversely, universal modalities
are appropriate for describing the behaviour of lexical items that subcategorize for strings
that are missing commutable, iterable or optional arguments; such items typically receive
types of the form (0 Z—Y)—X, where [I represents one of the universal modalities. As we
shall see in the examples, it follows from these assignments that the missing introduction and
elimination rules are rarely needed for linguistic purposes. Mo
; . sim
4.1 Commutation Modalities
W
We notate the two universal commutation modalities as b (written as a prefix operator) E:ur:
and <« (written as a postfix operator). The type BX (resp. X<) is assigned to an item of by :
type X which may occur in its current position or anywhere to the right (resp. left) of its ope
current position. This is achieved by means of the rules >Perm and <Perm, which allow be :
types bearing the appropriate modality to be moved to any position on the given side, and \
the rules E and < E, which allow the modality to be dropped: ' (43,
B (39) a. : N :
=X Y Y X«
- mm——— > Perm ————<d Perm (44
. bX X4 Y '

"Here, and uniformly in what follows, unary operators bind tighter than binary ones.

: Th

Categorial Deductions and Structural Operations 15

X = X4

) I
S —pE —gqE
X X

The above may also be expressed as sequent rules:

(41) T pXY A=Z [pPerm] 'Y X1 A=2Z [<qPerm]
'Y pXA=Z r'Xava==z
' pPX A=Y [pl] 'Xq A=Y [ql]
'rXAa=Y FXA=Y

Note that the structural operation performed by the >Perm and <Perm rules {in either
formulation} is the normal structural operation of permutation.

We may use these modalities in a treatment of non-peripheral extraction, as in “the man
who Bill meets today”. Moortgat (1988) deals with such constructions by means of the
extraction operator T; the type X 1Y is assigned to any string of type X missing a subpart of
type Y somewhere within it. So assigning the type (N\N)/(STNP) to object relative pronouns
licenses extraction from any position in the body of a relative clause. We may accomplish the
same in the present framework by giving relative pronouns the type (N\N)/(S/NP4):

(42) who Bill meets today
(NPAS)\(NP\S) [NPq}
NP« B (NP\S)\(NP\S)‘:1
(NP\S)/NP NP
NP\S
NP NP\S

erm

\E

e ———————————_——i Il
(N\N)/(S/NP<) S/NP4q ; .

N\N

Moortgat (1990b) suggests that the type X 1Y may in fact be definable in terms of modalities
similar to the ones above.

We notate the two existential commutability modalities as > (written postfix} and <
(written prefix). The type X> (resp. <X} is assigned to an item of type X either in its
current position or somewhere to the right (resp. left) of its current position. This is achieved
by means of the rules >I and <I, which allow the appropriate modality to be added, and the
operational rules >Exch and <Exch (‘exchange’), which allow types bearing the modality to
be moved to any position on the given side:

(43) a. : b, :
X X
——] ——]
X> <X

(44)

: b, :
X> Y Y <X
>Exch < Exch
Y X> <X Y

The corresponding sequent rules are as follows:

16 Glyn Morrill, Neil Leslie, Mark Hepple and Guy Barry
- (45) T=X> [>B] I'= <X [<R]
T T T=X r=X
[(X>Y)= Z [>Exch] I(Y <X)= Z [<Exch]
'Y X>)= 2 I<XY)=2

Note that the permutation operation is symmetrical and so the structural operations asso-
ciated with the >Exch and <Exch rules are trivially inversions of the usual permutation

operation.

By way of example a type X/<Y represents elements which are functors over Y's some-
where to the right, but not necessarily immediately to the right. In this way we can define the
‘long-distance’ functors X//Y and Y\\X of Bach (1984). Typically such specifications would
need to be made with reference also to the domains within which the word order variation
is allowed, e.g. by using the modal treatment of boundedness introduced in Morrill (1989},
but the essential idea is as illustrated by Bach’s example of SOV and OSV alternation in
Japanese:

(46) a. Nao-ga neko-o miru
PN-subj cat-ob] sees
‘Nao sees a cat’

b. neko-o Nao-ga miru
‘Nao sees a cat’

(47) a. Nao-ga neko-o miru b. nekoo Naoga miru
NPo - NPo
>1 >1
NPo> NPo>\(NPs\S) NPo> NPs
\E >Exch
NPs NPS\S\E NPs NPo> NP0>\(NP5\S)\E
8 ' NFPs\S
s \E

4.2 Tterability Modalities

The universal iterability modality is such that the type X ' is assigned to an item from which
one or more occurrences of the type X may be derived. This is achieved by means of the
rule 'Con, which copies any type bearing the operator, and the rule 'E, which removes the
operator.

48) a b

() X! X!

—.-"-—,!Con —'E
X X X

The corresponding sequent rules are:

(49) TX'A =Y [Con rx'a =y [L
FX'X'A =Y rxXa =Yy

The structural operation performed by the ‘Con rule is contraction. Note that the premise in
the sequent formulation of this rule is more complex than the conclusion since it contains at

y Barry

1§ a850-
utation

5 some-
fine the
s would
wriation
(1989),
ition in

which
of the
es the

lise in
ins at

. procedure. ’

Categorial Deductions and Structural Operations 17

least an extra !,;-a.nd so the sequent formulation no longer provides a straightforward decision

We now have the apparatus for a rudimentary treatment of parasitic gaps. Assignment
of the type (N\N)/(S/(NP4)') to a relative pronoun will allow it to fill any number of gaps
in any positions. (This clearly overgenerates, but allows an illustration of the interaction of
iteration and commutation operators.) “The paper which Suzy files without reading” can
thus be derived as follows:

(50) Suzy” files without reading
[(NP<)]!
NPq)' (NP<1)’Con
('E 'E
VP/NP NP« NP«
<lPenu QE
((NP\S\(NP\S))/VP NP4 VP/NP NP
NP4 D((NP\S)\(NP\S))/VPQ i VP/E /
(NP\S)/NP NP E” (NP\S)\(NP\S)
NP\S
——— \E
NP NP\S,
s '
S/(NPq)’/
the paper which Suzy files without reading
(N\N)/(S/(NP<«))’ S/(NPq)’/E
N NN
NP/N N \
JE
NP

The existential iteration modality is such that X+ represents some non-zero number of
items of type X. This is achieved by means of the *I rule, which introduces the operator,
and the *Exp (‘expansion’) rule, which combines identical types bearing it:

(51) a. X b. X:"' X:+
—tF __...._.._.+Exp
X+ Xt

Correspondingly there are the following sequent rules:

(52) T= X+ [*R) I Xt Xt A =Y [*Exp]
=X TXtA =Y

The operation associated with the *Exp rule is the inverse of the operation of contraction.

18 Glyn Morrill, Neil Leslie, Mark Hepple and Guy Barry

ITterated -coordination may be treated by assignment of coordinators to (X T\ X)/X:

(53) John Bl Mary and Suzy

NP . NP 4

NPt NPt NP

———-+Exp *1

NP+ NP+ (NP*\NP)/NP NP
* Exp E
NP NPH\NP
\E
NP

4.3 Optionality Modalities

The universal optionality modality is such that X Il is assigned to an item from which zero or
one occurrences of the type X may be derived. This is achieved by means of the rules |Wkn,
and 'Wkn,, which remove any type bearing the operator, and a standard universal modality

elimination rule "E:

(54) a. b. c. :
xt vy y xi x|
Wkn; Wkn, _....“E
X
The corresponding sequent rules are:
(s5) T XA =Y [IWkn] rxiia =y [l
'A =Y XA =Y

Again, the structural operation performed by IWkn is that of weakening.

This operator would be used in the type of a lexical item whose argument optionally con-
tained a gap (perhaps as in languages with resumptive pronouns or optional clitic doubling).
Such constructions are rare in English, but may occur when an adjective is modified by “too”:
contrast “the lecture was too boring for me to follow” with “the lecture was too boring for
me to stay awake”. Let predicative adjectives have the type Pred, and let “for ...to" clauses
have the type SP. Then we may capture the above data by giving “too” a type such that “too
boring” receives the type Pred/(S/NPl):

(56) too boring for me to follow
(NP\S)}/NP [NP"]‘"E
NP/E
NP NP\S\E
SP/S S
/E

SP
—— /Il
Pred/(SP/NPI) sp/npl

/E
Pred

Categor

(57)

| o1

The
rule in
'Stn (“

(58) =

Expres

(59) |

Once a
with t]
which

By
terized

(60) ¢

This 1
calculi
geners
and t

Barry - Categorial Deductions and Structural Operations 19

i .(57) " . too boring’ . for me to stay awake
- " s NP NP\S
\E
SP/S s
SP [NPI
l'Wkn,
rr——— /Il
Pred/(SP/NPI) SP /Npll/E
s Pred

The existential optionality modality in X° indicates zero or one items of type X. The 'l
rule introduces the operator on a non-modal type as with other existential modalities; the

*Stn (‘strengthening’) rule creates a modal type from nothing:
ero or

Wkny (58) a b.
dality X
X?

—'Stn
?

Expressed as sequent proof rules these are as in (59):

(59) T= X" ['R] A =Y ['Stn]
's X FrX'A =Y

Once again the *Stn rule is associated with an operation which is the inverse of weakening. As
with the 'Con rule, the premise in the sequent version is more complex than the conclusion,
which may cause problems for proof search.

By way of example, the optionality of the sentential complement of belief may be charac-
terized by assignment to N/SP?:
(60) the belief that John lies
SpP 0
N/sP? SP’
/B
NP/N N
NP

/E

(61) the belief
" "—?'Stn
N/SP’ SP’
NP/N N

NP

5 Conclusion

L This paper has introduced a scheme of natural deduction-like proof figures for the Lambek
: P'alcl_llus, and has proposed structural modalities which are suitable for the capture of linguistic
. Beneralizations in categorial grammar. It remains to refine the semantics and proof theory,

and the development of strategies for proof search offers a particular challenge. For the

20 Glyn Morrill, Neil Leslie, Mark Hepple and Guy Barry

present, we hope that the.proposals made can be seen as gaining linguistic practicality in the -

categorial description of natural language, without losing mathematical elegance.

References

Ades, A.E. and Steedman, M.J. (1982). On the order of words. Linguistics and Philosophy
4, 517-558. '

Ajdukiewicz, K. (1935). Die syntaktische Konnexitit. Studia Philosophica 1, 1-27. Trans-
lated as ‘Syntactic connexion’in S, McCall (Ed., 1967), Polish Logic: 1920-1989, Oxford
University Press, Oxford, 207-231.

Anderson, A.R. and Belnap, N.D. (1975). Entailment, Volume 1. Princeton University Press,
Princeton.

Bach, E. (1984). Some generalizations of categorial grammars. In F. Landman and F. Veltman
(Eds), Varieties of Formal Semantics, Foris, Dordrecht.

Bar-Hillel, Y. (1953). A quasi-arithmetical notation for syntactic description. Language 29,
47-58.

van Benthem, J. (1983). The semantics of variety in categorial grammar. Report 83-29,
Department of Mathematics, Simon Fraser University. Also in In W. Buszkowski, W.
Marciszewski and J. van Benthem (Eds), Categorial Grammar, Volume 25, Linguistic &
Literary Studies in Eastern Europe, John Benjamins, Amsterdam/Philadelphia, 57--84.

van Benthem, J. (1986). Categorial grammar. In Essays in Logical Semantics, Volume 8,
Studies in Linguistics and Philosophy, D. Reidel, Dordrecht, 123-150.

van Benthem, J. (1987). Categorial grammar and type theory. Prepublication Series 87-07,
Institute for Language, Logic and Information, University of Amsterdam.

Curry, H.B. and Feys, R. (1958). Combinatory Logic, Volume I. North-Holland, Amsterdam.

Gentzen, G. (1936). On the meanings of the logical constants. In Szabo (Ed., 1969), The
Collected Papers of Gerhard Gentzen, North Holland, Amsterdam.

Girard, J-Y. (1987). Linear logic. Theoretical Computer Science 50, 1-102.

Girard, J-Y. (1989). Towards a geometry of interaction. Proceedings of the AMS Conference
on Categories, Logic and Computer Science.

Hepple, M. (1990). Normal form theorem proving for the Lambek calculus. To appear in
Proceedings of COLING 1990.

Hepple, M. and Morrill, G. (1989). Parsing and derivational equivalence. In Proceedings of
the Fourth Conference of the European Chapter of the Association for Computational
Linguistics, UMIST, Manchester.

Howard, W.A. (1969). The formulae-as-types notion of construction. In J.R. Hindley and
J.P. Seldin (Eds, 1980), To H.B. Curry, Essays on Combinatory Logic, Lambda Calculus
and Formalism, Academic Press.

Categ

Konig

Lamb

Moor

Moaor!

Moort
Morril

Ono, .
i

Prawis
]

Wansi;
8

arry

the

why

Ans-
ford

ess,

nan

.. Categorial Deductions and Structural Operations o1

. Konig, E. (1989). Parsing as natural deduction. In Proceedings of the 27th Annual Meeting
of the Assocfﬁtf?," Jor Computational Linguistics.

: Lambek, J. (1958). The mathematics of sentence structure. American Mathematical Monthly
65, 154-170.

Moortgat, M. (1988). Categorial Investigations: Logical and Linguistic Aspects of the Lambek
Calculus, Foris, Dordrecht.

Moortgat, M. (1990a). Cut elimination and the elimination of spurious ambiguity. In Pro-
ceedings of the Seventh Amsterdam Colloguium, University of Amsterdam.

Moortgat, M. (1990b). The logic of discontinuous type constructors. To appear in Proceedings

of the Sympostum on Discontinuous Constituency, Institute for Language Technology
and Information, University of Tilburg.

Morrill, G. (1989).

Intensionality and boundedness. To appear in Linguistics and Philosophy.

Ono, H. (1988). Structural rules and a logical hierarchy. To appear in Proceedings of the
Conference on Mathematical Logic and its Applications, North-Holland, Amsterdam.

Prawitz, D. (1965). Naturel Deduction: a Proof Theoretical Study. Almqvist and Wiksell,
Uppsala.

Wansing, H. (1989). Relevant quasi-deductions, weak implicational logics, and operational
semantics. Ms., Institut fiir Philosophie, Freie Universitit Berlin.

