
Type-Logical Anaphora�Glyn MorrillDepartament de Llenguatges i Sistemes Inform�atics,Universitat Polit�ecnica de Catalunya,M�odul C 5 - Campus Nord,Jordi Girona Salgado 1-3,E-08034 Barcelona.AbstractWe present a type-logical account of anaphora. The principal means is the intro-duction of type-constructors for `secondary wrap': wrap around the second of twosplit points in a discontinuous string. We illustrate in terms of preevaluated proofnets, proof nets in which lexico-syntactic interaction is computed in a lexical compi-lation rather than at the stage of derivation. We suggest that the account o�ers anexplanation of the delay of principle B e�ect in the child acquisition of anaphora.Chomsky (1981) proposes Principles A, B and C governing anaphoric relations. Roughlyspeaking, Principle A states that a re
exive or reciprocal pronoun must be bound by a localc-commanding antecedent, Principle B states that a personal pronoun must not be boundby a local c-commanding antecedent, and Principle C states that a lexical noun phrasecannot be bound to a c-commanding antecedent. The `delay of Principle B e�ect' is theterm given to the phenomenon whereby in acquisition there seems to be non-compliencewith principle B.Jacobson (1999) discusses the combinatorics of categorial anaphora largely from thepoint of view of combinatory categorial grammar (Steedman 2000). She takes a step inthe type-logical direction by introducing what is essentially a new binary type-constructor(notated as a super�x), however Principle B is not accommodated. Anaphora receives arelated type-logical rendering in J�ager (1998). Although J�ager presents a sequent calculusenjoying Cut-elimination for his system, it is not especially elegant, invoking as it doesan arbitrary atom in the right inference rule. More importantly, it is not clear how topresent the system in natural deduction, perhaps the most transparent format for linguisticpurposes, or in terms of proof nets, probably the best basis for computational concerns.Like the proposal of Jacobson, it does not take into account Principle B.In this paper we present a type-logical account of anaphora taking into account Prin-ciple B. The account rests on a generalisation of `discontinuity calculus' in which wrap isadmitted around the second of two split points in a discontinuous string. We illustratein terms of natural deduction and in terms of proof nets, and we suggest that delay ofPrinciple B can be correlated to memory load in incremental construction of proof nets.1 Type-logical grammarType-logical grammar (Moortgat 1988, Morrill 1994, Moortgat 1997, Carpenter 1998) asit is understood here rests on the methodological assumption that a language model isde�ned on the basis of a categorial lexicon together with an interpretation of categorialtypes inducing a consequence relation that projects the language model as the closure ofthe lexicon under the consequence relation. In such a radical architecture syntax (proof�E-mail: morrill@lsi.upc.es, http: //www-lsi.upc.es/~morrill/. Work partially supported by CICYTproject PB98{0937{C03{03. 1



theory) has no de�nitional role and only serves to calculate derivations. It can comein various guises according to convenience. But when processing, i.e. computational,concerns are taken into account, it is relevant to ask what is the essential structure ofproofs/derivations, to which question a good answer is provided by proof nets (Girard1987). In the following we shall make use of both natural deduction and proof nets.2 Associative Lambek calculusIn the associative Lambek calculus (Lambek 1958) types or category formulas are de�nedin terms of a set A of atomic types thus:F ::= A j FnF j F=F j F�F (1)The slash operators are called `under' and `over' respectively. The dot operator is called`product'. The standard models for these are such that they are prosodically interpretedby `residuation' with respect to the concatenative adjunction � of a semigroup (L; �) or amonoid (L; �; ;):� � � = � � (2)D(AnB) = fsj 8s0 2 D(A); s0�s 2 D(B)gD(B=A) = fsj 8s0 2 D(A); s�s0 2 D(B)gD(A�B) = fs1�s2j s1 2 D(A) & s2 2 D(B)g (3)This interpretation induces a consequence relation such that A ) B is valid i� in allinterpretations, D(A) � D(B). Where we write �: A to indicate that expression � is incategory A the following Prawitz-style natural deduction rules are valid (letters from thebeginning of the Greek alphabet represent prosodic variables; boldface letters from thebeginning of the Roman Alphabet, prosodic constants):����: A ���
: AnB nE��
: B na: A���a�
: B nIn
: AnB (4)���
: B=A ����: A =E
��: B na: A���
�a: B =In
: B=A (5)����: A�B na: A na+�: B���
: C �En
: C ����: A ����: B �I���: A�B (6)The overline in nI,/I and �E indicates cancellation of a hypothesis with the coindexedrule. The prosodic operator invoked in �E satis�es �+��� = �.Semantically, the slash elimination rules are interpreted as functional application of thefunctor (AnB or B=A) to the argument A. The slash introduction rules are interpreted as2



functional abstraction with respect to a semantic variable associated with the cancelledhypothesis. The product elimination and introduction rules are semantically interpretedas projection and pair formation respectively.Lambek (1958) already observes how the restriction of a nominative pronominal tosubject position could be captured.a. He runs.b. *John likes he. (7)He notes that one can assign to the nominative pronominal type S/(NnS). Then (7b) isblocked due to the invalidity of `lowering': S/(NnS) ) N.Reinhart (1993) argues for a distinction between syntactically bound anaphora, whichis governed by grammar, and discourse anaphora, which is governed by pragmatic princi-ples. We follow this distinction here. In the case of syntactically free pronouns, i.e. pro-nouns which are syntactically unbound, we propose a lexical assignment citing a metavari-able. The way in which these variables are instantiated and interpreted, which dependsupon pragmatic considerations of discourse, lies beyond the scope of the present paper.he { �x(x �):= S/(NnS) (8)Then `He runs' is derived as follows:he: S=(NnS) runs: NnS =Ehe�runs: S (9)The semantics is given node-for-node thus:�x(x y) run =E(run y) (10)In the format of proof nets, type occurrences are distinguished according to polarityinput (�) and output (�). A derivation �1: A1; : : : ; �n: An ) �1� � � � ��n: A is obtained byrecursively unfolding the types as �1� � � � ��n: A� �1: A1� � � � �n: An� according to thefollowing schemata:�: A� 
 ��
: B� a�
: B� } a: A�
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��: B� 
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: B� �+
: B� 
 �: A�
: A�B�P P P P mmm 
: A�B�Q Q Q Q nnnn

(11)Then a proof net is constructed unifying under associativity of � the expressions of axiomlinks connecting literals of complementary polarity (Roorda 1991, Moortgat 1996, Morrill1995a, de Groote 1999):�: A��� ________
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khe�runs: S� he: S=(NnS)� runs: NnS��x(x y) run (13)The uni�cation problem induced by the axiom links has solution fruns=�; a=�0g.To extract a semantic reading from a proof net one �rst associates distinct variableswith each }-output link with input and output premisses. Then one starts travellingupwards at the output terminal node and continues thus (Lamarche 1995, de Groote andRetor�e 1996):� Going up into the conclusion of a } output link with input and output premisses,form a lambda abstraction of the associated variable and continue travelling upwardsat the output premise.� Going down at the input premise of a } output link with input and output premisses,return the associated variable and bounce, returning the way you came.� Going down at the output conclusion of a } output link with input and outputpremisses, continue going down at the conclusion.� Going up into one conclusion of an identity axiom link, go down at the other.� Going down into the input premise of a 
 link with input and output premisses,open a functional application and go down at the conclusion.� Going up at the input conclusion of a 
 link with input and output premisses, goup at the output premise.� Going down into the output premise of a 
 link with input and output premisses,close the functional application and go up at the other premise.� Going up at the output conclusion of a 
 link with output premisses, open a pairformation and go up at the right premise.� Going down at the right premise of an output 
 link with output premisses, separatethe pair formation and go up at the left premise.� Going down at the left premise of an output 
 link with output premisses, close thepair formation and continue going down at the conclusion.� Going down into the left premise of an input 
 link with input premises, take the�rst projection of the result of going down at the conclusion.� Going down into the right premise of an input 
 link with input premises, take thesecond projection of the result of going down at the conclusion.� Going up into an input 
 link with input premisses go up at the premise mostrecently entered.� Going down at a terminal node, return the associated semantics and bounce, goingback the same way. 4



The semantic travel instructions for links with two premisses and one conclusion are rep-resented graphically in the following (letters, �;  ; � represent semantic variables):�� ) 22
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The semantic trip for our example yields the semantic term (15a) which simpli�es by�-conversion to (15b).a. (�x(x y) �z(run z))b. (run y) (15)De Groote and Retor�e (1996) show how lexical semantics can be integrated with deriva-tional syntax by encoding the former also as proof nets, connecting them by a Cut:A
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The semantic trip again yields (15a), which simpli�es to (15b).As de Groote and Retor�e (1996) note, the simpli�cation can be made on the represen-5



tation as proof nets by reductions such as the following:� } � � 
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Thus (17) reduces to the following:a. y� __ �
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�run�Making the semantic trip on this reduced proof net yields the simpli�ed semantics (15b).However, Morrill (1999) proposes that the proof net reduction be performed not aftersyntactic derivation (placement of axiom links) but before, in a preevaluation of the partialproof nets (modules) resulting from Cutting lexical semantics into lexical categories. Thusthe lexical entry for `runs' is preevaluated thus:�: N� 
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(20)And the lexical entry for `he' is preevaluated thus:6
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a��: S� a { y: N�The derivation of `He runs' is then performed on the basis of assembling the evaluatedlexical modules as follows: �0: N�
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____ run� (23)The uni�cation problem induced has solution fruns=�; a=�0g. The result of the semantictrip is the simpli�ed semantic form (15b).3 Discontinuity CalculusAssociative Lambek calculus was presented as a logic of concatenation, which role isstrengthened by the result of Pentus (1994) improving to free semigroups the complete-ness result of Buszkowski (1986) for semigroups. However, natural grammar includesnon-concatenative phenomena, leading to the search for calculi of discontinuity servingfor non-concatenative adjunction as the Lambek calculus serves for concatenative adjunc-tion. Thus Versmissen (1991) proposes to treat discontinuity via split strings. Algebraicapproaches include the following: 7



� Solias (1992): (L; �; ;; h�; �i) where (L; �; ;) is a free monoid and (L; h�; �i) is a freegroupoid. Wrap is a partial operation de�ned by hs1; s2iWs = s1�s�s2.� Morrill and Solias (1993): (L; �; ;; h�; �i; 1; 2) where (L; �; ;) is a monoid, (L; h�; �i) isa groupoid and 1hs1; s2i = s1; 2hs1; s2i = s2 and h1s; 2si = s. Wrap is a totaloperation de�ned by sWs0 = 1s�s0�2s.� Morrill (1994, 1995b): (L; �; ;; (�; �);W ) where (L; �; ;) is a monoid, (L; (�; �)) and(L;W ) are groupoids and (s1; s2)Ws = s1�s�s2. Wrap is a primitive total operation.See also Moortgat (1996). The format adopted here is that of Morrill and Merenciano(1996) in which a monoid (L; �; ;) is extended to the sorted algebra (L;L2; �; ;;W ) wherewrapping W , of functionality L2; L! L, is de�ned by hs1; s2iWs = s1�s�s2:� � � � 
 W � = � � 
 (24)Category formulas become sorted into two kinds according to their prosodic type, stringor split string:F ::= A j FnF j F=F j F�F j F2#F j F2�FF2 ::= F"F (25)The Lambek connectives are interpreted as before by residuation with respect � while thenew connectives # (`in�x'), " (`extract') and � (`discontinuous product') are interpretedby residuation with respect to W :D(A#B) = fsj 8hs1; s2i 2 D(A); s1�s�s2 2 D(B)gD(B"A) = fhs1; s2ij 8s 2 D(A); s1�s�s2 2 D(B)gD(A�B) = fs1�s�s2j hs1; s2i 2 D(A) & s 2 D(B)g (26)The following Prawitz-style natural deduction rules are valid:���(�1; �2): A ���
: A#B #E�1�
��2: B n(a1; a2): A���a1�
�a2: B #In
: A#B (27)���(
1; 
2): B"A ����: A "E
1���
2: B na���
1�a�
2: B "In(
1; 
2): B"A (28)����: A�B n(a1; a2): A na1+�)a2: B���
: C �En
: C ���(�1; �2): A ����: B �I�1����2: A�B (29)The prosodic operator invoked in �E satis�es �1�(�1+�)�2)��2 = �. As before, thefunctor elimination and introduction rules are semantically interpreted by functional ap-plication and functional abstraction, and the product elimination and introduction rulesby projection and pairing, respectively. 8



Consider now subject-oriented re
exives:a. John buys Fido for himself.b. John buys himself Fido. (30)These can be characterised by the lexical assignment (31) (see Moortgat 1996).1himself { �x�y((x y) y):= ((NnS)"N)#(NnS) (31)(Note that the best that could be done in the Lambek calculus is to assign type ((NnS)/N)n(NnS),which would derive (30a) but not (30b).) Then for example, (30b) is derived thus:J: N buys: ((NnS)=N)=N 1a: N =Ebuys�a: (NnS)=N F: N =Ebuys�a�F: NnS "I1(buys;F): (NnS)"N himself: ((NnS)"N)#(NnS) #Ebuys�himself�F: NnS nEJ�buys�himself�F: S (32)
The corresponding semantics given node for node is (33).j buy 1x =E(buy x) f =E((buy x) f) "I1�x((buy x) f) �x�y((x y) y) #E�y(((buy y) f) y) nE(((buy j) f) j) (33)

The proof net links for the discontinuity connectives are as follows:(�1 ;�2): A� 
 �1�
��2: B� a1 �
�a2: B� } (a1;a2): A�
: A#B�U U U U U iiiii 
: A#B�V V V V V
iiiii
1���
2: B� 
 �: A� a: A� } 
1�a�
2: B�(
1; 
2): B"A�U U U U

iiiiii (
1; 
2): B"A�U U U U U U iiii(a1 ;a2): A� } a1+
)a2: B� �1+
)�2: B� 
 (�1 ;�2): A�
: A�B�U U U U U iiiii 
: A�B�V V V V V iiiii

(34)
To represent in proof nets the multiple binding in the lexical semantics of `himself',we use a simpli�ed version of !-links (see de Groote and Retor�e 1996). The relevant travelinstructions are:1The assignment (31) does not block examples such as*`John says himself runs' or*`John says Marysaw himself'. However, Morrill (1990, 1994) argues that intensionality, for example temporal domains,provide the appropriate term of reference for locality e�ects. Thus in a modal logic of intensional types,`John says himself runs' would be N, ((NnS)/ S), (((NnS)"N)#(NnS)), (NnS) ) S which isnot modally valid. Similarly, for `John says Mary saw himself', the re
exive cannot occupy an N positionin the superior modal domain. In this way Principle A e�ects are imposed as expounded in the references.9



� Going down at a premise of an input !-link, go down at the conclusion.� Going up at the conclusion of an input !-link, go up at the premise most recentlyentered.The unevaluated lexical module for `himself' is (35).����� ____________
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This evaluates to (36).���1�himself��2: S�
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Thus (30b) has the proof net analysis given in �gure 1. The uni�cation problem inducedby the axiom links has solution fJ=�;buys=�1;F=�2;b0=�00;F=�0;b=�g. The semantictrip yields the simpli�ed semantics of (33).For a syntactically free accusative pronoun we can make the lexical categorisation(37).2him { �x�y((x �) y):= ((NnS)"N)#(NnS) (37)In terms of natural deduction, `Mary saw him' is derived as in (38).M: N saw: (NnS)=N 1a: N =Esaw�a: NnS "I1(saw; ;): (NnS)"N him: ((NnS)"N)#(NnS) #Esaw�him: NnS nEM�saw�him: S (38)The semantics is thus:2Again, (37) does not block*`Johni says himi runs', but in a modal logic of intensional types, assignmentto (((NnS)"N)#(NnS)) does block this. 10
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m see 1x =E(see x) "I1�x(see x) �x�y((x z) y) #E�y((see z) y) nE((see z) m) (39)In terms of proof nets, the unevaluated lexical module for a syntactically free accusativepronoun is that in (40).����� ____________
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This evaluates to (41).a { �: N� a0��1�a��2: S�
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The uni�cation problem induced by the axiom limks has solution f;=�2;M=�; saw=�1;b=�;b0=�0gand the semantic trip yields the simpli�ed result of (39).12



4 Generalised discontinuityMore expressivity is required for bound pronouns if we are to capture cases such as thosein (43) where the antecedent does not c-command the pronoun.a. The mother of every boy/John said he won.b. The mother of every boy/John praised him. (43)On the analysis pursued here, pronouns involve wrap around the second of two split pointsin a doubly split string (secondary wrap). We generalise the sorted algebra (L;L2; �; ;;W )of the discontinuity calculus to (L;L2; L3; �; ;;W;W2) where secondary wrapping W2, offunctionality L3; L! L2, is de�ned by (s1; s2; s3)W2s = (s1; s2�s�s3):� � � � � � � � � W2 
 = � � � � � 
 � (44)Category formulas become sorted into three kinds according to their prosodic type,string, split string, or doubly split string:F ::= A j FnF j F=F j F�F j F2#F j F2�F j F3#2F2F2 ::= F"F j F3�2FF3 ::= F2"2F (45)The new connectives #2 (`secondary in�x'), "2 (`secondary extract') and �2 (`secondarydiscontinuous product') are interpreted by residuation with respect to W2:D(A#2B) = fsj 8hs1; s2; s3i 2 D(A); hs1; s2�s�s3i 2 D(B)gD(B"2A) = fhs1; s2; s3ij 8s 2 D(A); hs1; s2�s�s3i 2 D(B)gD(A�2B) = fhs1; s2�s�s3ij hs1; s2; s3i 2 D(A) & s 2 D(B)g (46)The following Prawitz-style natural deduction rules are valid:���(�1; �2; �3): A ���
: A#2B #2E(�1; �2�
��3): B n(a1; a2; a3): A���(a1; a2�
�a3): B #2In
: A#2B (47)���(
1; 
2; 
3): B"2A ����: A "2E(
1; 
2���
3): B na���(
1; 
2�a�
3): B "2In(
1; 
2; 
3): B"2A (48)����: A�2B n(a1; a2; a3): A n(a1; a2+�)a3): B���
: C �2En
: C ���(�1; �2; �3): A ����: B �I(�1; �2����3): A�B (49)As before, the functor elimination and introduction rules are semantically interpretedby functional application and functional abstraction, and the product elimination andintroduction rules by projection and pairing, respectively.13



Bound pronouns can be categorised thus:he { �x�y�z((y (x z)) z):= (((S"N)"2S)#2(S"N))/(NnS)him { �x�y�z�w((z ((x w) y)) w):= ((NnS)"N)#(Nn(((S"N)"2 S)#2(S"N)) (50)So `Johni said hei won' can be derived in natural deduction as follows:1b: N said: (NnS)=S 2a: S =Esaid�a: NnS nEb�said�a: S "I1(;; said�a): S"N "2I2(;; said; ;): (S"N)"2S he: (((S"N)"2S)#2(S"N))=(NnS) won: NnS =Ehe�won: ((S"N)"2S)#2(S"N) #2E(;; said�he�won): S"N J: N "EJ�said�he�won: S
(51)

The node-for-node semantics is as follows:1u say 2w =E(say w) nE((say w) u) "I1�u((say w) u) "2I2�w�u((say w) u) �x�y�z((y (x z)) z) win�y�z((y (win z)) z)�z((say (win z)) z) j((say (win j)) j)
(52)

5 Delay of Principle B e�ectThe proof links for the generalisation of the discontinuity calculus given in the previoussection are as follows:(�1;�2; �3): A� 
 (�1; �2�
��3): B� (a1;a2�
�a3): B� } (a1;a2 ;a3): A�
: A#2B�W W W W W W
ggggggg 
: A#2B�W W W W W W

gggggg(
1; 
2���
3): B� 
 �: A� a: A� } (
1; 
2�a�
3): B�(
1; 
2; 
3): B"2A�W W W W W
gggggggg (
1; 
2; 
3): B"2A�W W W W W W W W ggggg(
; a1; a2): A� } a1+
1)a2: B� �1+
2)�2: B� 
 (
1; �1;�2): A�(
1; 
2): A�2B�W W W W W ggggg (
1; 
2): A�2B�W W W W W ggggg

(53)
The evaluated module for syntactically bound `him' is as follows:a0 : N� ! a0000 : N��G G G tttt

�

�

______________________

�

�

a: N�
___

�0: N� a0 ��1�a��2: S�
_____

a000 : S� �00 : N� �01�a0000 ��02�a000��3: S�
__________

�01��00 ��02��0��1�him��2��3: S�(54)14



Chien and Wexler (1990) reports an experiment (experiment 1) in which children werepresented with sentences of the form (55).a. Kitty says that Sarah should point to herselfb. Kitty says that Sarah should point to her (55)In (55a) the re
exive pronoun has the local antecedent `Sarah'; in (55b) the personalpronoun has the non-local antecedent `Kitty'. Children's understanding of the sentences,i.e. whether Kitty or Sarah is chosen as antecedent, was tested by requiring them to actout what is said. In a few cases children took the pronouns to have a sentence-externalreferent, but in the main they chose one of the two sentence-internal referents.Children's performance on the locality property of re
exives increased continuouslyfrom about 13% at age 2;6 to about 90% at 6;0, i.e. children older than 6;0 knew the majorproperties of re
exives. By contrast, children's performance on the non-locality propertyof personal pronouns stayed roughly 
at from 2;6 to 6;6 with only a slight improvementto 64%. That is, children between the ages of 6;0 and 6;6 demonstrated knowledge ofPrinciple A but appeared to allow violation of Principle B.Consider now the proof nets for (55a) and (55b) given in �gures 2 and 3 respectively.The number of axiom links crossing in between any two words is the number of unresolveddependencies or valencies at that point in an incremental analysis. It is argued in Johnson(1998) and Morrill (2000) that this number re
ects the processing load on memory in thecourse of time. Thus we can read o� from the proof nets complexity pro�les showing theincremental burden on memory. For our examples these are as follows:76 b b5 b b ab ab432 ab a a1 ab a a0 aba. Kitty says that Sarah should point to herselfb. Kitty says that Sarah should point to her (56)
We see that the complexity curve for the b case is notably higher: in this sense it ispredicted that a child with cognitively limited processing capacity may manifest di�cultiesin processing the long dependencies of personal pronouns. Thus we can maintain a stronginnateness hypothesis: that children know principle B, but that they exhibit a delay ofPrinciple B e�ect due to processing limitations.ReferencesBuszkowski, Wojciech: 1986, `Completeness results for Lambek syntactic calculus',Zeitschrift f�ur mathematische Logik und Grundlage der Mathematik 32, 13{28.Carpenter, Bob: 1998, Type-Logical Semantics, MIT Press, Cambridge, Massachusetts.Chien, Yu-Chin and Kenneth Wexler: 1990 `Children's Knowledge of Locality Conditionsin Binding as Evidence for the Modularity of Syntax and Pragmatics', Language Aqui-sition, 1, 3, 225{295.Chomsky, Noam: 1981, Lectures on Government and Binding, Foris, Dordrecht.Girard, Jean-Yves: 1987, `Linear Logic', Theoretical Computer Science 50, 1{102.de Groote, Philippe: 1999, `An algebraic correctness criterion for intuitionistic multiplica-tive proofnets', Theoretical Computer Science, 224, 115{134.de Groote, Philippe and Christian Retor�e: 1996, `On the Semantic Readings of Proof-Nets',in G.-J. Kruij�, G. Morrill and R. T. Oehrle (eds.) Proceedings of formal Grammar1996, Prague, 57{70. 15
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